18 research outputs found

    Compliance control for stabilizing the humanoid on the changing slope based on terrain inclination estimation

    Get PDF
    This paper presents a stabilization framework integrated with the estimation of the terrain inclination to balance a humanoid on the changing slope as an extension to our previous study. In this paper, the estimation of the terrain inclination is improved for walking in place on an inclination-varying slope. A passivity based admittance control utilizes the force/torque sensing in feet to actively regulate the impedance at the center of mass to stabilize the robot. The logic-based inclination estimation algorithm uses the feet to probe the terrain and deals with the under-actuation. The equilibrium set-point in the admittance control is regulated based on the detected inclination. The effectiveness of the control framework is validated on the humanoid robot COMAN and demonstrated by estimating the terrain inclination, coping with the under-actuation phase, adapting to the slope with changing inclination during both standing and walking. Experimental data are analyzed and discussed, and the future work is suggested

    Stabilization of bipedal walking based on compliance control

    Get PDF
    The embodiment of physical compliance in humanoid robots, inspired by biology, improves the robustness of locomotion in unknown environments. The mechanical implementation using elastic materials demands a further combination together with controlled compliance to make the intrinsic compliance more effective. We hereby present an active compliance control to stabilize the humanoid robots for standing and walking tasks. Our actively controlled compliance is achieved via admittance control using closed-loop feedback of the six axis force/torque sensors in the feet. The modeling and theoretical formulation are presented, followed by the simulation study. Further, the control algorithms were validated on a real humanoid robot COMAN with inherent compliance. A series of experimental comparisons were studied, including standing balancing against impacts, straight walking, and omni-directional walking, to demonstrate the necessity and the effectiveness of applying controlled compliance on the basis of physical elasticity to enhance compliant foot-ground interaction for the successful locomotion. All data from simulations and experiments related with the proposed controller and the performance are presented, analyzed, and discussed

    Online Bipedal Locomotion Adaptation for Stepping on Obstacles Using a Novel Foot Sensor

    Full text link
    In this paper, we present a novel control architecture for the online adaptation of bipedal locomotion on inclined obstacles. In particular, we introduce a novel, cost-effective, and versatile foot sensor to detect the proximity of the robot's feet to the ground (bump sensor). By employing this sensor, feedback controllers are implemented to reduce the impact forces during the transition of the swing to stance phase or steeping on inclined unseen obstacles. Compared to conventional sensors based on contact reaction force, this sensor detects the distance to the ground or obstacles before the foot touches the obstacle and therefore provides predictive information to anticipate the obstacles. The controller of the proposed bump sensor interacts with another admittance controller to adjust leg length. The walking experiments show successful locomotion on the unseen inclined obstacle without reducing the locomotion speed with a slope angle of 12. Foot position error causes a hard impact with the ground as a consequence of accumulative error caused by links and connections' deflection (which is manufactured by university tools). The proposed framework drastically reduces the feet' impact with the ground.Comment: 6 pages, 2022 IEEE-RAS 21th International Conference on Humanoid Robots (Humanoids

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Benchmarking Dynamic Balancing Controllers for Humanoid Robots

    Get PDF
    This paper presents a comparison study of three control design approaches for humanoid balancing based on the Center of Mass (CoM) stabilization and body posture adjustment. The comparison was carried out under controlled circumstances allowing other researchers to replicate and compare our results with their own. The feedback control from state space design is based on simple models and provides sufficient robustness to control complex and high Degrees of Freedom (DoFs) systems, such as humanoids. The implemented strategies allow compliant behavior of the robot in reaction to impulsive or periodical disturbances, resulting in a smooth and human-like response while considering constraints. In this respect, we implemented two balancing strategies to compensate for the CoM deviation. The first one uses the robot’s capture point as a stability principle and the second one uses the Force/Torque sensors at the ankles to define a CoM reference that stabilizes the robot. In addition, was implemented a third strategy based on upper body orientation to absorb external disturbances and counterbalance them. Even though the balancing strategies are implemented independently, they can be merged to further increase balancing performance. The proposed strategies were previously applied on different humanoid bipedal platforms, however, their performance could not be properly benchmarked before. With this concern, this paper focuses on benchmarking in controlled scenarios to help the community in comparing different balance techniques. The key performance indicators (KPIs) used in our comparison are the CoM deviation, the settling time, the maximum measured orientation, passive gait measure, measured ankles torques, and reconstructed Center of Pressure (CoP). The benchmarking experiments were carried out in simulations and using the facility at Istituto Italiano di Tecnologia on the REEM-C humanoid robot provided by PAL robotics inside the EU H2020 project EUROBENCH framework

    Whole-Body Impedance Control of Wheeled Humanoid Robots

    Full text link

    Instantaneous Momentum-Based Control of Floating Base Systems

    Get PDF
    In the last two decades a growing number of robotic applications such as autonomous drones, wheeled robots and industrial manipulators started to be employed in several human environments. However, these machines often possess limited locomotion and/or manipulation capabilities, thus reducing the number of achievable tasks and increasing the complexity of robot-environment interaction. Augmenting robots locomotion and manipulation abilities is a fundamental research topic, with a view to enhance robots participation in complex tasks involving safe interaction and cooperation with humans. To this purpose, humanoid robots, aerial manipulators and the novel design of flying humanoid robots are among the most promising platforms researchers are studying in the attempt to remove the existing technological barriers. These robots are often modeled as floating base systems, and have lost the assumption -- typical of fixed base robots -- of having one link always attached to the ground. From the robot control side, contact forces regulation revealed to be fundamental for the execution of interaction tasks. Contact forces can be influenced by directly controlling the robot's momentum rate of change, and this fact gives rise to several momentum-based control strategies. Nevertheless, effective design of force and torque controllers still remains a complex challenge. The variability of sensor load during interaction, the inaccuracy of the force/torque sensing technology and the inherent nonlinearities of robot models are only a few complexities impairing efficient robot force control. This research project focuses on the design of balancing and flight controllers for floating base robots interacting with the surrounding environment. More specifically, the research is built upon the state-of-the-art of momentum-based controllers and applied to three robotic platforms: the humanoid robot iCub, the aerial manipulator OTHex and the jet-powered humanoid robot iRonCub. The project enforces the existing literature with both theoretical and experimental results, aimed at achieving high robot performances and improved stability and robustness, in presence of different physical robot-environment interactions
    corecore