
~.-~:;.:,:.All

E L S E V I E R European Journal of Operational Research 98 (1997) 457-472

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

Application Paper

The assembly of printed circuit boards"
A case with multiple machines and multiple board types

Yves Crama a, Olaf E. Flippo b, Joris van de Klundert b Frits C.R. Spieksma c
a Ecole d'Administration des Affaires, Universit~ de Liege, Boulevard du Rectorat 7 (B31), 4000 Liege, Belgium

b Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
c Department of Mathematics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

Received October 1995; accepted July 1996

Abstract

In this paper a typical situation arising in the assembly of printed circuit boards is investigated. The planning problem we
face is how to assemble boards of different types using a single line of placement machines. From a practical viewpoint, the
multiplicity of board types adds significantly to the complexity of the problem, which is already very hard to solve in the
case of a single board type. In addition, relatively few studies deal with the multiple board type case. We propose a solution
procedure based on a hierarchical decomposition of the planning problem. An important subproblem in this decomposition
is the so-called feeder rack assignment problem. By taking into account as much as possible the individual board type
characteristics (as well as the machine characteristics) we heuristically solve this problem. The remaining subproblems are
solved using constructive heuristics and local search methods. The solution procedure is tested on real-life instances. It turns
out that, in terms of the makespan, we can substantially improve the current solutions. © 1997 Elsevier Science B.V.

Keywords: Heuristics; PCB-assembly; Feeder rack assignment problem

1. Introduct ion

The assembly o f printed circuit boards (PCBs) is
in general a complicated task. Sophisticated machines
must perform intricate operations, involving different
kinds of tools and various components, in order to as-
semble a board. Numerous constraints and conflicting
objectives interfere to create a challenging planning
problem. Further, the competition faced by a PCB-
manufacturer causes a need for high throughput rates.
In order to cope with such an environment, it is nowa-
days well recognized that the availability o f automated
planning procedures is a major asset.

In this paper we describe a typical case in PCB-

assembly arising at a plant o f Philips NV, a major PCB-
manufacturer. We propose a planning procedure for a
situation where a family of different board types are to
be produced by a line of different placement machines.
This procedure is based on a hierarchical decomposi-
tion o f the planning problem. Not surprisingly, most
subproblems in this decomposition are already very
hard in terms of computational complexity. Moreover,
the size of the problems we consider prohibits the ef-
fective use of exact solution methods. In order to ob-
tain good solutions in a reasonable amount of time, we
solve the subproblems approximately using heuristics
and local search methods. The resulting procedure is
tested on real-life instances (made available to us by

0377-2217/97/$17.00 (~) 1997 Elsevier Science B.V. All rights reserved.
PH S 0 3 7 7 - 2 2 1 7 (9 6) 0 0 2 2 8 - 7

CORE Metada ta , c i t a t i on and s im i l a r pape rs a t co re .ac .uk

P r o v i d e d b y R e s e a r c h P a p e r s i n E c o n o m i c s

https://core.ac.uk/display/6787125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

458 Y. Crama et al./European Journal of Operational Research 98 (1997) 457-472

Philips), for which we are able to close about 70% of
the gap between the previously best-known makespan
and a (fairly) weak lower bound, thus reducing the
current overall makespan by approximately 17%.

Let us now give a short description of how the as-
sembly of PCBs is organized at the Philips plant un-
der study, There are a number of assembly-lines, each
consisting of a number of placement machines which
place electronic components on bare boards. There are
different types of boards and different types of com-
ponents to consider. Each board type is assigned to
a line of placement machines, that is, all boards of a
type 'flow' through the machines of a specific line.
The electronic components must be mounted at pre-
scribed locations on a board. The set of locations to
be served on a board as well as the type of compo-
nents to be placed at each location depends upon the
board type. In other words, for each board type, a set
of locations, and for each of these locations the type
of the component to be placed there, is given. Com-
ponents of each type are delivered to the machine by
means of a so-called feeder. Each placement machine
is equipped with a feeder rack which holds the feed-
ers. Further, the machine has some device - dependent
upon the technology (see Section 2) - which is able
to pick components from the feeders and place these
components onto the board.

A production plan associated with this description
should at least specify the following:
(1) a partition of the set of board types into fami-

lies which are to be assigned to different lines of
placement machines, and a sequence of the board
types within each family, indicating in which or-
der these board types will be produced,

(2) for each board type, a partition of the set of com-
ponent locations on this board, that is a decision
concerning which locations are going to be served
by which machine,

(3) for each machine, a feeder rack assignment, that
is an assignment of feeders to positions in the
feeder rack,

(4) for each pair consisting of a machine and a board
type, a component placement sequence, that is
an order in which components are placed at the
locations on this board that are served by this
machine, and

(5) for each pair consisting of a machine and a board
type, a component retrieval plan, that is, for each

component on the board, a rule indicating from
which feeder this component should be retrieved.

In this paper, we focus on problems (2) - (5) , thus
we deal with planning problems that arise when a
given family of board types is assembled by a single
line of placement machines. In Section 2 we give a pre-
cise description of these problems (including some of
the technological features of the placement machines
used), and in Section 3 we describe our solution pro-
cedure. Section 4 is devoted to the performance of our
procedure on real-life instances and Section 5 con-
tains the conclusions. The remainder of the current
section is devoted to literature related to the assembly
of PCBs.

In case one strives to minimize the makespan for
a single machine producing a single board type, the
planning problem above reduces to problems (3),
(4) and (5) (feeder rack assignment, component
placement sequence and component retrieval plan).
A number of studies focus on problems (3) and (4)
only, since problem (5) vanishes when precisely one
feeder is available per component type. In such a
case, the interaction between problems (3) and (4)
is of crucial importance. This issue has been identi-
fied by Drezner and Nof [16] (see also Walas and
Askin [26] for a similar application in the production
of metal parts). An approach based on location theory
is reported by Foulds and Hamacher [17]. Leip~il~i and
Nevalainen [20] suggest a solution procedure based
on heuristically solving a TSP and a quadratic assign-
ment problem in an iterative fashion. Other heuristic
approaches are described in Francis, Hamacher, Lee
and Yeralan [18] (see also Viczi~n [24]) and Younis
and Cavalier [27]. Ball and Magazine [8] show that,
when a feeder rack assignment is given, an optimal
component placement sequence can, in some situa-
tions, be found in polynomial time. Bard, Clayton and
Feo [10] propose a planning procedure tailored for
a specific placement machine, in which problem (5)
is explicitly addressed (see also Crama, Flippo, van
de Klundert and Spieksma [13]). Further, Ahmadi,
Grotzinger and Johnson [2] present a model which
determines, among other parameters, with how many
feeders of each type the placement machine should
be equipped.

When the planning problem is extended to a line of
placement machines producing a single board type,
problem (2) comes up. Crama, Kolen, Oerlemans and

Y Crama et aL/European Journal of Operational Research 98 (1997) 457-472 459

Spieksma [14] and van Laarhoven and Zijm [19]
each propose a solution procedure for a line of CSM-
60 placement machines. Lofgren, McGinnis and
Tovey [21] treat a case where a board is allowed to
visit a machine more than once.

Relatively few published studies deal with the case
where multiple boards types are to be assembled by
one or more machines: we mention Carmon, Maimon
and Dar-el [11], Balakrishnan and Vanderbeck [7]
and Askin, Dror and Vakharia [6]. In this situation the
following issues may appear (cf. problem (1)). Since
the set of component types needed to produce all board
types can be larger than the available capacity in the
feeder racks, one may be forced to partition the set of
board types into subfamilies which can be produced
with a fixed feeder assignment. Thus, one may have
to solve problems (2) - (5) a number of times during
the planning period to produce all board types. This
problem is addressed in Tang and Denardo [22,23]
and Bard [9]. A number of authors have further inves-
tigated this batch selection problem (see Crama [12]
for further references). Alternatively, given a number
of assembly-lines, one may try to solve problem (l) in
such a way that each family can be produced on a line
(which describes the situation at hand, see Section 2).
Also, one may partly circumvent the problem by pre-
scribing some feeders (the 'common' feeders) to be
permanently assigned to certain positions in the rack,
whereas other feeders (the 'exotic' ones) are loaded
as needed, see Cartoon, Maimon and Dar-el [11], Bal-
akrishnan and Vanderbeck [7] and Agnetis, Askin and
Sodhi [1] for a description of this idea. Askin, Dror
and Vakharia [6] study the assembly of multiple board
types by multiple machines in an open shop (rather
than flowshop) environment. Another issue which be-
comes apparent is that, when dealing with more than
one board type, problem (3) becomes much more
complicated. Indeed, most of the planning procedures
described in the literature we mentioned here, attempt
to determine a feeder rack assignment for which an
optimal component placement sequence can be found.
However, when dealing with multiple board types, one
has to find a single feeder rack assignment such that a
good placement sequence can be found for each board
type (see Sections 2 and 3).

Finally, the technology employed by the placement
machine under consideration may give rise to specific
planning problems (see for instance Ahmadi and Kou-

velis [4]) . An overview of issues which arise in the
operational planning of PCB assembly can be found in
Ahmadi [3], Crama, Oerlemans and Spieksma [15]
and Voogt [25].

2. Problem description

In this section we focus on a precise description of
problems (2) - (5) for the situation encountered at a
plant of Philips. Subsection 2.1 refines the description
of the setting given in the introduction. Subsection 2.2
is devoted to the technological features of the place-
ment machines under consideration.

2.1. Properties of the assembly environment

This subsection deals with the following issues:
• we motivate the choice of our objective function,
• we discuss the nature of the feeder rack assignment

problem for our situation, and
• we describe the so-called component retrieval prob-

lem.
At the plant investigated, several lines of placement

machines are devoted to the assembly of PCBs. Pro-
duction is mostly organized in such a way that chang-
ing feeders for other purposes than refilling should not
occur. Thus, the capacity of the feeder racks in the
assembly-line restricts the set of board types which
the line can handle: this available capacity should be
large enough to accommodate all feeders needed to as-
semble the family of board types assigned to that line.
Accordingly, at these plants, problem (1) mentioned
in Section 1 is reformulated to take this restriction into
account. From now on we assume that problem (1)
has been solved; thus, we deal with a set of different
types of PCBs (a family) that has to be produced by
a line of several placement machines (sometimes re-
ferred to as theflowshop) without any feeder changes.

It is customary at the plant investigated to produce
in batch mode. This means that, within a family, all
boards (several hundreds) of one type are assembled
consecutively before switching to another board type.
Here again, we assume that the sequence of batch types
is exogeneously determined (that is, in Step (1)). Due
to competition and efficiency incentives, it is important
to achieve high throughput rates for the batches. Obvi-
ously, the throughput rate of each batch is determined

460 Y. Crama et al./European Journal of Operational Research 98 (1997) 457-472

by a machine in the line on which the makespan of
this board is maximal, called the bottleneck machine.
Therefore we choose as objective to minimize the sum
over all board types of the makespans of these board
types on their bottleneck machines (in the software
used by Philips this objective function is only implic-
itly used). Of course, different types of PCBs, and
therefore different batches, may have different bottle-
neck machines. Thus, more formally, let t p (s) denote
the makespan of a board of type p on machine m for
some given solution (i.e. production plan) s. With S
denoting the set of feasible solutions, our objective
function may be specified as:

min ~ mmax tP (s).
sES

P

This seems a reasonable objective function when the
batches are of approximately equal size. Otherwise,
weights reflecting the size of the batches can be incor-
porated to obtain a more appropriate objective func-
tion.

Consider now the feeder rack assignment problem.
As mentioned in the introduction, the feeder rack
assignment problem becomes harder when multiple
board types are involved. In fact, as far as we know,
the feeder rack assignment problem with multiple
board types has not been addressed explicitly in the
literature. Of course, a straightforward way to deal
with this problem is to reduce the multiple board case
to the single board case. This could be done by cre-
ating a so-called composite board type which would
consist of all the individual board types superposed
on each other. In other words, a fictitious board type
is made on which all locations of all board types of
the family occur. Next, one can apply any existing
software for solving the traditional feeder rack assign-
ment problem for this composite board. In fact, this
strategy is currently used in practice. Our approach
takes a different point of view. A main characteristic
of our solution procedure is to take into account as
much as possible the individual board characteris-
tics. This approach can be motivated by observing
that although the set of component types needed for
different board types in the family may be similar,
the distribution of the locations to be served on those
board types can be quite different. Our solution proce-
dure, which is also based on machine characteristics
to be discussed later, is described in Section 3.

Finally, consider the following issue. Imagine, for
reasons of simplicity, the problem of minimizing the
makespan of a single board on a single machine. Ob-
viously, a solution to the resulting planning problem
must consist of a component placement sequence and
a feeder rack assignment. However, when components
of a same type are assigned to more than one feeder-
slot, solving these two subproblems is not sufficient.
In addition, we have to decide for each component
from which feeder it is to be retrieved. Of course, dif-
ferent decisions for a specific component may result
in different makespans for the board. This issue is
raised in Bard, Clayton and Feo [10], and the resulting
component retrieval problem is further investigated in
Crama, Flippo, van de Klundert and Spieksma [13].
A solution to this problem consists in a mapping from
the set of board locations to the feeders (where the
image of each location is simply the feeder deliver-
ing the component to be placed at this location). Call
such a mapping a component retrieval plan. Then, the
component retrieval problem can be stated as follows:

Given a component placement sequence and a feeder
rack assignment, what component retrieval plan min-
imizes the makespan of the PCB?

Now, the way in which we are able to solve the
component retrieval problem (and, in fact, some other
issues) depends to some extent on the technological
features of the placement machines used. We describe
these machines in more detail in the next subsection.

2.2. The placement machine

In this subsection we describe the Fuji CP-IV place-
ment machine that is used at the plant investigated.
This description will enable us to translate the compo-
nent retrieval problem for a Fuji CP-IV into a graph-
theoretical problem (see Subsection 3.2).

Obviously, the task of any PCB assembly machine
is to place components on a PCB. These components
are to be retrieved or gripped from feeders. Apart from
differences in techniques for gripping and placing (in-
sertion, onsertion, glueing), placement machines dif-
fer in the way the coordination between placing and
gripping activities is achieved. At the plants we con-
sider, two types of placement (onsertion) machines
are used, Fuji CP-III's and Fuji CP-IV's. For our pur-

Y. Crama et al./European Journal of Operational Research 98 (1997) 457-472 461

I I I I I

gr ip s t a t i on

rack ~

I rlfr ilmag0 procoss station
• c o m p o n e n t eject

. nozzle t u r n

+

place s t a t i on

Fig . 1. T h e Fuj i CP-IV.

pose, it is sufficient to assume here that the Fuji CP-III
operates in an identical fashion as the Fuji CP-IV, but
at a different speed.

To perform its task, the CP-IV is equipped with a
gripper, a placer and a carousel. The gripping of com-
ponents from a feeder is performed by the gripper, and
the placement is performed by the placer. The gripper
as well as the placer do not move. Each time a com-
ponent is gripped (or placed), the feeder rack (or the
table containing the PCB) is positioned accordingly
beneath the gripper (placer). The coordination of the
interaction between the gripper and placer is achieved
through the carousel or CAM. The carousel has 12
positions configured in a circle and it rotates clock-
wise in small rotations such that after 12 rotations it
has rotated 360 degrees. See Fig. 1 for a schematic
representation of the CP-IV.

Let us now describe how the machine operates.
Between two consecutive rotations a component is
gripped and a component is placed simultaneously. So,
after say i - 1 rotations (i > 7), two things happen
at the same time: the ith component to be gripped is
gripped and stored in position i mod 12 of the carousel,
and the (i - 6)-th component to be placed is placed in
the PCB from position (i - 6) mod 12 of the carousel.
Observe that the gripper is six components ahead of
the placer. Since the gripping of component i and the
placement of component i - 6 start (and end) at the
same time, this implies that, as soon as the grip and
the place activities have been performed, three devices
start to move at the same time: the table moves to

bring the next location beneath the placer, the rack
moves to bring the next feeder beneath the gripper
and the carousel rotates. The movement which takes
maximum time determines the moment when a new
iteration starts.

Notice that the modus operandi of the Fuji CP-IV
described here (which was communicated to us by
Philips) differs slightly from the one given in Bard,
Clayton and Feo [10]. In our situation, the start of a
grip activity coincides with the start of a place activity
(at least after the first 6 rotations). This requirement is
not present in the description given in [10]. It turns out
that this requirement allows us to model the compo-
nent retrieval problem straightforwardly as a shortest
path problem (see Subsection 3.2), whereas in the ab-
sence of this requirement this is no longer the case (cf.
Crama, Flippo, van de Klundert and Spieksma [13]).

As a final remark to this section, the reader will un-
derstand that the description above, although perhaps
detailed, is not an exact replica of the truth. For in-
stance, due to the fact that the speed of the carousel
depends on the type of the components it carries, not
all carousel rotations last equally long. Also, compo-
nents which have to be rotated may take some extra
time of the placer. Further, there are differences be-
tween a Fuji CP-III and a Fuji CP-IV placement ma-
chine besides speed. Although it is possible to model
the aforementioned and other physical characteristics,
we have chosen not to do so, for reasons of simplicity
and since most of these characteristics will have only
marginal effects on the makespans.

462 E Crama et al./European Journal of Operational Research 98 (1997) 457-472

3. The planning procedure

Let us now return to the general planning problem.
Summarizing the discussion in the previous sections,
we want to find:
1. for each machine, a feeder rack assignment,
2. for each board type, a component placement se-

quence on each machine, such that for each PCB
of that type, the sequences form a partitioning of
the components required by the PCB,

3. for each pair consisting of a machine and a board
type, a component retrieval plan.

In this section we describe our planning procedure.
This procedure is divided into two phases: Phase 1
determines a feeder rack assignment for each machine,
and Phase 2 produces, for each pair consisting of a
machine and a board type, a component placement
sequence and a component retrieval plan, given the
feeder rack assignment of Phase 1. Accordingly, this
section contains two subsections each devoted to the
description of a phase in the planning procedure.

Clearly, the planning procedure we present is hier-
archical in nature: first, a feeder rack assignment is
computed, next a component placement sequence and
component retrieval plan are determined. Of course,
the following question then arises: how do we evalu-
ate feeder rack assignments computed during Phase 1
without computing a placement sequence and retrieval
plan, that is, without solving Phase 2? We deal with
this issue by computing an estimate of the makespan
of each board type on each machine given the feeder
rack assignment and a corresponding partition of the
components of each board type (see (2) in Section
1). These estimates are then used as an indication of
the quality of the feeder rack assignments found dur-
ing the execution of the algorithm.

Before describing Phase 1 in more detail, let us first
start with some observations related to the placement
machines described in the previous section.

Observat ion 1. A feeder is nothing but a tape con-
taining components of a certain type. These tapes are
expensive, and to keep inventory of these tapes low, it
is desirable to restrict the number of tapes containing
components of a certain type. In the plant considered,
often a bound of 2 feeders for each component type
was imposed, that is, no more than 2 feeders with the

same component type can be used on the line. We
adopt this restriction in our planning procedure.

Observation 2. A basic characteristic, which has
been observed by other authors as well (see e.g. Ah-
madi, Grotzinger and Johnson [2] and Bard, Clayton
and Feo [10]) concerns the so-called free movement.
To explain this, consider again Fig. 1. Between two
consecutive grip (or place) activities, the carousel
must rotate, and this takes a certain amount of time.
During this time, the feeder rack, as well as the table
containing the PCB, can move without increasing the
makespan. Since it is impossible to avoid carousel
rotations, this phenomenon occurs between each pair
of consecutive grip (or place) activities. These move-
ments of the feeder rack and the table, taking place
during a carousel rotation, are referred to as free
movement. Of course, the significance of this effect
depends on the magnitude of the free movements.
However, it can be considerable. In our situation, free
movements of the feeder rack correspond to 1 posi-
tion on the rack, that is, repositioning the feeder rack
by 0 or 1 feeders is free. Concerning the table, free
movement corresponds to approximately 2 cm on the
table containing the PCB. Since the average PCB is
approximately 20 × 30 cm, and the feeder rack con-
tains mostly about 100 feeders, long table movements
are less time consuming than long feeder rack move-
ments. Hence we restrict the planning procedure to
considering solutions in which all feeder rack move-
ments are short, expecting that given this short feeder
rack movements we can find a component placement
sequence in which the table movements are not too
long either. More specifically, we assume in Phase 1
that the predecessor of a component retrieved from
some feeder i, is retrieved from feeder i - I, feeder
i itself, or feeder i + 1 (thereby utilizing the free
movement as much as possible as far as the feeder
rack is concerned). The solutions we obtain show
that it is indeed possible to construct feeder rack as-
signments and component placement sequences such
that subsequent components are mostly retrieved from
consecutive feeders while the larger part of the table
movements is free.

3.1. Constructing a feeder rack assignment: Phase 1

Let us now describe Phase 1. It consists of five steps:

Y. Crama et al./European Journal of Operational Research 98 (1997) 457-472 463

Step 1.

Step 2.

Step 3.
Step 4.

Step 5.

Determine which component types will have
2 feeders in the flowshop (see Observation 1).
Decide, for each feeder, which locations it
serves on each board type.
Construct an arbitrary feeder rack assignment.
Estimate the makespan for each board type on
each machine, given the current feeder rack
assignment.
If some stopping criterion is satisfied, exit.
Else, improve the feeder rack assignment us-
ing local search and go to Step 4.

Consider Step 1. In view of Observation 2 above, it
is desirable for components that are within free grip-
ping movement of each other, to be not too far apart
from each other on the board, since otherwise the
board movement (between consecutive placing oper-
ations) may take a long time. Thus, if there are more
magazine rack positions than component types, one
way to avoid long table movements is to assign two
feeders to component types whose components are,
on some boards, far apart. Of all strategies we have
tested to utilize this idea the following simple strat-
egy performed best. Compute, for each combination of
board type and component type, a short Hamiltonian
path through the corresponding locations using some
(TSP) heuristic (we use farthest insertion). For each
component type t, let It be the length of the longest
edge occurring in some path corresponding to compo-
nent type t. Next, we list the component types in order
of decreasing It value and we assign two feeders to as
many component types as possible, starting at the top
of the list and proceeding downward, until total capac-
ity of the feeder racks is exhausted (or until each type
has two feeders). In this way it is decided which com-
ponent types have more than one feeder. Notice that
we use individual board type characteristics to select
those component types.

Step 2 resembles the component retrieval problem.
The difference is that the position of the feeders in
the rack is not fixed yet. To partition the locations
corresponding to components of each type for which
there are two feeders placed in the rack, we propose
the following. First, we consider a board type which
has led us to assign two feeders to a component type t:
consider board type p on which the Hamiltonian path
as computed in Step 1 contains an edge of length It.
Removing this longest edge partitions the locations

corresponding to components of type t on board type p
into two subsets, say Ltt "p and tt ' t '

~ 2 "

We have to decide next how to partition the com-
ponents of this type on boards other than boards of
type p. We take the following approach. For each lo-
cation corresponding to a component of type t not on
board type p, we determine the minimal distance to
some location in Ltt 'p and, similarly, we determine the
minimal distance to some location in Lt2 "e. Next, we
assign this location to the subset whose correspond-
ing minimal distance is minimal. (Notice that we as-
sume here that a distance is known between two lo-
cations which do not occur on the same board type.
These distances are computed as if the components
were on a same board, as e.g. the composite board
mentioned earlier. This composite board can be con-
structed unambiguously since all component locations
are expressed in terms of coordinates, and the position
of the boards on the table are given,) This approach
has outperformed several alternative approaches in our
computational experiments. Its success should be con-
tributed to the fact that in this way, for each board
type, the set of locations to be served by a feeder lies
in the same part of the board.

In this way, we obtain two sets of locations for each
component type that has two feeders in the flowshop.
More precisely, we refer to this partitioning of loca-
tions corresponding to components of a certain type
as a clustering, and we refer, informally, to all compo-
nents that are to be retrieved from the same feeder as
a cluster. In Fig. 2 we give a more formal description
of the algorithm described in Steps 1 and 2.

In Step 3 we simply assign each feeder arbitrarily to
some position in the racks of the machines such that
a feasible feeder rack assignment is obtained.

Consider Step 4. Recall from Observation 2 that,
given a feeder rack assignment, we intend to con-
struct component placement sequences with the prop-
erty that the rack moves at most one position be-
tween any two consecutive grip activities. In addi-
tion, when estimating the makespan of a board given
a feeder rack assignment, we assume that one pass of
the feeder rack through all feeders gives a good ap-
proximation of an optimal way of moving the feeder
rack. More explicitly, we estimate the makespan by
assuming that the feeder rack movement in an optimal
solution follows approximately the following pattern:
the rack starts at the feeder in the leftmost position, to

464 Y Crama et al./European Journal of Operational Research 98 (1997) 457-472

U: set of locations corresponding to components of type t.
L t'p: set of locations corresponding to components of type t on a board of type p.
pt.p: sequence of locations corresponding to components of type t on a board of type p induced by a Hamiltonian path.
d~)P: distance between location i and location j corresponding to components of type t on a board of type p.

dis(i, L): minimum distance over the locations in the set L between location i and a location from L.
#t: number of component types.
#p: number of board types.
cap: number of feeder rack positions in the line.

1. for t : = l t o # t do
for p := 1 to #p do

construct a Hamiltonian path pt,p using distance matrix dt.p;
let the value of the longest edge in pt.p be denoted by Zt,p ;

2. for t := 1 to #t do
(a) It := maxp zt.p;
(b) Pt := arg maxp zt,p;

3. sort the component types in decreasing order of It and index them 1,2 #t;
4. t* := rain(cap, 2 x #t) - #t; Comment: t* corresponds to the number of feeder duplications
5. for t := 1 to t* do

(a) partition L t.pt into Lt{ p' and Lt2 'p' by removing the longest edge from pt.p, ;
(b) C2t-I := Ltt'Pt; C2t := L~'P';
(c) for each i E [,Jp,p, L t'p do

if dis(i, L'f p') < dis(i, Lt2 "p') then C2,- i := C2t-i t9 {i} else C2t := C2t t3 {i};
6. for t := t* -b 1 to #t do Ct*+t := Lt;

Fig. 2. Algorithm for Steps 1 and 2.

be called feeder 1. Then, all components are gripped
(and placed) of the cluster assigned to feeder 1, inter-
leaving them by gripping (and placing) components
of feeder 2, ending with a grip of a component from
feeder 2. This is followed by gripping (and placing)
the remainder of the components that are to be gripped
from feeder 2, interleaved with the gripping of com-
ponents of feeder 3 et cetera.

This leads to a solution in which all feeder rack
movements are free (if at least one component is re-
trieved from each feeder). Therefore, the makespan
depends on the length of the table movements only,
i.e. the length of a Hamiltonian path through the lo-
cations, that respects the pattern of the feeder rack
movements described above. For our purposes it is de-
sirable to be able to compute quickly an estimate of
the length of such a Hamiltonian path. Therefore we
propose the following method, that does not use the
exact feeder rack assignment, but only knowledge of
which feeders are assigned to adjacent positions in the
feeder rack. Notice that for every pair of feeders there
is a set of locations on a board where the components

from these feeders will be placed. We compute, for
every pair of feeders, a value which equals the length
of a Hamiltonian path through these locations, thereby
utilizing the fact that they may be gripped interleav-
ingly. Notice that these quantities can be computed
independently of a feeder rack assignment, reducing
the amount of computations required to evaluate indi-
vidual feeder rack assignments.

Of course, it may well be the case that, given a
feeder rack assignment and some board type, there is
a set of adjacent feeders from which no component is
taken at all. In that case, the feeder rack movement is
not free, and the makespan depends on the duration
of this feeder rack movement. We next present an al-
gorithm to estimate the makespan of every board type
in the family for a given feeder rack assignment on
some machine.

We compute, for each board type p in the family,
two so-called cluster distance matrices D p and E p . D p

represents the length of a (short) Hamiltonian path
through all locations of clusters Ci and Cj that are to
be placed on p. E p is the maximum of two numbers,

Y Crama et aL/European Journal o f Operational Research 98 (1997) 457-472 465

or: a permutation of the feeders, i.e the order in which the feeders are placed on the rack (say from left to right),
C~: the set of components from cluster Ci (the cluster corresponding to the feeder positioned in ~ ' (i)) that have to

be placed on board type p.

1. i := l , span := 0;
2. while IC~P(/)[.. = 0 do i := i + !;

3. span := span + ~ x D p f

'n'(i),z'(i) '
i : = i + l;

4. while ICP(i)I., > 0 do

D p (a) span := span + ½ x ~r(i-l):r(1)'
(b) i : = i + l ;
(c) if i = total number of feeders then set k = i and goto step 7;

5. k : = i - l;
D p span := span + ½ × ~r(k),~r(k) '

6. while IcP(i)I = 0 do

(a) i : = i + 1;
(b) if i = total number of feeders then goto 7;

7. span := span + E~(k).rr(i) ;
goto 3;

D p 8. span := span + 1 ×
q r g (k) , ~ ' (k) I

Fig. 3. Makespan estimation algorithm.

EL l and EPT,.j where E pl is the minimum distance o v e r

all distances between locations of Ci and Cj on board
and E~ 2 corresponds to the distance between type g

the feeders positioned in the rack which correspond
to clusters Ci and Cj. Notice that these computations
must be performed efficiently, since for the problem
instances described in Section 4, the computation of
the matrices D p requires constructing several hundreds
of thousands Hamiltonian paths.

Recall that the order in which the feeders are placed
on the rack is known and let us refer to a feeder from
which components are gripped in order to assemble
a board of type p as an active feeder. Further, each
feeder, except the leftmost and the rightmost ones, is
adjacent to two other feeders to which we will refer
as its left neighbor and its right neighbor respectively.
Now, to estimate the makespan of a board of type p
on a machine we do the following.

First, consider for each active feeder, its left neigh-
bor. I f its left neighbor is active, we choose from the
D p matrix the entry corresponding to these two feed-
ers (the value of this entry equals the length of a
Hamiltonian path through the locations of both corre-
sponding clusters). I f the left neighbor is not active,
we choose the diagonal element of D p corresponding
to the current active feeder (the value of this entry

equals the length of a Hamiltonian path through the
locations of the corresponding (single) cluster). Sec-
ond, consider for each active feeder its right neighbor.
If it is active we do nothing, else we again choose the
diagonal element of D e corresponding to the current
active feeder. Finally, we sum all chosen entries. Ob-
serve now that each location is part of two Hamilto-
nian paths. To correct for this we simply divide the
computed sum by 2. In this way we estimate the time
spent on table movements.

In order to estimate the time spent on rack move-
ments we identify pairs of active feeders which are
consecutive but not adjacent. For each such pair we
find the corresponding entry in E p, then we sum these
values and use this sum to estimate the time spent on
feeder rack movements. A more formal description of
the algorithm estimating the makespan of board type
p on a machine with a given feeder rack assignment
is as given in Fig. 3.

Using the algorithm in Fig. 3, we get an estimate of
the makespan of every board type for a given feeder
rack assignment for each machine in the flowshop,
without having to specify a component placement se-
quence. Based on these estimated makespans, we can
also get an estimate of the objective function for a
given feeder rack assignment for each machine. Of

466 Y. Crama et al./European Journal of Operational Research 98 (1997) 457-472

course, the accuracy of such an estimate depends on
the quality of the Hamiltonian paths constructed, and
on the component placement sequences that will even-
tually be found. (We will see later that the estimates
are usually extremely good (see Table 2 in Section
4) .)

Step 5 of our solution procedure optimizes the
feeder rack assignments, using the estimated objec-
tive function value found in Step 4. In fact, it is in this
step that our estimates are used extensively. Through-
out this step objective function evaluations are based
on the estimates of the makespans, instead of the
actual makespans. We try to optimize the feeder rack
assignment by using two heuristics alternately.

One heuristic tries to exchange between two ma-
chines a pair of clusters, together with the correspond-
ing feeders, to better balance the workload. To deter-
mine which pair of machines are candidates for ex-
changing clusters we do the following. For each pair
of machines we sum over all board types the absolute
difference of the respective processing times. Next, we
select that pair of machines for which this sum is max-
imal, and attempt to improve our current feeder rack
assignment by exchanging feeders (and correspond-
ing clusters) between these machines. Now what do
we mean by improve? Obviously, what we want to im-
prove is the objective function as described in Subsec-
tion 2.1. However we have chosen another surrogate
objective function to speed up the heuristic. Let Mi
and M j be the machines between which feeders are
being exchanged, then the surrogate objective function
takes on the value which the real objective function
would have taken, had machines Mi and Mj been the
only machines in the flowshop.

The other heuristic reoptimizes the feeder rack as-
signment for a single machine. More precisely, for a
given machine, it attempts to minimize the sum of
the makespans of the boards on that machine, by op-
timizing the feeder sequence. This sequencing prob-
lem is solved using an insertion heuristic in which the
makespan estimation algorithm given in Fig. 3 is used
to evaluate the insertions.

Together these two heuristics deliver better solu-
tions faster than other approaches we have tested.
Since the heuristics work with different objective func-
tions, which are in turn different from the original
objective function, the process of calling both heuris-
tics in turns does not necessarily converge. Therefore

we have the following stopping criterion. We specify
some upperbound (say 5 seconds), and the algorithm
stops if after some iteration, the maximum over all
pairs of machines of the sum of the absolute differ-
ences of their makespans does not exceed this upper-
bound. This strategy implies that when the algorithm
stops, there may still be some room for improvement
of the balance. Achieving these last tenths of percents
of improvement is time consuming, and becomes less
attractive as one notices that this phase of the algorithm
uses estimations rather than the actual makespans.

3.2. Constructing a component placement sequence
and a component retrieval plan: Phase 2

Let us now describe Phase 2. It consists of three
steps.

Step 1. Determine, for each machine-board-type
combination, a component placement se-
quence.

Step 2. Determine, for each machine-board-type
combination, a component retrieval plan.

Step 3. Improve the component placement sequence
using local search. If no improvements are
found, stop, else go to Step 2.

Consider Step 1. For a given board type and ma-
chine, we construct an initial component placement
sequence as follows. First assume that each location
is served from the feeder associated to the cluster
containing that location. For the first two feeders, de-
termine two locations, c~ (from the leftmost feeder,
feeder 1) and c2 (from the feeder adjacent to it,
feeder 2), that are nearest to each other. Then se-
quence before cl, all locations that are to be served
from the leftmost feeder as well, using some insertion
heuristic. Next determine the two locations c~ from
feeder 2, and c~ from feeder 3, that are nearest to each
other, and sequence all remaining locations that must
be served from feeder 2 between c2 and c~ et cetera.
Given this sequence we solve the component retrieval
problem (see below), which provides a first solution.

Consider now Step 2. How do we solve the compo-
nent retrieval problem? In order to answer this ques-
tion, recall that, when solving this problem, we assume
that a component placement sequence and a feeder
rack assignment are given. We are going to construct a

E Crama et al./European Journal of Operational Research 98 (1997) 457-472 467

graph G and show that the component retrieval prob-
lem is equivalent to finding a shortest path in this
graph.

We assume that the components are placed in nu-
merical order (so component i refers to the ith compo-
nent in the component placement sequence). Further-
more, we assume that following the gripping of the last
component, six more components are to be gripped,
from the same feeder from which the last component
was gripped. These additional 'dummy' grips are per-
formed in parallel with the last six places, and do not
increase the makespan since the feeder rack need not
be repositioned to perform them. Similarly we assume
that there are six dummy place activities to accompany
the first six grip activities, that also do not increase the
makespan. So, between each two consecutive carousel
rotations, both a grip and a place operation must take
place. We define n to be the number of such pairs.
(Notice that n exceeds the number of components by
six.) Further, let K equal the number of feeder rack
positions.

For ease of exposition, we refer to the location on
the board corresponding to component i as location i,
1 < i < n. Let
Agp = time needed to grip (and hence place)

a component,
Ac = time needed for a carousel rotation,
A t (i , i ÷ 1) = time needed for a table movement to

bring location i + 1 beneath the placer,
starting from a position in which loca-
tion i is beneath the placer, 1 < i <
n - 1, and

A f (r , s) = time needed for a rack movement to
bring feeder rack position r beneath
the gripper, starting from a position in
which feeder rack position s is beneath
the gripper, 1 ___ r, s < K.

We construct a graph G as follows. Let Fi C_
{ 1 K} be the index set corresponding to feeder
rack positions which hold feeders from which com-
ponent i may be retrieved. The graph has a source, a
sink and n intermediate layers. Each layer i contains
IF, I vertices, denoted by v i " j , j C Fi, 1 < i < n. Indeed,
there is one vertex in layer i for each feeder from
which component i may be retrieved. The interpreta-
tion of vertex v (is the start of the grip (and place)

. I

activity which grips component i from feeder j . Each
vertex in layer i has an arc going to each vertex in

s J , \ i , /~

/

• g , , /

Fig. 4. Graph G.

layer i + 1, the source has an arc going to each vertex
in layer 1 and each vertex in layer n has an arc going
to the sink. There are no other arcs. See Fig. 4 for a
representation of G. The weight of an arc emanating
from the source is 0, and the weight of an arc going
to the sink is Z~gp. The weight of an arc from v / to
v~ + l , r c F t . , s C F / + l , l < i < n - 1, equals

A g p + m a x (A c , A t (i , i + 1) , A f (r , s)) .

Notice that when one interprets vertex v~. as the start of
the grip (and place) activity which grips component
i from feeder r, the weight of an arc defined above is
equal to the time between two consecutive grips. (This
follows from the description in Subsection 2.2.)

Consider now any path in the graph G from the
source to the sink. This path contains one vertex from
each layer, reflecting a choice of feeders for the re-
trieval of the n components. Further, since the weight
of an arc corresponds to the time between two consec-
utive grip activities, the length of the path equals the
makespan of the assembly of the board. Also, it is easy
to verify that each solution of the component retrieval
problem corresponds to a unique path in G. Since one
is interested in the shortest makespan, it follows that
the component retrieval problem reduces to a shortest
path problem on G, for which efficient algorithms are
available (see for instance Ahuja, Magnanti and Or-
lin [5]) . (The recursive formulation given in Bard,
Clayton and Feo [10] would also lead immediately
to a polynomial time algorithm for this version of the
component retrieval problem.)

Finally, we restrict ourselves here to noticing that,
even for a given component placement sequence and
a feeder rack assignment, the computation of the
makespan of a PCB is in general a nontrivial task. In
fact, for other technologies the component retrieval
problem may become substantially more difficult (see
Crama, Flippo, van de Klundert and Spieksma [13]).

In Step 3, we try to improve the placement sequence
by TSP-like local search techniques, using 2opt and

468

a restricted version of 3opt. This local search process
may be very time consuming since each local search
step requires solving the component retrieval prob-
lem. Therefore we have sought ways to speed up this
local search phase. An easy way of doing so, with-
out substantially influencing the effectiveness of the
2opt heuristic, is to keep the component retrieval plan
fixed. In this way, the time consuming resolving of
the component retrieval problem in each iteration of
the 2opt heuristic can be skipped. (It should be noted
however, that each iteration still requires performing
some non-negligible computations due to the fact that
changes in the component placement sequence will
change for some components, the component that is
gripped while it is being placed.) On the other hand,
especially for the restricted 3opt heuristic (that essen-
tially takes out one component of the placement se-
quence and then tries to reinsert it) resolving the com-
ponent retrieval problem may be well worth the addi-
tional effort. We have tried to reduce the running time
of the local search heuristics by implementing several
ideas that keep them from considering or evaluating
(by solving the component retrieval problem) moves
that will not result in an improvement.

We aimed to keep the running time of the entire
algorithm (phases 1 and 2) within certain limits. As
a consequence the algorithm cannot spend too much
time optimizing the component placement sequence
of each board, even though the local search heuristics
usually improve the solutions significantly. The meth-
ods described above to speed up these heuristics en-
sure that the benefits of these heuristics are realized.

Notice that the feeder rack movements resulting
from the final component placement sequences may
not always utilize free movements as the intended
feeder rack movements in Phase 1 of the solution ap-
proach did. Further, notice that the clustering found
in Steps 1 and 2 of Phase 1 can be changed by the
component retrieval plan.

4. C o m p u t a t i o n a l resul ts

In this section we test our planning procedure on
two datasets. Dataset 1 corresponds to a family con-
sisting of 9 board types assembled by a line of 3 CP-IV
machines. Dataset 2 corresponds to a family consisting
of 7 board types assembled by a line of 2 machines, a

Y. Crama et aL /European Journal of Operational Research 98 (1997) 457-472

Table 1
Final results dataset 1

Board type Machine 1 Machine 2 Machine 3

NoC Time NoC Time NoC ~me

CP-IV and a CP-III machine. These datasets are real-
life data made available to us by Philips. The plan-
ning procedure we described above is programmed in
Turbo Pascal and run on a personal computer with a
486 33MHz processor. The results of our procedure
are described in Tables 1, 2 and 3.

To explain Table 1, consider a column correspond-
ing with a machine. An entry in this column has
two numbers: "NoC" is the number of components
of the specific board type placed by that machine,
and "time" equals the number of seconds it takes to
place these components by this machine. The total
makespan is computed by summing over the board
types, the makespan of these boards on their bottle-
neck machines. This total makespan is compared with
the makespan of the solutions obtained by Philips (re-
ferred to as current solution) and with a lower bound.
This lower bound is computed as follows. Let Ac
(Agp) represent the time a single carousel rotation
(grip) takes on the fastest machine in the line; further,
let t o t comp be the total number of components to be
placed to produce a single board of each type in the
family, and let m equal the number of machines in the
line. Then (Ac + A g p) • t o t c o m p / m is a valid lower
bound for the makespan. For dataset 1, we are able to
improve the current solution by almost a minute, clos-
ing 66% of the gap between the lower bound and the
current solution.

Time

Total makespan 184.8
Current solution 244.1
Lower bound 154.8

1 50 13.8 52 13.5 49 13.5
2 49 13.8 52 13.5 50 13.8
3 86 21.1 86 21.2 84 21.2
4 66 17.4 72 18.4 70 18.5
5 25 7.9 28 8.0 25 7.0
6 25 7.9 28 8.2 26 7.5
7 42 11.3 43 12.2 47 13.4
8 58 15.7 61 16.1 60 16.9
9 304 69.4 293 69.3 332 71.0

Y Crama et al./European Journal of Operational Research 98 (1997) 457-472

Table 2
Estimated results dataset 1

469

Board type Machine 1 Machine 2 Machine 3

Actual Estimated Actual Estimated Actual Estimated

1 13.8 13.6 13.5 13.1 13.5 13.5
2 13.8 13.5 13.5 13.1 13.8 13.6
3 21.1 22.2 21.2 21.3 21.2 22.2
4 t7.4 18.8 18.4 18.5 18.5 19.2
5 7.9 8.2 8.0 8.4 7.0 7.4
6 7.9 8.1 8.2 8.4 7.5 7.6
7 11.3 12.3 12.2 12.8 13.4 13.3
8 15.7 16.4 16.1 17.2 16.9 17.0
9 69.4 71.2 69.3 72.2 71.0 71.6

In Table 2 the estimates of the makespans as com-
puted in Phase 1 are presented. We conclude that these
estimates are accurate enough (usually within a few
percent) to give a realistic impression of the actual
makespans delivered by Phase 2. This might for ex-
ample be useful to evaluate alternative solutions to the
partitioning of board types into families (problem (1)
in Section 1).

Table 3 consists of four subtables, arising as fol-
lows. As mentioned in Subsection 2.2, the difference
between a CP-III and a CP-IV is its speed. To model
this difference, we assume that speed(CP-IV) =
speedfactor • speed(CP-III). Since this speedfactor
(spf) is a simplification of reality it is hard to estimate
exactly. The speedfactor is believed to be approxi-
mately 15%, but Table 3 also shows the outcomes for
other values. Although it is hard to make an exact
statement regarding the outcomes of our algorithm
based on Table 3, it shows that our planning proce-
dure is quite robust. The makespan grows more or
less proportionally to the speedfactor. Moreover, each
of the four solutions exceeds the lower bound by not
more than 7%, while the current solution exceeds the
lower bound by more than 20%.

In our view, the main difference between the ap-
proach presented here and the approach used to obtain
the solutions currently used in practice is that we try to
use as much as possible the individual board type char-
acteristics, as opposed to the existing software which
uses a composite board (see Section 2). Hence, we be-
lieve that this difference in solution approach causes,
at least for a large part, the gap between the solutions
found by the two approaches. How can we test this

hypothesis? If it were true, then it would imply that,
for families consisting of a single board type, the solu-
tions found by the two approaches should not differ as
much as they do for larger families. Thus, to substanti-
ate our claim that individual board type characteristics
matter, we performed the following experiment (see
Table 4). We chose board type no. 9 of dataset 1 and
considered this board type once as a family (see the
row in Table 4 denoted by "sole member") and once
simply as part of its original family (see the row in
Table 4 denoted by "part of family"). For both cases
we applied our approach (see the column in Table 4
denoted by "individual approach") and the approach
currently used at Philips (see the column in Table 4
denoted by "composite approach").

The results in Table 4 seem to support our claim. In-
deed, in our approach, the makespan barely increases
(1 second) when the board is handled as a member of
a large family rather than by itself. In the composite
board approach, this increase amounts to 5 seconds.
Alternatively viewed, the individual approach gives a
makespan for board no. 9 as part of its family which
is better by 8.4 seconds than the solution found for
this board by the composite approach. Only 4.3 sec-
onds (the difference between the makespans found for
board 9 when considered as a family) of this improve-
ment can be attributed to better search techniques, and
thus almost 50% of the total improvement is due to the
difference in the two approaches, or more concretely,
to taking into account the individual board type char-
acteristics.

A similar experiment was conducted with a board
type of dataset 2. As in dataset 1, we observed that

470

Table 3
Final results dataset 2

s p f = 1.15

Y Crama et al./European Journal of Operational Research 98 (1997) 457-472

spf = 1.20

Board type Machine 1 Machine 2 Board type Machine 1 Machine 2

NoC Time NoC Time NoC Time NoC Time

1 107 28.7 129 29.8 1 104 29.4 132
2 138 37.1 164 37.1 2 134 37.3 168
3 137 37.2 162 37.0 3 131 37.2 168
4 306 80.7 378 82.6 4 303 82.2 381
5 118 31.3 139 31.6 5 112 31.7 145
6 149 39.2 174 39.5 6 144 40.4 179
7 150 39.5 172 38.8 7 144 39.4 178

Time Time

Total makespan 297.3 Total makespan 309.0
Current solution 361.8 Current solution 361.8
Lower bound 284.2 Lower bound 289.8

spf = 1.25 spf = 1.30

Board type Machine 1 Machine 2 Board type Machine 1 Machine 2

31.0
39.1
38.9
84.6
33.7
40.9
40.8

NoC Time NoC Time NoC Time NoC Time

1 102 30.2 134 32.1 1 99 31.3 137 31.1
2 132 38.2 170 39.4 2 128 39.5 174 39.1
3 131 38.2 168 39.1 3 126 39.2 173 38.7
4 299 84.1 385 86.4 4 285 84.6 399 87.7
5 110 33.0 147 34.2 5 105 31.1 152 34.3
6 142 41.5 181 41.5 6 138 42.7 185 41.4
7 140 41.1 182 41.3 7 137 41.0 185 41.4

Time Time

Total makespan 314.0 Total makespan 315.9
Current solution 361.8 Current solution 361.8
Lower bound 295.2 Lower bound 300.3

approximately 50% of the total improvement could be
attributed to the individual board type characteristics.
Thus, the results of these experiments tend to support
the hypothesis.

Table 4
Comparison between the two approaches for board
no. 9 of dataset 1

Board type no. 9 Individual Composite
of dataset 1 approach approach

Sole member 70.0 74.3
Part of family 71.0 79.4

Concerning the topic of running times, we restrict
ourselves to the following general remarks. The run-
ning time of Phase 1 of the planning procedure (that
is, constructing a feeder rack assignment) varies. Due
to the fact that it is much harder to balance three ma-
chines than two, Step 5 takes much more time for
dataset 1 than for dataset 2. The exact running time
depends on the dataset and the stopping criterion, but
Phase 1 takes approximately 15 minutes on a 33Mhz
486. For both instances, Phase 2 took roughly about 10
to 15 minutes. In fact, the running times given above
are in the same order of magnitude as the running
times of the existing software.

Y. Crama et aL/European Journal of Operational Research 98 (1997) 457-472 471

Summarizing, Tables 1, 2 and 3 show that the so-
lution procedure we present yields, at least in terms
of the makespan, significantly better results than the
existing software. For a large part, this difference is
caused by the fact that we solve the feeder rack assign-
ment problem using individual board characteristics
contrary to existing software which uses a composite
board type (see Tables 4 and 5). Another (small) ad-
vantage of the solutions found by our approach is that
the movements of the feeder rack tend to be relatively
small. This causes less wear for the rack.

5. Conclusions

This paper deals with the assembly of a family of
board types by a single line of placement machines.
By decomposing the planning problem, a number of
subproblems arise. An important subproblem is to con-
struct a feeder rack assignment for each of the ma-
chines that allows us to construct good placement se-
quences for each of the board types in the family. Here,
we explicitly address this problem and we propose a
heuristic based on the individual board characteristics.
This heuristic is incorporated into a solution proce-
dure which delivers a solution for the general plan-
ning problem. Since we strived for running times of
the same order as the existing software, we only con-
sidered very simple local search methods for some of
the subproblems. The computational results show that
this approach works well.

Acknowledgements

We would like to thank Mr. Voogt and Mr. Driessen
of Philips NV for their willingness to provide us with
data and explanations and for their insightful com-
ments on an earlier version of this paper.

The first author gratefully acknowledges the par-
tial support of ONR (Grants N00014-92-J-1375 and
N00014-92-J-4083) and NATO (CRG931531).

References

[I] Agnetis, A., Askin, R.G., and Sodhi, M.S., "Tool
addition strategies for flexible manufacturing systems", The

International Journal of Flexible Manufacturing Systems 6
(1994) 287-310.

[2] Ahmadi, J., Grotzinger, S., and Johnson, D., "Component
allocation and partitioning for a dual delivery placement
machine", Operations Research 36 (1988) 176-191.

[3] Ahmadi, R.H., "A hierarchical approach to design,
planning, and control problems in electronic circuit card
manufacturing", in: R.K, Satin (ed.), Perspectives in
Operations Management, Kluwer Academic Publishers,
Dordrecht, 1993, 409-429.

[4] Ahmadi, R.H., and Kouvelis, E, "Staging problem of a
dual delivery pick-and-place machine in printed circuit card
assembly", Operations Research 42 (1994) 81-91.

[5] Ahuja, R.K., Magnanti, T.L, and Odin, J.B., Network flows,
Prentice-Hall, Englewood Cliffs, NJ, 1993.

16] Askin, R.G., Dror, M., and Vakharia, A.J., "Printed circuit
board family grouping and component allocation for a
multimachine, open shop assembly cell", Naval Research
Logistics 41 (1994) 587-608.

[71 Balakrishnan, A., and Vanderbeck, E, "A tactical planning
model for mixed-model electronics assembly operations".
CORE Discussion paper 9349, Catholic University of
Louvain, 1993.

[81 Ball, M.O., and Magazine, M.J., "Sequencing of insertions
in printed circuit board assembly", Operations Research 36
(1988) 192-201.

[9] Bard, J.E, "A heuristic for minimizing the number of tool
switches on a flexible machine", liE Transactions 20 (1988)
382-391.

110 [Bard, J.E, Clayton, R.W., and Feo, T.A., "Machine setup and
component placement in printed circuit board assembly", The
International Journal of Flexible Manufacturing Systems 6
(1994) 5-31.

[11] Cartoon, T.E, Maimon, O.Z., and Dar-el, E.M., "Group set-
up for printed circuit board assembly", International Journal
of Production Research 27 (1989) 1795-1810.

[12] Crama, Y., "Combinatorial optimization models for
production scheduling in automated manufacturing systems",
in: R. Slowinski (ed.), Semi-Plena~ Papers of the 14th
European Conference on Operational Research, Poland
(1995) 237-259; to appear in the European Journal of
Operational Research.

[131 Crama, Y., Flippo, O.E., van de Klundert, J.J., and Spieksma,
EC.R., "The component retrieval problem in printed circuit
board assembly", Research Memorandum RM/95/033,
Faculty of Economics and Business Administration,
University of Limburg, 1995; to appear in International
Journal of Flexible Manufacturing Systems.

[14] Crama, Y., Kolen, A.W.J., Oerlemans, A.G., and Spieksma,
EC.R., "Throughput rate optimization in the automated
assembly of printed circuit boards", Annals of Operations
Research 26 (1990) 455-480.

[15] Crama, Y., Oerlemans, A.G., and Spieksma, EC.R.,
Production Planning in Automated ManuJacturing, Lecture
Notes in Economics and Mathematical Systems 414 (1994)
Springer, Berlin.

472 Y Crama et al./European Journal of Operational Research 98 (1997) 457-472

[16] Drezner, Z., and Nof, S., "On optimizing bin picking and
insertion plans for assembly robots", liE Transactions 16
(1984) 262-270.

[17] Foulds, L.R., and Hamacher, H.W., "Optimal bin location
and sequencing in printed circuit board assembly", European
Journal of Operational Research 66 (1993) 279-290.

[18] Francis, R.L., Hamacher, H.W., Lee, C.-Y., and Yeralan, S.,
"Finding placement sequences and bin locations for cartesian
robots", liE Transactions 26 (1994) 47-59.

[19] van taarboven, P.J.M., and Zijm, W.H.M., "Production
preparation and numerical control in PCB assembly", The
International Journal of Flexible Manufacturing Systems 5
(1993) 187-207.

[20] Leip~il~i, T., and Nevalainen, O., "Optimization of the
movements of a component placement machine", European
Journal of Operational Research 38 (1989) 167-177.

[21] Lofgren, C.B., McGinnis, L.E, and Tovey, C.A., "Routing
printed circuit cards through an assembly cell", Operations
Research 39 (1991) 992-1004.

[22] Tang, C.S., and Denardo, E.V., "Models arising from a
flexible manufacturing machine, part I: minimization of the
number of tool switches", Operations Research 36 (1988)
767-777.

[23] Tang, C.S., and Denardo, E.V., "Models arising from a
flexible manufacturing machine, part II: minimization of
the number of switching instants", Operations Research 36
(1988) 778-784.

[24] Viczifin, I., "Finding placement sequences and bin locations
for cartesian robots", A working paper of the University of
Wtirzburg, 1993.

[25] Voogt, S., "Short term scheduling in PCB assembly", Philips
Report CTR 597-93-0106, 1993.

[26] Walas, R.A., and Askin, R.G., "An algorithm for NC
turret punch press tool location and hit sequencing", lie
Transactions 16 (1984) 280-287.

[27] Younis, T.A., and Cavalier, T.M., "On locating part bins in a
constrained layout area for an automated assembly proces",
Computers and Industrial Engineering 18 (1990) 11 l-118.

