143,417 research outputs found

    Stochastic Blockmodeling for Online Advertising

    Full text link
    Online advertising is an important and huge industry. Having knowledge of the website attributes can contribute greatly to business strategies for ad-targeting, content display, inventory purchase or revenue prediction. Classical inferences on users and sites impose challenge, because the data is voluminous, sparse, high-dimensional and noisy. In this paper, we introduce a stochastic blockmodeling for the website relations induced by the event of online user visitation. We propose two clustering algorithms to discover the instrinsic structures of websites, and compare the performance with a goodness-of-fit method and a deterministic graph partitioning method. We demonstrate the effectiveness of our algorithms on both simulation and AOL website dataset

    Semantic-Preserving Feature Partitioning for Multi-View Ensemble Learning

    Full text link
    In machine learning, the exponential growth of data and the associated ``curse of dimensionality'' pose significant challenges, particularly with expansive yet sparse datasets. Addressing these challenges, multi-view ensemble learning (MEL) has emerged as a transformative approach, with feature partitioning (FP) playing a pivotal role in constructing artificial views for MEL. Our study introduces the Semantic-Preserving Feature Partitioning (SPFP) algorithm, a novel method grounded in information theory. The SPFP algorithm effectively partitions datasets into multiple semantically consistent views, enhancing the MEL process. Through extensive experiments on eight real-world datasets, ranging from high-dimensional with limited instances to low-dimensional with high instances, our method demonstrates notable efficacy. It maintains model accuracy while significantly improving uncertainty measures in scenarios where high generalization performance is achievable. Conversely, it retains uncertainty metrics while enhancing accuracy where high generalization accuracy is less attainable. An effect size analysis further reveals that the SPFP algorithm outperforms benchmark models by large effect size and reduces computational demands through effective dimensionality reduction. The substantial effect sizes observed in most experiments underscore the algorithm's significant improvements in model performance.Comment: 45 pages, 44 figures, 26 table

    A Recursive Partitioning Approach for Dynamic Discrete Choice Modeling in High Dimensional Settings

    Full text link
    Dynamic discrete choice models are widely employed to answer substantive and policy questions in settings where individuals' current choices have future implications. However, estimation of these models is often computationally intensive and/or infeasible in high-dimensional settings. Indeed, even specifying the structure for how the utilities/state transitions enter the agent's decision is challenging in high-dimensional settings when we have no guiding theory. In this paper, we present a semi-parametric formulation of dynamic discrete choice models that incorporates a high-dimensional set of state variables, in addition to the standard variables used in a parametric utility function. The high-dimensional variable can include all the variables that are not the main variables of interest but may potentially affect people's choices and must be included in the estimation procedure, i.e., control variables. We present a data-driven recursive partitioning algorithm that reduces the dimensionality of the high-dimensional state space by taking the variation in choices and state transition into account. Researchers can then use the method of their choice to estimate the problem using the discretized state space from the first stage. Our approach can reduce the estimation bias and make estimation feasible at the same time. We present Monte Carlo simulations to demonstrate the performance of our method compared to standard estimation methods where we ignore the high-dimensional explanatory variable set
    • …
    corecore