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Ensemble data mining methods, also known as classifier combination, are often used to improve the performance of classification.
Various classifier combination methods such as bagging, boosting, and random forest have been devised and have received
considerable attention in the past. However, data dimensionality increases rapidly day by day. Such a trend poses various challenges
as these methods are not suitable to directly apply to high-dimensional datasets. In this paper, we propose an ensemble method for
classification of high-dimensional data, with each classifier constructed from a different set of features determined by partitioning
of redundant features. In our method, the redundancy of features is considered to divide the original feature space. Then, each
generated feature subset is trained by a support vector machine, and the results of each classifier are combined by majority voting.
The efficiency and effectiveness of our method are demonstrated through comparisons with other ensemble techniques, and the
results show that our method outperforms other methods.

1. Introduction

The ultimate goal of supervised learning for classification is
to mine previously unknown knowledge from existing data
to predict a future event with best possible classification
performance [1]. Classification algorithms typically deal with
a set of records, each of which consists of a fixed number of
features along with a class label that denotes its target. The
algorithm then outputs a decision boundary that represents
underlying patterns in the data. Many useful classification
algorithms such as decision tree [2], neural network [3, 4],
and support vector machine (SVM) [5] have been presented
in the past. However, the increase in the data dimensionality
may cause several issues with respect to scalability and learn-
ing performance in these classification algorithms. Moreover,
the classification ability of a single classifier is limited.

In general, ensembles of classifiers provide better classi-
fication accuracy than a single predictor can do. To improve
the classification accuracy, ensemble methods, also known as
classifier combination, first generate a set of base classifiers
from training data and then perform actual classification by
combining the results of base classifiers. For achieving better
accuracy of the combined set of multiple classifiers, each base
classifier should be diverse and independent. When it comes
to building each base classifier, ensemble classifier generation
methods can be broadly categorized into four groups [6]: (i)
by selecting different subsets of instances of training set to
build each base classifier, (ii) by choosing different subsets of
features of the input features to construct each base classifier,
(iii) by being based on different categories of the class labels
to build each base classifier, and (iv) by manipulating the
learning algorithm. Among many methods, bagging [7] and
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Input: training data D, Inducer I, number of bootstrap samples N
Output: Aggregated classifier C*

Begin:
1) fori=1toN{

3  C=I0D)
@

YEY iCi(x)=y
End

(2) D' = bootstrap sample from D (sample with replacement)

(5) C*(x) = argmax Z 1

ALGORITHM 1: Bagging.

boosting [8] are two widely used ensemble methods. They
resample the original data to create multiple training sets
based on some sampling distribution and build the base clas-
sifier from each bootstrap sample. However, these methods
are not guaranteed to generate fully independent individual
base classifiers [9]. According to [10, 11], their theoretical
and empirical results indicate that the most effective method
of achieving independence is by training base classifiers
on different feature subsets [12]. The basic idea of feature
subset-based ensemble is simply to give each classifier a
different projection of the training set [13]. In particular for
high-dimensional data, adopting independent feature subsets
for ensemble generation has shown to be more efficient
[14] compared with manipulating the training samples. This
may be due to the following: (i) a feature subset-based
ensemble can perform faster due to the reduced size of input
space; (ii) it can reduce the correlation among the classifiers.
Among the feature subset-based ensemble methods, random
forest [15] is a widely used approach that employs decision
tree as a base classifier. It achieves diversity by randomly
partitioning the original feature space instead of using whole
features. However, random partition of the input space may
increase the risk that irrelevant and redundant features can
be included in the selected subset. Furthermore, decision tree
methods have the so-called fragmentation problem as less
and less training data are used to search for the root nodes
of subtrees. If the training data do not have enough instances
compared with dimensions, the performance of decision tree
becomes typically very poor.

In this paper, we propose an ensemble framework for
classifying high-dimensional data with each classifier con-
structed from a different set of features determined by
redundant features partitioning. First, we suggest a multiple
subset generation method based on feature relevance and
redundancy to construct each classifier. Then, a number
of classifiers are built from the generated subsets. Finally,
the classification results of the classifiers are combined by
majority voting. It is observed that the proposed ensemble
method outperforms other ensemble methods by up to 6%
in terms of classification accuracy.

2. Previous Work

2.1. Bagging. Bagging [7] is a method for generating multiple
versions of classifiers and using these to get an aggregated

classifier. Each base classifier is generated by different boot-
strap samples. Algorithm 1 shows the bagging algorithm [14].
The algorithm takes training data D, inducer I, and the num-
ber of bootstrap samples N as input and then produces an
ensemble classifier which is the combination of the classifiers
trained from the multiple bootstrap samples. D' is obtained
by repeatedly sampling instances from a dataset according to
probability distribution (line 2). Since the sampling is done
with replacement, some instances may appear several times
in the same training set, while others may not. Consequently,
N bootstrap samples, Dy, D,, ..., Dy, are generated, from
which a classifier C, is trained by using each bootstrap sample
D; (line 3). Finally, a combined classifier C* is built from
C,,C,,...,C;, and C* predicts the class label of a given
instance x by counting votes (line 5).

2.2. Boosting. Boosting [6] is also a widely used ensemble
method developed to improve the performance of learning
algorithms that generate multiple classifiers and vote on
them. Unlike bagging, boosting assigns a weight to each
training instance and may adaptively change the weight at the
end of each boosting round. AdaBoost is an improved boost-
ing algorithm whose pseudo code is shown in Algorithm 2
[14]. The algorithm takes as input training data D containing
m instances, inducer I, and iteration parameter N and then
outputs a combined classifier. Initially, all of the instances
are equally assigned the same weight (line 1). Then, the
algorithm gradually constructs classifiers by modifying the
weights of training instances based on the previous classifier’s
performance (lines 2-9). This is accomplished by computing
the new classifier while putting more emphasis on those
objects previously found to be difficult to accurately classify.
After generating each classifier, the proportion of incorrect
classification rate is calculated (line 4). If the weighted error
is larger than 0.5, the current D' will be set to a bootstrap
sample with weight 1 for every instance. Otherwise, the
weight of correctly classified instances will be updated by a
factor inversely proportional to the error (lines 6-8). In other
words, if the current classifier finds a certain object difficult
to classify, then that object will be assigned a greater weight
for the next iteration. Conversely, if an object is found to
be easy to classify, then it will have smaller weight in the
next iteration. Finally, the classifiers are combined using a
weighted voting scheme (line 10).
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Output: Aggregated classifier C*
Begin:

(2) fori=1toN{
(3) C,=I(D"

(4) & = i Z

m ’
xjeD :C,-(xj)#yj

weight(x)
(6) ﬁi = 5,‘/(1 - 5,‘)

© 1}

(10) C*(x) = arg max Z log
yey i:C;(x)=y B

1

End

Input: training data D size of m, Inducer I, number of iterations N

(1) D' = D with instance weights assigned to be 1

(5) Ife; > 1/2, set D' to a bootstrap sample from D with weight 1 for every instance and go to Step 3

(7) Foreach x; € D', if C;(x;) = y; then weigh(x;) = weight(x) - ;
(8) Normalize the weights of instances so the total weight of D’ is m

ALGORITHM 2: AdaBoost.

Output: Aggregated classifier C*
Begin:
(1) fori=1toN{

(5) }
(6) C*(x) = argmax Z 1

YEYiCix)=y

End

Input: training data D, number of selected variables 71, number of trees N

(2) D' = bootstrap sample from D (sample with replacement)
(3) S' size of m = S (S will be randomly selected from original input space)
(4) C=1I (D', S") (I: Classification and regression tree)

ALGORITHM 3: Random forest.

2.3. Random Forest. Random forest is an ensemble classifica-
tion method consisting of multiple unpruned decision trees.
Unlike bagging, random forest forms bootstrap samples by
randomly partitioning the original feature space instead of
using the whole input features. As shown in Algorithm 3,
to construct individual decision trees, bootstrap samples are
selected from the training instances with replacement (line 2).
Then, classification and regression tree (CART) algorithm is
applied to grow the decision tree. At the node selection stage,
it decides the best splitting node from a randomly selected
subspace of m features (lines 3-4).

2.4. Feature Subset-Based Ensembles. Bagging and boosting
are the ensemble methods that manipulate the original
instances. However, this kind of ensemble methods is difficult
to accurately classify high-dimensional data like image or
gene expression data. The reason is that image or gene
expression data generally has very small number of samples
compared with dimensions. Therefore, sampling the training
instances will lead to lack of representative instances so that
bagging and boosting will be susceptible to overfitting. In this

case, feature subset-based ensemble method is more efficient
[14] compared with manipulating the training samples. This
may be due to the following: (i) a feature subset-based
ensemble can perform faster due to the reduced size of input
space; (ii) it can reduce the correlation among the classifiers.
Besides random forest, various feature partitioning-based
ensemble methods have been proposed. Ahn et al. [16]
proposed an ensemble method that uses mutually exclusive
subspaces to achieve diversity. The authors applied their
method to bioinformatics and chemical domains and showed
that their method can achieve better performance than that
of random forest. Ming Ting et al. [17] also introduced a
feature subset-based ensemble method that employs support
vector machine as a base classifier. The feature space was
divided into nonoverlapping local regions according to user-
defined number of features. de Bock and Poel [18] proposed
a rotation-based ensemble classifier that applied feature
extraction methods such as principle component analysis
and independent component analysis to generate subspace
of features. However, these methods did not consider the
correlation among features [19].
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FIGURE 1: Framework of proposed method.

3. Proposed Ensemble Method

We propose an ensemble method with multiple independent
feature subsets to better classify high-dimensional data. The
framework of the proposed ensemble is shown in Figure 1.
The proposed method mainly consists of two phases: (i)
generating multiple feature subsets based on the correlation
among features and (ii) constructing the model from each
feature subset using a machine learning algorithm as the
base classifier and combining the results of all classifiers by
majority voting. Next, we will illustrate each step in detail.

3.1. Feature Subset Generation. Generating feature subsets
for ensemble can be viewed as multiple iterations of feature
selection procedures. In the past, various feature selection
techniques have been proposed such as chi-square test,
mutual information, Pearson correlation coefficients, and
Relief [20]. Although these methods are fast, they lack
robustness when interactions among features exist. To select a
relevant and nonredundant feature subset, a Fast Correlation-
Based Filter (FCBF) [21] approach was proposed to remove
the redundant as well as irrelevant features, and the Symmet-
rical Uncertainty (SU) was used to measure the correlation
where

SU(X,Y) = 2[ G| Y) ] ,

H(X)+H(Y) )

IG(X|Y)=H(X)-H(X|Y).

Here IG(X | Y) is the information gain of X after observing
variable Y. H(X) and H(Y) are the entropies of variables
X and Y, respectively. FCBF removes irrelevant features
by ranking correlation between features and classification
classes. To remove redundant features, the authors intro-
duced a concept of predominant feature. A feature is said to
be predominant if it does not have any approximate Markov
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Blanket in the current set. For two relevant features F; and F;,
F; forms an approximate Markov Blanket for F; if

SU; . > SU;, SU;; 28U, (2)
where SU, _ is the correlation between feature i and class;
SU; . is the correlation between feature j and class; SU, ; is
the correlation between feature and feature. Thus, FCBF is
a process in which all predominant features are identified.
They are searched as follows. First, the feature with the largest
SU; . value is selected as a starting point. Next, all redundant
features regarding this feature are removed. Then redundant
features regarding the next feature with the largest SU in
the remaining set are removed. The algorithm repeats this
procedure until there are no redundant features existing.

Although FCBF has good performance on high-
dimensional data, it is not suitable for ensemble learning
because it was originally designed to select a single feature
subset. Thus, we extend FCBF to generate multiple feature
subsets. First, based on the correlation between features and
classes (i.e., SU), all the features are sorted in a descending
order. Then a relevant subset of features can be derived by a
predefined threshold o. If the SU value of a feature is larger
than the threshold, the feature is considered to be relevant.
Generally, we recommend setting the threshold to be 0
in order to consider all of the features in the redundancy
analysis step except “waste-features” which have a 0 SU value
with respect to the class. After that, redundancy analysis
is conducted on the relevant subset. The main difference
between our method and FCBF is that our method considers
the removed features in FCBE It is because we hypothesize
that it may be interesting to pay attention to the removed
features as FCBF removes less relevant ones between two
redundant features, and in some cases, low ranked features
can also play an important role when considering the
combination of features. Thus, the features not selected in
the previous iteration will be the input in the next iteration.
For example, in the first iteration, the redundant features
are removed from original space as is done in FCBE In the
second iteration, the same analysis is done as iteration 1 but
for the removed subset in the first iteration not for the whole
feature space. Then, the third subset is selected from the
removed space in the second iteration. It is repeated until a
user-defined number of subsets are selected.

3.2. Model Learning. Over the past few years, SVM has been
widely used for classification because of its good performance
on high-dimensional data [22]. SVM was developed by
Vapnik to solve the problems occurring in applications such
as handwritten digit recognition [23], object recognition [24],
text classification [25], cancer diagnosis [23], and bioinfor-
matics [26]. Hence, we use SVM as the base classifier in our
ensemble method. The goal of SVM is to find a hyperplane
with a maximal margin (distance between two groups of data
points) as defined and illustrated in Figure 2. Given some data
points that are assumed to be divided into two groups, circles
and squares, the hyperplane can be written as

w-x+b=0, (3)
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FIGURE 2: Example of support vector machine.

where w and b are parameters of the model: w denotes an
orthogonal vector and b refers to a bias. SVM separates data
points into two groups in such a way that they divide the data
and there exist no data points in between them, and their
distance, defined as margin, is maximized. Figure 2 shows
two more hyperplanes placed at the boundary of two groups.
These hyperplanes and the margin can be written as follows:

w-x+b=1, w-x+b=-1,

. 2 (4)
margin = —.
llw]
Hence, the learning task in SVM can be formalized as the
following constrained optimization problem:

2
[l
b

’ 2 (5)
subject to  y; (w-x; +b) > 1,

min
i=1,2,...,n

This is also known as a convex optimization problem, which
can be solved by using the standard Lagrange multiplier
method:

1o -
Ly =3 lwl _;o'i(yi(w'xi-'—b)_l)’ ©)

where parameters o; are called the Lagrange multipliers. With
the Lagrange multipliers, the decision function can be written
as follows:

J (x) =sgn <i 0,y;K (x;, x) + b) . (7)

i=1

Additionally, the results of each classifier are combined by
majority voting, and classification of unknown data is per-
formed based on the class label to obtain the most frequent
votes. The mathematical function of our ensemble method
with k classifiers can be written as

class (x) = arg max <Z (fr (%), ci)> . (8)
K

5
TABLE 1: Datasets used in our experiments.

Dataset Instances Features Classes
ARI0P 130 2,400 10
ORLIOP 100 10,304 10
PIEIOP 210 2,420 10
PIX10P 100 10,000 10
Leukemia 72 12,582
Prostate 102 12,600

4. Experimental Results

4.1. Dataset. To evaluate the effectiveness of our method,
we used six publicly available datasets from two different
domains, four from face recognition and two from DNA
microarray data classification. The purpose of using first four
datasets, namely, AR10P [27], ORLIOP [28], PIE10P [29], and
PIXIOP [30], is to show how well our method can classify
the image data. Each dataset has a large number of features
compared with the number of instances. The last two datasets
are Leukemia and Prostate datasets from DNA microarray
experiments and are used to show how well our method
can distinguish different types of cancers. The Leukemia
dataset [31] contains a total of 72 samples in three classes,
acute lymphoblastic leukemia (ALL), acute myeloid leukemia
(AML), and mixed-lineage leukemia gene (MLL), which have
24, 28, and 20 samples, respectively. The number of features
is 12,582. The Prostate dataset, first published in [32], embeds
a two-class classification problem and contains 102 samples
and 12,600 genes. One of the tasks addressed by the authors
was to build a model that can distinguish between normal
and tumorous prostate tissues. The summary of the datasets
is shown in Table 1.

4.2. Performance Evaluation. We compared our methods
with widely used ensemble methods: bagging, AdaBoost, and
random forest. For bagging, AdaBoost, and our method,
SVM was used as the base classifier for fair comparison. The
number of classifiers for each ensemble method was set to
20. To obtain a statistically reliable predictive measurement,
we performed 10 runs of 10-fold cross validation on all
the datasets. In 10-fold cross validation, each dataset was
randomly partitioned into ten parts. Nine parts were used as
the training set, and the remaining one was used as the testing
dataset. Selecting the kernel and appropriate parameters plays
an important role in SVM classification performance. The
RBF kernel is a commonly used kernel for three reasons
[33]. First, the RBF kernel can handle nonlinear relationship
between class labels and attributes. Second, it has fewer
hyperparameters that influence the complexity of the model
selection than that of the polynomial kernel. Third, the RBF
kernel has fewer numerical difficulties. In our experiments,
we chose the RBF kernel function, and the parameters ¢
and r of RBF kernel must be optimized for each dataset. To
determine the best values of ¢ and r, we conducted a grid-
search approach using 10-fold cross validation. A number of
pairs of (c, r) values were attempted, and the pair with the best
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TABLE 2: Performance of proposed method on ARIOP dataset. Each row indicates the performance on each class and the last row shows the

weighted average.

Class Instances TP rate FP rate Precision Recall F-measure Roc area

1 13 1 0.017 0.867 1 0.929 1

2 13 0.923 0 1 0.923 0.96 0.995

3 13 0.923 0 1 0.923 0.96 0.998

4 13 1 0.009 0.929 1 0.963 1

5 13 0.923 0.009 0.923 0.923 0.923 0.983

6 13 1 0 1 1 1 1

7 13 0.923 0 1 0.923 0.96 0.992

8 13 1 0 1 1 1 1

9 13 1 0 1 1 1 1

10 13 1 0 1 1 1 1
Average 0.969 0.003 0.972 0.969 0.969 0.977

TABLE 3: Performance of proposed method on ORLIOP dataset. Each row indicates the performance of each run and the last row shows the

weighted average of 10 runs.

Class Instances TP rate FP rate Precision Recall F-measure Roc area
1 10 1 0 1 1 1 1
2 10 1 0 1 1 1 1
3 10 1 0 1 1 1 1
4 10 1 0 1 1 1 1
5 10 1 0 1 1 1 1
6 10 1 0 1 1 1 1
7 10 1 0 1 1 1 1
8 10 1 0 1 1 1 1
9 10 1 0 1 1 1 1
10 10 1 0 1 1 1 1
Average 1 0 1 1 1 1

TABLE 4: Performance of proposed method on PIEI0P dataset. Each row indicates the performance of each run and the last row shows the

weighted average of 10 runs.

Class Instances TP rate FP rate Precision Recall F-measure Roc area

1 21 1 0 1 1 1 1

2 21 1 0 1 1 1 1

3 21 1 0.005 0.955 1 0.977 1

4 21 1 0.005 0.955 1 0.977 0.998

5 21 1 0 1 1 1 1

6 21 0.952 0 1 0.952 0.976 0.996

7 21 1 0 1 1 1 1

8 21 0.952 0 1 0.952 0.976 0.979

9 21 1 0 1 1 1 1

10 21 1 0 1 1 1 1
Average 0.99 0.001 0.991 0.99 0.99 0.997

accuracy was picked in the range of ¢ € {27°,27%,...,2""}and  instances wrongly predicted as positive [34-36], respec-

re{27,271, ..., 2%,

Tables 2 through 7 show the performance of our proposed
method in terms of TP rate, FP rate, precision, recall, F-
measure, and ROC area, respectively. TP rate and FP rate
refer to the proportion of actual positive instances correctly
predicted as positive and the proportion of actual negative

tively. Precision is computed as the number of true positive
instances divided by the total number of instances labelled as
belonging to the positive class. Recall is defined as the number
of true positive instances divided by the total number of
instances actually belonging to the positive class. F-measure
is an evaluation metric that combines precision and recall
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TABLE 5: Performance of proposed method on PIXI0P dataset. Each row indicates the performance of each run and the last row shows the

weighted average of 10 runs.

Class Instances TP rate FP rate Precision Recall F-measure Roc area

1 10 1 0 1 1 1 1

2 10 1 0 1 1 1 1

3 10 1 0 1 1 1 1

4 10 1 0 1 1 1 1

5 10 1 0 1 1 1 1

6 10 1 0 1 1 1 1

7 10 0.9 0 1 0.9 0.947 0.947

8 10 0.011 0.909 1 0.952 0.996

9 10 1 0 1 1 1 1

10 10 0 1 1 1 1
Average 0.99 0.001 0.991 0.99 0.99 0.994

TABLE 6: Performance of proposed method on Leukemia dataset. Each row indicates the performance of each run and the last row shows the

weighted average of 10 runs.

Class Instances TP rate FP rate Precision Recall F-measure Roc area
ALL 24 1 0 1 1 1 1
AML 20 0.95 0 1 0.95 0.974 0.975
MLL 28 1 0.023 0.966 1 0.982 0.989
Average 0.986 0.009 0.987 0.986 0.986 0.989

TABLE 7: Performance of proposed method on Prostate dataset. Each row indicates the performance of each run and the last row shows the

weighted average of 10 runs.

Class Instances TP rate FP rate Precision Recall F-measure Roc area

N 50 0.98 0.058 0.942 0.98 0.961 0.96

T 52 0.942 0.02 0.98 0.942 0.961 0.96
Average 0.961 0.038 0.962 0.961 0.961 0.96

as follows: F-measure = 2 = (precision * recall)/(precision +
recall). ROC area is defined as the area under the Receiver
Operating Characteristic (ROC) curve. Each row of the tables
indicates the performance on each class and the last row
shows the averaged performance. From the tables, the average
TP rate is found to be 0.969, 1, 0.99, 0.99, 0.986, and 0.961,
and the average FP rate is found to be 0.003, 0, 0.001, 0.001,
0.009, and 0.038 on six datasets. Hence, we can easily observe
that our method makes good prediction. Moreover, the ROC
area on ORLI0, PIEI0OP, and PIX10P is almost 100%. From the
tables, it is clear that our method shows good performance on
many different evaluation measures.

Figures 3 and 4 exhibit the box plot of classification
accuracies of our method, bagging, AdaBoost, and random
forest. On ARIOP dataset, the proposed method shows best
average prediction accuracy which is 96.152%. On Leukemia
dataset, it is clear that the proposed method is found to
result in best average prediction accuracy, which is 98.75%
(standard deviation = 0.44), while the other methods are
found to be 94.30% (standard deviation = 1.38), 96.80%
(standard deviation = 0.67), and 82.08% (standard deviation
= 2.81) for bagging, AdaBoost, and random forest, respec-
tively. Similar results can also be found in other figures. One

interesting observation is that random forest has relatively
poor performance. It may be because random forest uses
decision tree as base classifier, while other methods use
SVM. It is well known that SVM has better performance on
high-dimensional data than decision trees. The classification
accuracies of each run can be seen in Appendix if the reader
is interested.

To test the statistical significance of differences among
classifiers, a paired-samples t-test is performed regarding
bagging and the proposed method. We selected bagging
because it showed the best average classification accuracy
among the existing methods in most cases. On ORLIOP
dataset, we selected random forest instead of bagging,
because the performance of our method and bagging is
exactly the same. From Table 8, the hypothesis that the mean
accuracy of proposed method is equal to the mean accuracy
of bagging has been significantly rejected (t = 3.407, P value
= 0.007 on ARIOP, t = 9.391, P value = 0.000 on ORLIOP,
t = 4.303, P value = 0.002 on PIEIOP, t = 11.599, P value =
0.000 on PIXIOP, t = 9.816, P value = 0.000 on Leukemia,
and ¢t = 9.000, P value = 0.000 on Prostate dataset) with
5% significance level. It means that the differences among
classifiers are statistically significant.
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TABLE 8: Paired t-test between proposed method and bagging.
Standard Standard 95% confidence interval of the difference .
Mean e t df  Sig.
deviation error mean Lower Upper
Proposed method -
1.536 3.407 10 0.007
bagging on ARIOP dataset 1.495 0.451 0.531 2.541
Proposed method - forest 3500 1179 0.373 2.657 4.343 9391 9  0.000
on ORLIOP dataset ' : ’ : ’ ’ '
Proposed method - 1048 0770 0.244 0.497 1,599 4303 9 0.002
bagging on PIEIOP dataset ’ ’ ' ’
Proposed method -
100 . . . 1699 9  0.000
bagging on PIX10P dataset 0-568 0180 1.694 2:506
Proposed method -
bagging on Leukemia 4.445 1.432 0.453 3.421 5.469 9816 9  0.000
dataset
Proposed method - 2940 1033 0.327 2.201 3.679 9.000 9 0.000

bagging on Prostate dataset

TaBLE 9: Classification accuracy of 10 runs of 10-fold cross validation
for proposed method, bagging, AdaBoost, and random forest on
ARI0P.

TaBLE 11: Classification accuracy of 10 runs of 10-fold cross valida-
tion for proposed method, bagging, AdaBoost, and random forest
on PIEIOP.

Proposed Bagging AdaBoost Random forest Proposed Bagging AdaBoost Random forest
1 96.92 93.85 93.08 92.69 1 99.05 98.57 98.09 97.62
2 96.92 96.92 93.08 91.15 2 98.57 97.62 98.09 95.24
3 94.62 92.31 91.54 90.62 3 98.57 98.09 98.09 96.67
4 94.62 95.38 94.62 92.69 4 98.57 98.09 97.62 96.67
5 96.15 93.85 93.08 94.23 5 99.52 97.62 97.62 96.19
6 96.15 92.31 93.85 92.69 6 99.05 9714 97.62 96.19
7 96.15 93.85 93.85 92.62 7 99.52 98.57 97.62 98.10
8 96.92 96.92 92.31 90.62 8 99.52 97.14 97.62 96.67
9 96.15 93.85 93.85 92.69 9 99.52 98.57 98.09 96.19
10 96.92 96.92 93.08 90.62 10 98.57 98.57 98.09 96.67

TaBLE 10: Classification accuracy of 10 runs of 10-fold cross valida-
tion for proposed method, bagging, AdaBoost, and random forest
on ORLIOP.

Proposed Bagging AdaBoost Random forest
1 100 100 100 95
2 100 100 100 98
3 100 100 100 97
4 100 100 100 95
5 100 100 100 97
6 100 100 100 95
7 100 100 100 97
8 100 100 100 97
9 100 100 100 96
10 100 100 100 98

5. Conclusion

In this paper, we presented a feature partitioning-based
ensemble method to better classify high-dimensional data. In
our method, each base classifier was trained from different
feature space by dividing redundant features into different

TaBLE 12: Classification accuracy of 10 runs of 10-fold cross valida-
tion for proposed method, bagging, AdaBoost, and random forest
on PIX10P.

Proposed Bagging AdaBoost Random forest
1 99 97 97 96
2 99 96 96 96
3 99 96 98 95
4 99 97 96 96
5 99 97 98 97
6 99 97 97 95
7 99 98 97 96
8 99 97 98 95
9 99 97 97 95
10 99 97 96 96

subsets. SVM was used as the base classifier and the results
of each SVM were merged by a majority voting method. For
the experiments, we used six publicly available datasets in
two different domains. Through the experiments, we demon-
strated that dividing the redundant features into several parts
for ensemble construction can achieve better performance



Mathematical Problems in Engineering

TaBLE 13: Classification accuracy of 10 runs of 10-fold cross valida-
tion for proposed method, bagging, AdaBoost, and random forest
on Leukemia.

Proposed Bagging AdaBoost Random forest
1 98.61 95.83 97.22 91.67
2 100 94.44 97.22 93.06
3 98.61 95.83 97.22 91.67
4 98.61 95.83 97.22 90.28
5 98.61 91.67 95.83 93.06
6 98.61 94.44 97.22 94.44
7 98.61 94.44 97.22 93.06
8 98.61 93.06 95.83 91.67
9 98.61 93.06 97.22 93.06
10 98.61 94.44 95.83 97.22

TaBLE 14: Classification accuracy of 10 runs of 10-fold cross valida-
tion for proposed method, bagging, AdaBoost, and random forest
on Prostate.

Proposed Bagging AdaBoost Random Forest
1 95.1 91.18 91.18 89.22
2 95.1 92.16 92.16 90.20
3 95.1 93.14 92.16 90.20
4 94.12 91.18 89.22 87.25
5 94.12 91.18 91.18 85.29
6 93.14 92.16 92.16 90.20
7 95.1 91.18 91.18 89.22
8 96.08 92.16 9118 90.20
9 95.1 93.14 92.16 90.20
10 95.1 91.18 91.18 91.18

for classification on high-dimensional data and that our
proposed algorithm has higher prediction accuracies than
other ensemble classification algorithms.

Appendix

See Tables 9, 10, 11, 12, 13, and 14.
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