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Abstract 

In this paper a typical situation arising in the assembly of printed circuit boards is investigated. The planning problem we 
face is how to assemble boards of different types using a single line of placement machines. From a practical viewpoint, the 
multiplicity of board types adds significantly to the complexity of the problem, which is already very hard to solve in the 
case of a single board type. In addition, relatively few studies deal with the multiple board type case. We propose a solution 
procedure based on a hierarchical decomposition of the planning problem. An important subproblem in this decomposition 
is the so-called feeder rack assignment problem. By taking into account as much as possible the individual board type 
characteristics (as well as the machine characteristics) we heuristically solve this problem. The remaining subproblems are 
solved using constructive heuristics and local search methods. The solution procedure is tested on real-life instances. It turns 
out that, in terms of the makespan, we can substantially improve the current solutions. © 1997 Elsevier Science B.V. 
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1. Introduct ion  

The assembly o f  printed circuit boards (PCBs) is 
in general a complicated task. Sophisticated machines 
must perform intricate operations, involving different 
kinds of  tools and various components, in order to as- 
semble a board. Numerous constraints and conflicting 
objectives interfere to create a challenging planning 
problem. Further, the competition faced by a PCB- 
manufacturer causes a need for high throughput rates. 
In order to cope with such an environment, it is nowa- 
days well recognized that the availability o f  automated 
planning procedures is a major asset. 

In this paper we describe a typical case in PCB- 

assembly arising at a plant o f  Philips NV, a major PCB- 
manufacturer. We propose a planning procedure for a 
situation where a family of  different board types are to 
be produced by a line of  different placement machines. 
This procedure is based on a hierarchical decomposi- 
tion o f  the planning problem. Not surprisingly, most 
subproblems in this decomposition are already very 
hard in terms of  computational complexity. Moreover, 
the size of  the problems we consider prohibits the ef- 
fective use of  exact solution methods. In order to ob- 
tain good solutions in a reasonable amount of  time, we 
solve the subproblems approximately using heuristics 
and local search methods. The resulting procedure is 
tested on real-life instances (made available to us by 
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Philips), for which we are able to close about 70% of 
the gap between the previously best-known makespan 
and a (fairly) weak lower bound, thus reducing the 
current overall makespan by approximately 17%. 

Let us now give a short description of how the as- 
sembly of PCBs is organized at the Philips plant un- 
der study, There are a number of assembly-lines, each 
consisting of a number of placement machines which 
place electronic components on bare boards. There are 
different types of boards and different types of com- 
ponents to consider. Each board type is assigned to 
a line of placement machines, that is, all boards of a 
type 'flow' through the machines of a specific line. 
The electronic components must be mounted at pre- 
scribed locations on a board. The set of locations to 
be served on a board as well as the type of compo- 
nents to be placed at each location depends upon the 
board type. In other words, for each board type, a set 
of locations, and for each of these locations the type 
of the component to be placed there, is given. Com- 
ponents of  each type are delivered to the machine by 
means of a so-called feeder. Each placement machine 
is equipped with a feeder rack which holds the feed- 
ers. Further, the machine has some device - dependent 
upon the technology (see Section 2) - which is able 
to pick components from the feeders and place these 
components onto the board. 

A production plan associated with this description 
should at least specify the following: 
( 1 ) a partition of the set of board types into fami- 

lies which are to be assigned to different lines of  
placement machines, and a sequence of the board 
types within each family, indicating in which or- 
der these board types will be produced, 

(2) for each board type, a partition of the set of com- 
ponent locations on this board, that is a decision 
concerning which locations are going to be served 
by which machine, 

(3) for each machine, a feeder  rack assignment, that 
is an assignment of feeders to positions in the 
feeder rack, 

(4) for each pair consisting of a machine and a board 
type, a component placement sequence, that is 
an order in which components are placed at the 
locations on this board that are served by this 
machine, and 

(5) for each pair consisting of a machine and a board 
type, a component retrieval plan, that is, for each 

component on the board, a rule indicating from 
which feeder this component should be retrieved. 

In this paper, we focus on problems ( 2 ) - ( 5 ) ,  thus 
we deal with planning problems that arise when a 
given family of board types is assembled by a single 
line of placement machines. In Section 2 we give a pre- 
cise description of these problems (including some of 
the technological features of the placement machines 
used), and in Section 3 we describe our solution pro- 
cedure. Section 4 is devoted to the performance of our 
procedure on real-life instances and Section 5 con- 
tains the conclusions. The remainder of the current 
section is devoted to literature related to the assembly 
of PCBs. 

In case one strives to minimize the makespan for 
a single machine producing a single board type, the 
planning problem above reduces to problems (3),  
(4) and (5) (feeder rack assignment, component 
placement sequence and component retrieval plan). 
A number of studies focus on problems (3) and (4) 
only, since problem (5) vanishes when precisely one 
feeder is available per component type. In such a 
case, the interaction between problems (3) and (4) 
is of  crucial importance. This issue has been identi- 
fied by Drezner and Nof [16] (see also Walas and 
Askin [ 26] for a similar application in the production 
of metal parts). An approach based on location theory 
is reported by Foulds and Hamacher [ 17]. Leip~il~i and 
Nevalainen [20] suggest a solution procedure based 
on heuristically solving a TSP and a quadratic assign- 
ment problem in an iterative fashion. Other heuristic 
approaches are described in Francis, Hamacher, Lee 
and Yeralan [ 18] (see also Viczi~n [24] ) and Younis 
and Cavalier [27]. Ball and Magazine [8] show that, 
when a feeder rack assignment is given, an optimal 
component placement sequence can, in some situa- 
tions, be found in polynomial time. Bard, Clayton and 
Feo [ 10] propose a planning procedure tailored for 
a specific placement machine, in which problem (5) 
is explicitly addressed (see also Crama, Flippo, van 
de Klundert and Spieksma [ 13] ). Further, Ahmadi, 
Grotzinger and Johnson [2] present a model which 
determines, among other parameters, with how many 
feeders of each type the placement machine should 
be equipped. 

When the planning problem is extended to a line of 
placement machines producing a single board type, 
problem (2) comes up. Crama, Kolen, Oerlemans and 
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Spieksma [14] and van Laarhoven and Zijm [19] 
each propose a solution procedure for a line of CSM- 
60 placement machines. Lofgren, McGinnis and 
Tovey [21] treat a case where a board is allowed to 
visit a machine more than once. 

Relatively few published studies deal with the case 
where multiple boards types are to be assembled by 
one or more machines: we mention Carmon, Maimon 
and Dar-el [11], Balakrishnan and Vanderbeck [7] 
and Askin, Dror and Vakharia [6]. In this situation the 
following issues may appear (cf. problem ( 1 ) ). Since 
the set of component types needed to produce all board 
types can be larger than the available capacity in the 
feeder racks, one may be forced to partition the set of 
board types into subfamilies which can be produced 
with a fixed feeder assignment. Thus, one may have 
to solve problems ( 2 ) - ( 5 )  a number of  times during 
the planning period to produce all board types. This 
problem is addressed in Tang and Denardo [22,23] 
and Bard [9]. A number of authors have further inves- 
tigated this batch selection problem (see Crama [ 12] 
for further references). Alternatively, given a number 
of assembly-lines, one may try to solve problem ( l ) in 
such a way that each family can be produced on a line 
(which describes the situation at hand, see Section 2). 
Also, one may partly circumvent the problem by pre- 
scribing some feeders (the 'common' feeders) to be 
permanently assigned to certain positions in the rack, 
whereas other feeders (the 'exotic' ones) are loaded 
as needed, see Cartoon, Maimon and Dar-el [ 11 ], Bal- 
akrishnan and Vanderbeck [7] and Agnetis, Askin and 
Sodhi [ 1 ] for a description of this idea. Askin, Dror 
and Vakharia [ 6 ] study the assembly of multiple board 
types by multiple machines in an open shop (rather 
than flowshop) environment. Another issue which be- 
comes apparent is that, when dealing with more than 
one board type, problem (3) becomes much more 
complicated. Indeed, most of  the planning procedures 
described in the literature we mentioned here, attempt 
to determine a feeder rack assignment for which an 
optimal component placement sequence can be found. 
However, when dealing with multiple board types, one 
has to find a single feeder rack assignment such that a 
good placement sequence can be found for each board 
type (see Sections 2 and 3). 

Finally, the technology employed by the placement 
machine under consideration may give rise to specific 
planning problems (see for instance Ahmadi and Kou- 

velis [4]) .  An overview of issues which arise in the 
operational planning of PCB assembly can be found in 
Ahmadi [ 3 ], Crama, Oerlemans and Spieksma [ 15 ] 
and Voogt [ 25 ]. 

2. Problem description 

In this section we focus on a precise description of 
problems ( 2 ) - ( 5 )  for the situation encountered at a 
plant of Philips. Subsection 2.1 refines the description 
of the setting given in the introduction. Subsection 2.2 
is devoted to the technological features of the place- 
ment machines under consideration. 

2.1. Properties of  the assembly environment 

This subsection deals with the following issues: 
• we motivate the choice of our objective function, 
• we discuss the nature of the feeder rack assignment 

problem for our situation, and 
• we describe the so-called component retrieval prob- 

lem. 
At the plant investigated, several lines of  placement 

machines are devoted to the assembly of PCBs. Pro- 
duction is mostly organized in such a way that chang- 
ing feeders for other purposes than refilling should not 
occur. Thus, the capacity of the feeder racks in the 
assembly-line restricts the set of board types which 
the line can handle: this available capacity should be 
large enough to accommodate all feeders needed to as- 
semble the family of board types assigned to that line. 
Accordingly, at these plants, problem (1) mentioned 
in Section 1 is reformulated to take this restriction into 
account. From now on we assume that problem ( 1 ) 
has been solved; thus, we deal with a set of different 
types of PCBs (a family) that has to be produced by 
a line of several placement machines (sometimes re- 
ferred to as theflowshop) without any feeder changes. 

It is customary at the plant investigated to produce 
in batch mode. This means that, within a family, all 
boards (several hundreds) of one type are assembled 
consecutively before switching to another board type. 
Here again, we assume that the sequence of batch types 
is exogeneously determined (that is, in Step ( 1 ) ). Due 
to competition and efficiency incentives, it is important 
to achieve high throughput rates for the batches. Obvi- 
ously, the throughput rate of each batch is determined 
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by a machine in the line on which the makespan of 
this board is maximal, called the bottleneck machine. 
Therefore we choose as objective to minimize the sum 
over all board types of the makespans of these board 
types on their bottleneck machines (in the software 
used by Philips this objective function is only implic- 
itly used). Of course, different types of PCBs, and 
therefore different batches, may have different bottle- 
neck machines. Thus, more formally, let t p (s) denote 
the makespan of a board of type p on machine m for 
some given solution (i.e. production plan) s. With S 
denoting the set of feasible solutions, our objective 
function may be specified as: 

min ~ mmax tP (s).  
sES 

P 

This seems a reasonable objective function when the 
batches are of approximately equal size. Otherwise, 
weights reflecting the size of the batches can be incor- 
porated to obtain a more appropriate objective func- 
tion. 

Consider now the feeder rack assignment problem. 
As mentioned in the introduction, the feeder rack 
assignment problem becomes harder when multiple 
board types are involved. In fact, as far as we know, 
the feeder rack assignment problem with multiple 
board types has not been addressed explicitly in the 
literature. Of course, a straightforward way to deal 
with this problem is to reduce the multiple board case 
to the single board case. This could be done by cre- 
ating a so-called composite board type which would 
consist of all the individual board types superposed 
on each other. In other words, a fictitious board type 
is made on which all locations of all board types of 
the family occur. Next, one can apply any existing 
software for solving the traditional feeder rack assign- 
ment problem for this composite board. In fact, this 
strategy is currently used in practice. Our approach 
takes a different point of view. A main characteristic 
of our solution procedure is to take into account as 
much as possible the individual board characteris- 
tics. This approach can be motivated by observing 
that although the set of component types needed for 
different board types in the family may be similar, 
the distribution of the locations to be served on those 
board types can be quite different. Our solution proce- 
dure, which is also based on machine characteristics 
to be discussed later, is described in Section 3. 

Finally, consider the following issue. Imagine, for 
reasons of simplicity, the problem of minimizing the 
makespan of a single board on a single machine. Ob- 
viously, a solution to the resulting planning problem 
must consist of a component placement sequence and 
a feeder rack assignment. However, when components 
of a same type are assigned to more than one feeder- 
slot, solving these two subproblems is not sufficient. 
In addition, we have to decide for each component 
from which feeder it is to be retrieved. Of course, dif- 
ferent decisions for a specific component may result 
in different makespans for the board. This issue is 
raised in Bard, Clayton and Feo [ 10], and the resulting 
component retrieval problem is further investigated in 
Crama, Flippo, van de Klundert and Spieksma [ 13]. 
A solution to this problem consists in a mapping from 
the set of board locations to the feeders (where the 
image of each location is simply the feeder deliver- 
ing the component to be placed at this location). Call 
such a mapping a component retrieval plan. Then, the 
component retrieval problem can be stated as follows: 

Given a component placement sequence and a feeder 
rack assignment, what component retrieval plan min- 
imizes the makespan of the PCB? 

Now, the way in which we are able to solve the 
component retrieval problem (and, in fact, some other 
issues) depends to some extent on the technological 
features of the placement machines used. We describe 
these machines in more detail in the next subsection. 

2.2. The placement machine 

In this subsection we describe the Fuji CP-IV place- 
ment machine that is used at the plant investigated. 
This description will enable us to translate the compo- 
nent retrieval problem for a Fuji CP-IV into a graph- 
theoretical problem (see Subsection 3.2). 

Obviously, the task of any PCB assembly machine 
is to place components on a PCB. These components 
are to be retrieved or gripped from feeders. Apart from 
differences in techniques for gripping and placing (in- 
sertion, onsertion, glueing), placement machines dif- 
fer in the way the coordination between placing and 
gripping activities is achieved. At the plants we con- 
sider, two types of placement (onsertion) machines 
are used, Fuji CP-III's and Fuji CP-IV's. For our pur- 
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pose, it is sufficient to assume here that the Fuji CP-III 
operates in an identical fashion as the Fuji CP-IV, but 
at a different speed. 

To perform its task, the CP-IV is equipped with a 
gripper, a placer and a carousel. The gripping of com- 
ponents from a feeder is performed by the gripper, and 
the placement is performed by the placer. The gripper 
as well as the placer do not move. Each time a com- 
ponent is gripped (or placed), the feeder rack (or the 
table containing the PCB) is positioned accordingly 
beneath the gripper (placer). The coordination of the 
interaction between the gripper and placer is achieved 
through the carousel or CAM. The carousel has 12 
positions configured in a circle and it rotates clock- 
wise in small rotations such that after 12 rotations it 
has rotated 360 degrees. See Fig. 1 for a schematic 
representation of the CP-IV. 

Let us now describe how the machine operates. 
Between two consecutive rotations a component is 
gripped and a component is placed simultaneously. So, 
after say i - 1 rotations (i > 7), two things happen 
at the same time: the ith component to be gripped is 
gripped and stored in position i mod 12 of the carousel, 
and the (i - 6)-th component to be placed is placed in 
the PCB from position ( i -  6) mod 12 of the carousel. 
Observe that the gripper is six components ahead of 
the placer. Since the gripping of component i and the 
placement of  component i - 6 start (and end) at the 
same time, this implies that, as soon as the grip and 
the place activities have been performed, three devices 
start to move at the same time: the table moves to 

bring the next location beneath the placer, the rack 
moves to bring the next feeder beneath the gripper 
and the carousel rotates. The movement which takes 
maximum time determines the moment when a new 
iteration starts. 

Notice that the modus operandi of the Fuji CP-IV 
described here (which was communicated to us by 
Philips) differs slightly from the one given in Bard, 
Clayton and Feo [ 10]. In our situation, the start of  a 
grip activity coincides with the start of  a place activity 
(at least after the first 6 rotations). This requirement is 
not present in the description given in [ 10]. It turns out 
that this requirement allows us to model the compo- 
nent retrieval problem straightforwardly as a shortest 
path problem (see Subsection 3.2), whereas in the ab- 
sence of this requirement this is no longer the case (cf. 
Crama, Flippo, van de Klundert and Spieksma [ 13 ] ). 

As a final remark to this section, the reader will un- 
derstand that the description above, although perhaps 
detailed, is not an exact replica of the truth. For in- 
stance, due to the fact that the speed of the carousel 
depends on the type of the components it carries, not 
all carousel rotations last equally long. Also, compo- 
nents which have to be rotated may take some extra 
time of the placer. Further, there are differences be- 
tween a Fuji CP-III and a Fuji CP-IV placement ma- 
chine besides speed. Although it is possible to model 
the aforementioned and other physical characteristics, 
we have chosen not to do so, for reasons of simplicity 
and since most of these characteristics will have only 
marginal effects on the makespans. 
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3. The planning procedure 

Let us now return to the general planning problem. 
Summarizing the discussion in the previous sections, 
we want to find: 
1. for each machine, a feeder rack assignment, 
2. for each board type, a component placement se- 

quence on each machine, such that for each PCB 
of that type, the sequences form a partitioning of 
the components required by the PCB, 

3. for each pair consisting of a machine and a board 
type, a component retrieval plan. 

In this section we describe our planning procedure. 
This procedure is divided into two phases: Phase 1 
determines a feeder rack assignment for each machine, 
and Phase 2 produces, for each pair consisting of a 
machine and a board type, a component placement 
sequence and a component retrieval plan, given the 
feeder rack assignment of  Phase 1. Accordingly, this 
section contains two subsections each devoted to the 
description of a phase in the planning procedure. 

Clearly, the planning procedure we present is hier- 
archical in nature: first, a feeder rack assignment is 
computed, next a component placement sequence and 
component retrieval plan are determined. Of course, 
the following question then arises: how do we evalu- 
ate feeder rack assignments computed during Phase 1 
without computing a placement sequence and retrieval 
plan, that is, without solving Phase 2? We deal with 
this issue by computing an estimate of the makespan 
of each board type on each machine given the feeder 
rack assignment and a corresponding partition of the 
components of  each board type (see (2) in Section 
1). These estimates are then used as an indication of 
the quality of the feeder rack assignments found dur- 
ing the execution of the algorithm. 

Before describing Phase 1 in more detail, let us first 
start with some observations related to the placement 
machines described in the previous section. 

Observat ion 1. A feeder is nothing but a tape con- 
taining components of a certain type. These tapes are 
expensive, and to keep inventory of these tapes low, it 
is desirable to restrict the number of tapes containing 
components of a certain type. In the plant considered, 
often a bound of 2 feeders for each component type 
was imposed, that is, no more than 2 feeders with the 

same component type can be used on the line. We 
adopt this restriction in our planning procedure. 

Observation 2. A basic characteristic, which has 
been observed by other authors as well (see e.g. Ah- 
madi, Grotzinger and Johnson [2] and Bard, Clayton 
and Feo [ 10] ) concerns the so-called free movement.  
To explain this, consider again Fig. 1. Between two 
consecutive grip (or place) activities, the carousel 
must rotate, and this takes a certain amount of time. 
During this time, the feeder rack, as well as the table 
containing the PCB, can move without increasing the 
makespan. Since it is impossible to avoid carousel 
rotations, this phenomenon occurs between each pair 
of consecutive grip (or place) activities. These move- 
ments of the feeder rack and the table, taking place 
during a carousel rotation, are referred to as free 
movement. Of course, the significance of this effect 
depends on the magnitude of the free movements. 
However, it can be considerable. In our situation, free 
movements of the feeder rack correspond to 1 posi- 
tion on the rack, that is, repositioning the feeder rack 
by 0 or 1 feeders is free. Concerning the table, free 
movement corresponds to approximately 2 cm on the 
table containing the PCB. Since the average PCB is 
approximately 20 × 30 cm, and the feeder rack con- 
tains mostly about 100 feeders, long table movements 
are less time consuming than long feeder rack move- 
ments. Hence we restrict the planning procedure to 
considering solutions in which all feeder rack move- 
ments are short, expecting that given this short feeder 
rack movements we can find a component placement 
sequence in which the table movements are not too 
long either. More specifically, we assume in Phase 1 
that the predecessor of  a component retrieved from 
some feeder i, is retrieved from feeder i - I, feeder 
i itself, or feeder i + 1 (thereby utilizing the free 
movement as much as possible as far as the feeder 
rack is concerned). The solutions we obtain show 
that it is indeed possible to construct feeder rack as- 
signments and component placement sequences such 
that subsequent components are mostly retrieved from 
consecutive feeders while the larger part of the table 
movements is free. 

3.1. Constructing a feeder  rack assignment: Phase 1 

Let us now describe Phase 1. It consists of five steps: 
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Step 1. 

Step 2. 

Step 3. 
Step 4. 

Step 5. 

Determine which component types will have 
2 feeders in the flowshop (see Observation 1 ). 
Decide, for each feeder, which locations it 
serves on each board type. 
Construct an arbitrary feeder rack assignment. 
Estimate the makespan for each board type on 
each machine, given the current feeder rack 
assignment. 
If some stopping criterion is satisfied, exit. 
Else, improve the feeder rack assignment us- 
ing local search and go to Step 4. 

Consider Step 1. In view of Observation 2 above, it 
is desirable for components that are within free grip- 
ping movement of each other, to be not too far apart 
from each other on the board, since otherwise the 
board movement (between consecutive placing oper- 
ations) may take a long time. Thus, if there are more 
magazine rack positions than component types, one 
way to avoid long table movements is to assign two 
feeders to component types whose components are, 
on some boards, far apart. Of all strategies we have 
tested to utilize this idea the following simple strat- 
egy performed best. Compute, for each combination of 
board type and component type, a short Hamiltonian 
path through the corresponding locations using some 
(TSP) heuristic (we use farthest insertion). For each 
component type t, let It be the length of the longest 
edge occurring in some path corresponding to compo- 
nent type t. Next, we list the component types in order 
of decreasing It value and we assign two feeders to as 
many component types as possible, starting at the top 
of the list and proceeding downward, until total capac- 
ity of the feeder racks is exhausted (or until each type 
has two feeders). In this way it is decided which com- 
ponent types have more than one feeder. Notice that 
we use individual board type characteristics to select 
those component types. 

Step 2 resembles the component retrieval problem. 
The difference is that the position of the feeders in 
the rack is not fixed yet. To partition the locations 
corresponding to components of each type for which 
there are two feeders placed in the rack, we propose 
the following. First, we consider a board type which 
has led us to assign two feeders to a component type t: 
consider board type p on which the Hamiltonian path 
as computed in Step 1 contains an edge of length It. 
Removing this longest edge partitions the locations 

corresponding to components of type t on board type p 
into two subsets, say Ltt "p and tt ' t '  

~ 2  " 

We have to decide next how to partition the com- 
ponents of this type on boards other than boards of 
type p. We take the following approach. For each lo- 
cation corresponding to a component of type t not on 
board type p, we determine the minimal distance to 
some location in Ltt 'p and, similarly, we determine the 
minimal distance to some location in Lt2 "e. Next, we 
assign this location to the subset whose correspond- 
ing minimal distance is minimal. (Notice that we as- 
sume here that a distance is known between two lo- 
cations which do not occur on the same board type. 
These distances are computed as if the components 
were on a same board, as e.g. the composite board 
mentioned earlier. This composite board can be con- 
structed unambiguously since all component locations 
are expressed in terms of coordinates, and the position 
of the boards on the table are given,) This approach 
has outperformed several alternative approaches in our 
computational experiments. Its success should be con- 
tributed to the fact that in this way, for each board 
type, the set of locations to be served by a feeder lies 
in the same part of the board. 

In this way, we obtain two sets of locations for each 
component type that has two feeders in the flowshop. 
More precisely, we refer to this partitioning of loca- 
tions corresponding to components of a certain type 
as a clustering, and we refer, informally, to all compo- 
nents that are to be retrieved from the same feeder as 
a cluster. In Fig. 2 we give a more formal description 
of the algorithm described in Steps 1 and 2. 

In Step 3 we simply assign each feeder arbitrarily to 
some position in the racks of the machines such that 
a feasible feeder rack assignment is obtained. 

Consider Step 4. Recall from Observation 2 that, 
given a feeder rack assignment, we intend to con- 
struct component placement sequences with the prop- 
erty that the rack moves at most one position be- 
tween any two consecutive grip activities. In addi- 
tion, when estimating the makespan of a board given 
a feeder rack assignment, we assume that one pass of 
the feeder rack through all feeders gives a good ap- 
proximation of an optimal way of moving the feeder 
rack. More explicitly, we estimate the makespan by 
assuming that the feeder rack movement in an optimal 
solution follows approximately the following pattern: 
the rack starts at the feeder in the leftmost position, to 
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U: set of  locations corresponding to components of type t. 
L t'p: set of  locations corresponding to components of  type t on a board of type p. 
pt.p: sequence of locations corresponding to components of type t on a board of type p induced by a Hamiltonian path. 
d~)P: distance between location i and location j corresponding to components of type t on a board of type p. 

dis(i, L): minimum distance over the locations in the set L between location i and a location from L. 
#t: number of  component types. 
#p: number of  board types. 
cap: number of feeder rack positions in the line. 

1. for t : = l  t o # t  do 
for p := 1 to #p do 

construct a Hamiltonian path pt,p using distance matrix dt.p; 
let the value of the longest edge in pt.p be denoted by Zt,p ; 

2. for t := 1 to #t do 
(a) It := maxp zt.p; 
(b) Pt := arg maxp zt,p; 

3. sort the component types in decreasing order of  It and index them 1,2 . . . . .  #t; 
4. t* := rain(cap, 2 x #t) - #t; Comment: t* corresponds to the number of feeder duplications 
5. for t :=  1 to t* do 

(a) partition L t.pt into Lt{ p' and Lt2 'p' by removing the longest edge from pt.p, ; 
(b)  C2t-I := Ltt'Pt; C2t := L~'P'; 
(c) for each i E [,Jp,p, L t'p do 

if dis(i, L'f p' ) < dis(i, Lt2 "p' ) then C2,- i  := C2t-i t9 {i} else C2t := C2t t3 {i}; 
6. for t := t* -b 1 to #t do Ct*+t := Lt; 

Fig. 2. Algorithm for Steps 1 and 2. 

be called feeder 1. Then, all components are gripped 
(and placed) of the cluster assigned to feeder 1, inter- 
leaving them by gripping (and placing) components 
of feeder 2, ending with a grip of a component from 
feeder 2. This is followed by gripping (and placing) 
the remainder of the components that are to be gripped 
from feeder 2, interleaved with the gripping of com- 
ponents of feeder 3 et cetera. 

This leads to a solution in which all feeder rack 
movements are free (if  at least one component is re- 
trieved from each feeder). Therefore, the makespan 
depends on the length of the table movements only, 
i.e. the length of a Hamiltonian path through the lo- 
cations, that respects the pattern of the feeder rack 
movements described above. For our purposes it is de- 
sirable to be able to compute quickly an estimate of 
the length of such a Hamiltonian path. Therefore we 
propose the following method, that does not use the 
exact feeder rack assignment, but only knowledge of 
which feeders are assigned to adjacent positions in the 
feeder rack. Notice that for every pair of feeders there 
is a set of locations on a board where the components 

from these feeders will be placed. We compute, for 
every pair of feeders, a value which equals the length 
of a Hamiltonian path through these locations, thereby 
utilizing the fact that they may be gripped interleav- 
ingly. Notice that these quantities can be computed 
independently of a feeder rack assignment, reducing 
the amount of computations required to evaluate indi- 
vidual feeder rack assignments. 

Of course, it may well be the case that, given a 
feeder rack assignment and some board type, there is 
a set of adjacent feeders from which no component is 
taken at all. In that case, the feeder rack movement is 
not free, and the makespan depends on the duration 
of this feeder rack movement. We next present an al- 
gorithm to estimate the makespan of every board type 
in the family for a given feeder rack assignment on 
some machine. 

We compute, for each board type p in the family, 
two so-called cluster distance matrices D p and E p . D p 

represents the length of a (short) Hamiltonian path 
through all locations of clusters Ci and Cj that are to 
be placed on p. E p is the maximum of two numbers, 
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or: a permutation of the feeders, i.e the order in which the feeders are placed on the rack (say from left to right), 
C~: the set of  components from cluster Ci (the cluster corresponding to the feeder positioned in ~ ' ( i ) )  that have to 

be placed on board type p. 

1. i := l , span  := 0; 
2. while IC~P(/)[.. = 0  do i := i +  !; 

3. span := span + ~ x D p f 

'n'( i),z'(i) ' 
i : = i +  l; 

4. while ICP(i)I., > 0 do 

D p (a) span := span + ½ x ~r(i-l):r(1)' 
(b) i : = i + l ;  
(c) if i = total number of  feeders then set k = i and goto step 7; 

5. k : = i -  l; 
D p span := span + ½ × ~r(k),~r(k) ' 

6. while IcP(i)I = 0  do 

(a) i : = i +  1; 
(b) if i = total number of feeders then goto 7; 

7. span := span + E~(k).rr(i) ; 
goto 3; 

D p 8. span := span + 1 × 
q r g ( k ) , ~ ' ( k )  I 

Fig. 3. Makespan estimation algorithm. 

EL l and EPT,.j where E pl is the minimum distance o v e r  

all distances between locations of Ci and Cj on board 
and E~ 2 corresponds to the distance between type g 

the feeders positioned in the rack which correspond 
to clusters Ci and Cj. Notice that these computations 
must be performed efficiently, since for the problem 
instances described in Section 4, the computation of 
the matrices D p requires constructing several hundreds 
of thousands Hamiltonian paths. 

Recall that the order in which the feeders are placed 
on the rack is known and let us refer to a feeder from 
which components are gripped in order to assemble 
a board of type p as an active feeder. Further, each 
feeder, except the leftmost and the rightmost ones, is 
adjacent to two other feeders to which we will refer 
as its left neighbor and its right neighbor respectively. 
Now, to estimate the makespan of a board of type p 
on a machine we do the following. 

First, consider for each active feeder, its left neigh- 
bor. I f  its left neighbor is active, we choose from the 
D p matrix the entry corresponding to these two feed- 
ers (the value of this entry equals the length of a 
Hamiltonian path through the locations of  both corre- 
sponding clusters). I f  the left neighbor is not active, 
we choose the diagonal element of D p corresponding 
to the current active feeder (the value of this entry 

equals the length of a Hamiltonian path through the 
locations of the corresponding (single) cluster). Sec- 
ond, consider for each active feeder its right neighbor. 
If  it is active we do nothing, else we again choose the 
diagonal element of  D e corresponding to the current 
active feeder. Finally, we sum all chosen entries. Ob- 
serve now that each location is part of two Hamilto- 
nian paths. To correct for this we simply divide the 
computed sum by 2. In this way we estimate the time 
spent on table movements. 

In order to estimate the time spent on rack move- 
ments we identify pairs of active feeders which are 
consecutive but not adjacent. For each such pair we 
find the corresponding entry in E p, then we sum these 
values and use this sum to estimate the time spent on 
feeder rack movements. A more formal description of 
the algorithm estimating the makespan of board type 
p on a machine with a given feeder rack assignment 
is as given in Fig. 3. 

Using the algorithm in Fig. 3, we get an estimate of 
the makespan of every board type for a given feeder 
rack assignment for each machine in the flowshop, 
without having to specify a component placement se- 
quence. Based on these estimated makespans, we can 
also get an estimate of the objective function for a 
given feeder rack assignment for each machine. Of 
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course, the accuracy of such an estimate depends on 
the quality of the Hamiltonian paths constructed, and 
on the component placement sequences that will even- 
tually be found. (We will see later that the estimates 
are usually extremely good (see Table 2 in Section 
4) .) 

Step 5 of our solution procedure optimizes the 
feeder rack assignments, using the estimated objec- 
tive function value found in Step 4. In fact, it is in this 
step that our estimates are used extensively. Through- 
out this step objective function evaluations are based 
on the estimates of the makespans, instead of the 
actual makespans. We try to optimize the feeder rack 
assignment by using two heuristics alternately. 

One heuristic tries to exchange between two ma- 
chines a pair of clusters, together with the correspond- 
ing feeders, to better balance the workload. To deter- 
mine which pair of machines are candidates for ex- 
changing clusters we do the following. For each pair 
of machines we sum over all board types the absolute 
difference of the respective processing times. Next, we 
select that pair of machines for which this sum is max- 
imal, and attempt to improve our current feeder rack 
assignment by exchanging feeders (and correspond- 
ing clusters) between these machines. Now what do 
we mean by improve? Obviously, what we want to im- 
prove is the objective function as described in Subsec- 
tion 2.1. However we have chosen another surrogate 
objective function to speed up the heuristic. Let Mi 
and M j  be the machines between which feeders are 
being exchanged, then the surrogate objective function 
takes on the value which the real objective function 
would have taken, had machines Mi and Mj been the 
only machines in the flowshop. 

The other heuristic reoptimizes the feeder rack as- 
signment for a single machine. More precisely, for a 
given machine, it attempts to minimize the sum of 
the makespans of the boards on that machine, by op- 
timizing the feeder sequence. This sequencing prob- 
lem is solved using an insertion heuristic in which the 
makespan estimation algorithm given in Fig. 3 is used 
to evaluate the insertions. 

Together these two heuristics deliver better solu- 
tions faster than other approaches we have tested. 
Since the heuristics work with different objective func- 
tions, which are in turn different from the original 
objective function, the process of calling both heuris- 
tics in turns does not necessarily converge. Therefore 

we have the following stopping criterion. We specify 
some upperbound (say 5 seconds), and the algorithm 
stops if after some iteration, the maximum over all 
pairs of machines of the sum of the absolute differ- 
ences of their makespans does not exceed this upper- 
bound. This strategy implies that when the algorithm 
stops, there may still be some room for improvement 
of the balance. Achieving these last tenths of percents 
of improvement is time consuming, and becomes less 
attractive as one notices that this phase of the algorithm 
uses estimations rather than the actual makespans. 

3.2. Constructing a component placement  sequence 
and a component retrieval plan: Phase 2 

Let us now describe Phase 2. It consists of three 
steps. 

Step 1. Determine, for each machine-board-type 
combination, a component placement se- 
quence. 

Step 2. Determine, for each machine-board-type 
combination, a component retrieval plan. 

Step 3. Improve the component placement sequence 
using local search. If  no improvements are 
found, stop, else go to Step 2. 

Consider Step 1. For a given board type and ma- 
chine, we construct an initial component placement 
sequence as follows. First assume that each location 
is served from the feeder associated to the cluster 
containing that location. For the first two feeders, de- 
termine two locations, c~ (from the leftmost feeder, 
feeder 1) and c2 (from the feeder adjacent to it, 
feeder 2), that are nearest to each other. Then se- 
quence before cl, all locations that are to be served 
from the leftmost feeder as well, using some insertion 
heuristic. Next determine the two locations c~ from 
feeder 2, and c~ from feeder 3, that are nearest to each 
other, and sequence all remaining locations that must 
be served from feeder 2 between c2 and c~ et cetera. 
Given this sequence we solve the component retrieval 
problem (see below), which provides a first solution. 

Consider now Step 2. How do we solve the compo- 
nent retrieval problem? In order to answer this ques- 
tion, recall that, when solving this problem, we assume 
that a component placement sequence and a feeder 
rack assignment are given. We are going to construct a 
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graph G and show that the component retrieval prob- 
lem is equivalent to finding a shortest path in this 
graph. 

We assume that the components are placed in nu- 
merical order (so component i refers to the ith compo- 
nent in the component placement sequence). Further- 
more, we assume that following the gripping of the last 
component, six more components are to be gripped, 
from the same feeder from which the last component 
was gripped. These additional 'dummy'  grips are per- 
formed in parallel with the last six places, and do not 
increase the makespan since the feeder rack need not 
be repositioned to perform them. Similarly we assume 
that there are six dummy place activities to accompany 
the first six grip activities, that also do not increase the 
makespan. So, between each two consecutive carousel 
rotations, both a grip and a place operation must take 
place. We define n to be the number of such pairs. 
(Notice that n exceeds the number of components by 
six.) Further, let K equal the number of feeder rack 
positions. 

For ease of  exposition, we refer to the location on 
the board corresponding to component i as location i, 
1 < i < n. Let 
Agp = time needed to grip (and hence place) 

a component, 
Ac = time needed for a carousel rotation, 
A t ( i ,  i ÷ 1 ) =  time needed for a table movement to 

bring location i + 1 beneath the placer, 
starting from a position in which loca- 
tion i is beneath the placer, 1 < i < 
n - 1, and 

A f ( r ,  s) = time needed for a rack movement to 
bring feeder rack position r beneath 
the gripper, starting from a position in 
which feeder rack position s is beneath 
the gripper, 1 ___ r, s < K. 

We construct a graph G as follows. Let Fi C_ 
{ 1 . . . . .  K} be the index set corresponding to feeder 
rack positions which hold feeders from which com- 
ponent i may be retrieved. The graph has a source, a 
sink and n intermediate layers. Each layer i contains 
IF, I vertices, denoted by v i " j ,  j C Fi, 1 < i < n. Indeed, 
there is one vertex in layer i for each feeder from 
which component i may be retrieved. The interpreta- 
tion of vertex v ( is the start of the grip (and place) 

. I  

activity which grips component i from feeder j .  Each 
vertex in layer i has an arc going to each vertex in 

s J  , \  i , /~  

/ 

• g , , /  

Fig. 4. Graph G. 

layer i + 1, the source has an arc going to each vertex 
in layer 1 and each vertex in layer n has an arc going 
to the sink. There are no other arcs. See Fig. 4 for a 
representation of G. The weight of an arc emanating 
from the source is 0, and the weight of an arc going 
to the sink is Z~gp. The  weight of an arc from v / to 
v~ + l , r c F t . , s C F / + l , l  < i < n -  1, equals 

A g p + m a x ( A c ,  A t ( i , i +  1 ) , A f ( r , s ) ) .  

Notice that when one interprets vertex v~. as the start of 
the grip (and place) activity which grips component 
i from feeder r, the weight of an arc defined above is 
equal to the time between two consecutive grips. (This 
follows from the description in Subsection 2.2.) 

Consider now any path in the graph G from the 
source to the sink. This path contains one vertex from 
each layer, reflecting a choice of feeders for the re- 
trieval of the n components. Further, since the weight 
of an arc corresponds to the time between two consec- 
utive grip activities, the length of the path equals the 
makespan of the assembly of the board. Also, it is easy 
to verify that each solution of the component retrieval 
problem corresponds to a unique path in G. Since one 
is interested in the shortest makespan, it follows that 
the component retrieval problem reduces to a shortest 
path problem on G, for which efficient algorithms are 
available (see for instance Ahuja, Magnanti and Or- 
lin [5]) .  (The recursive formulation given in Bard, 
Clayton and Feo [ 10] would also lead immediately 
to a polynomial time algorithm for this version of the 
component retrieval problem.) 

Finally, we restrict ourselves here to noticing that, 
even for a given component placement sequence and 
a feeder rack assignment, the computation of the 
makespan of a PCB is in general a nontrivial task. In 
fact, for other technologies the component retrieval 
problem may become substantially more difficult (see 
Crama, Flippo, van de Klundert and Spieksma [ 13] ). 

In Step 3, we try to improve the placement sequence 
by TSP-like local search techniques, using 2opt and 
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a restricted version of 3opt. This local search process 
may be very time consuming since each local search 
step requires solving the component retrieval prob- 
lem. Therefore we have sought ways to speed up this 
local search phase. An easy way of doing so, with- 
out substantially influencing the effectiveness of the 
2opt heuristic, is to keep the component retrieval plan 
fixed. In this way, the time consuming resolving of 
the component retrieval problem in each iteration of 
the 2opt heuristic can be skipped. (It  should be noted 
however, that each iteration still requires performing 
some non-negligible computations due to the fact that 
changes in the component placement sequence will 
change for some components, the component that is 
gripped while it is being placed.) On the other hand, 
especially for the restricted 3opt heuristic (that essen- 
tially takes out one component of the placement se- 
quence and then tries to reinsert it) resolving the com- 
ponent retrieval problem may be well worth the addi- 
tional effort. We have tried to reduce the running time 
of the local search heuristics by implementing several 
ideas that keep them from considering or evaluating 
(by solving the component retrieval problem) moves 
that will not result in an improvement. 

We aimed to keep the running time of the entire 
algorithm (phases 1 and 2) within certain limits. As 
a consequence the algorithm cannot spend too much 
time optimizing the component placement sequence 
of each board, even though the local search heuristics 
usually improve the solutions significantly. The meth- 
ods described above to speed up these heuristics en- 
sure that the benefits of these heuristics are realized. 

Notice that the feeder rack movements resulting 
from the final component placement sequences may 
not always utilize free movements as the intended 
feeder rack movements in Phase 1 of the solution ap- 
proach did. Further, notice that the clustering found 
in Steps 1 and 2 of  Phase 1 can be changed by the 
component retrieval plan. 

4. C o m p u t a t i o n a l  resul ts  

In this section we test our planning procedure on 
two datasets. Dataset 1 corresponds to a family con- 
sisting of 9 board types assembled by a line of 3 CP-IV 
machines. Dataset 2 corresponds to a family consisting 
of 7 board types assembled by a line of 2 machines, a 
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Table 1 
Final results dataset 1 

Board type Machine 1 Machine 2 Machine 3 

NoC Time NoC Time NoC ~me 

CP-IV and a CP-III machine. These datasets are real- 
life data made available to us by Philips. The plan- 
ning procedure we described above is programmed in 
Turbo Pascal and run on a personal computer with a 
486 33MHz processor. The results of our procedure 
are described in Tables 1, 2 and 3. 

To explain Table 1, consider a column correspond- 
ing with a machine. An entry in this column has 
two numbers: "NoC" is the number of components 
of the specific board type placed by that machine, 
and "time" equals the number of seconds it takes to 
place these components by this machine. The total 
makespan is computed by summing over the board 
types, the makespan of these boards on their bottle- 
neck machines. This total makespan is compared with 
the makespan of the solutions obtained by Philips (re- 
ferred to as current solution) and with a lower bound. 
This lower bound is computed as follows. Let Ac 
(Agp) represent the time a single carousel rotation 
(grip) takes on the fastest machine in the line; further, 
let t o t comp  be the total number of components to be 
placed to produce a single board of each type in the 
family, and let m equal the number of machines in the 
line. Then (Ac + A g p )  • t o t c o m p / m  is a valid lower 
bound for the makespan. For dataset 1, we are able to 
improve the current solution by almost a minute, clos- 
ing 66% of the gap between the lower bound and the 
current solution. 

Time 

Total makespan 184.8 
Current solution 244.1 
Lower bound 154.8 

1 50 13.8 52 13.5 49 13.5 
2 49 13.8 52 13.5 50 13.8 
3 86 21.1 86 21.2 84 21.2 
4 66 17.4 72 18.4 70 18.5 
5 25 7.9 28 8.0 25 7.0 
6 25 7.9 28 8.2 26 7.5 
7 42 11.3 43 12.2 47 13.4 
8 58 15.7 61 16.1 60 16.9 
9 304 69.4 293 69.3 332 71.0 
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Table 2 
Estimated results dataset 1 
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Board type Machine 1 Machine 2 Machine 3 

Actual Estimated Actual Estimated Actual Estimated 

1 13.8 13.6 13.5 13.1 13.5 13.5 
2 13.8 13.5 13.5 13.1 13.8 13.6 
3 21.1 22.2 21.2 21.3 21.2 22.2 
4 t7.4 18.8 18.4 18.5 18.5 19.2 
5 7.9 8.2 8.0 8.4 7.0 7.4 
6 7.9 8.1 8.2 8.4 7.5 7.6 
7 11.3 12.3 12.2 12.8 13.4 13.3 
8 15.7 16.4 16.1 17.2 16.9 17.0 
9 69.4 71.2 69.3 72.2 71.0 71.6 

In Table 2 the estimates of  the makespans as com- 
puted in Phase 1 are presented. We conclude that these 
estimates are accurate enough (usually within a few 
percent) to give a realistic impression of the actual 
makespans delivered by Phase 2. This might for ex- 
ample be useful to evaluate alternative solutions to the 
partitioning of board types into families (problem ( 1 ) 
in Section 1). 

Table 3 consists of four subtables, arising as fol- 
lows. As mentioned in Subsection 2.2, the difference 
between a CP-III and a CP-IV is its speed. To model 
this difference, we assume that speed(CP-IV) = 
speedfactor • speed(CP-III).  Since this speedfactor 
(spf) is a simplification of reality it is hard to estimate 
exactly. The speedfactor is believed to be approxi- 
mately 15%, but Table 3 also shows the outcomes for 
other values. Although it is hard to make an exact 
statement regarding the outcomes of our algorithm 
based on Table 3, it shows that our planning proce- 
dure is quite robust. The makespan grows more or 
less proportionally to the speedfactor. Moreover, each 
of the four solutions exceeds the lower bound by not 
more than 7%, while the current solution exceeds the 
lower bound by more than 20%. 

In our view, the main difference between the ap- 
proach presented here and the approach used to obtain 
the solutions currently used in practice is that we try to 
use as much as possible the individual board type char- 
acteristics, as opposed to the existing software which 
uses a composite board (see Section 2). Hence, we be- 
lieve that this difference in solution approach causes, 
at least for a large part, the gap between the solutions 
found by the two approaches. How can we test this 

hypothesis? If  it were true, then it would imply that, 
for families consisting of a single board type, the solu- 
tions found by the two approaches should not differ as 
much as they do for larger families. Thus, to substanti- 
ate our claim that individual board type characteristics 
matter, we performed the following experiment (see 
Table 4). We chose board type no. 9 of dataset 1 and 
considered this board type once as a family (see the 
row in Table 4 denoted by "sole member") and once 
simply as part of its original family (see the row in 
Table 4 denoted by "part of  family"). For both cases 
we applied our approach (see the column in Table 4 
denoted by "individual approach") and the approach 
currently used at Philips (see the column in Table 4 
denoted by "composite approach"). 

The results in Table 4 seem to support our claim. In- 
deed, in our approach, the makespan barely increases 
( 1 second) when the board is handled as a member of 
a large family rather than by itself. In the composite 
board approach, this increase amounts to 5 seconds. 
Alternatively viewed, the individual approach gives a 
makespan for board no. 9 as part of its family which 
is better by 8.4 seconds than the solution found for 
this board by the composite approach. Only 4.3 sec- 
onds (the difference between the makespans found for 
board 9 when considered as a family) of this improve- 
ment can be attributed to better search techniques, and 
thus almost 50% of the total improvement is due to the 
difference in the two approaches, or more concretely, 
to taking into account the individual board type char- 
acteristics. 

A similar experiment was conducted with a board 
type of dataset 2. As in dataset 1, we observed that 
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Table 3 
Final results dataset 2 

s p f =  1.15 
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spf = 1.20 

Board type Machine 1 Machine 2 Board type Machine 1 Machine 2 

NoC Time NoC Time NoC Time NoC Time 

1 107 28.7 129 29.8 1 104 29.4 132 
2 138 37.1 164 37.1 2 134 37.3 168 
3 137 37.2 162 37.0 3 131 37.2 168 
4 306 80.7 378 82.6 4 303 82.2 381 
5 118 31.3 139 31.6 5 112 31.7 145 
6 149 39.2 174 39.5 6 144 40.4 179 
7 150 39.5 172 38.8 7 144 39.4 178 

Time Time 

Total makespan 297.3 Total makespan 309.0 
Current solution 361.8 Current solution 361.8 
Lower bound 284.2 Lower bound 289.8 

spf = 1.25 spf = 1.30 

Board type Machine 1 Machine 2 Board type Machine 1 Machine 2 

31.0 
39.1 
38.9 
84.6 
33.7 
40.9 
40.8 

NoC Time NoC Time NoC Time NoC Time 

1 102 30.2 134 32.1 1 99 31.3 137 31.1 
2 132 38.2 170 39.4 2 128 39.5 174 39.1 
3 131 38.2 168 39.1 3 126 39.2 173 38.7 
4 299 84.1 385 86.4 4 285 84.6 399 87.7 
5 110 33.0 147 34.2 5 105 31.1 152 34.3 
6 142 41.5 181 41.5 6 138 42.7 185 41.4 
7 140 41.1 182 41.3 7 137 41.0 185 41.4 

Time Time 

Total makespan 314.0 Total makespan 315.9 
Current solution 361.8 Current solution 361.8 
Lower bound 295.2 Lower bound 300.3 

approximately 50% of  the total improvement could be 
attributed to the individual board type characteristics. 
Thus, the results of  these experiments tend to support 
the hypothesis. 

Table 4 
Comparison between the two approaches for board 
no. 9 of  dataset 1 

Board type no. 9 Individual Composite 
of  dataset 1 approach approach 

Sole member 70.0 74.3 
Part of  family 71.0 79.4 

Concerning the topic of  running times, we restrict 
ourselves to the following general remarks. The run- 
ning time of  Phase 1 of  the planning procedure (that 
is, constructing a feeder rack assignment) varies. Due 
to the fact that it is much harder to balance three ma- 
chines than two, Step 5 takes much more time for 
dataset 1 than for dataset 2. The exact running time 
depends on the dataset and the stopping criterion, but 
Phase 1 takes approximately 15 minutes on a 33Mhz 
486. For both instances, Phase 2 took roughly about 10 
to 15 minutes. In fact, the running times given above 
are in the same order of  magnitude as the running 
times of  the existing software. 
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Summarizing, Tables 1, 2 and 3 show that the so- 
lution procedure we present yields, at least in terms 
of the makespan, significantly better results than the 
existing software. For a large part, this difference is 
caused by the fact that we solve the feeder rack assign- 
ment problem using individual board characteristics 
contrary to existing software which uses a composite 
board type (see Tables 4 and 5). Another (small) ad- 
vantage of the solutions found by our approach is that 
the movements of  the feeder rack tend to be relatively 
small. This causes less wear for the rack. 

5. Conclusions 

This paper deals with the assembly of a family of 
board types by a single line of placement machines. 
By decomposing the planning problem, a number of 
subproblems arise. An important subproblem is to con- 
struct a feeder rack assignment for each of the ma- 
chines that allows us to construct good placement se- 
quences for each of the board types in the family. Here, 
we explicitly address this problem and we propose a 
heuristic based on the individual board characteristics. 
This heuristic is incorporated into a solution proce- 
dure which delivers a solution for the general plan- 
ning problem. Since we strived for running times of 
the same order as the existing software, we only con- 
sidered very simple local search methods for some of 
the subproblems. The computational results show that 
this approach works well. 
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