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ABSTRACT 

 
Segmentation of three-dimensional anatomical brain images into tissue classes has applications in both clinical and 
research settings. This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional 
active contour implemented with a level set framework for automated segmentation of brain MRIs. The segmentation 
algorithm performs an optimal partitioning of three-dimensional data based on homogeneity measures that naturally 
evolves to the extraction of different tissue types in the brain. Random seed initialization was used to speed up 
numerical computation and avoid the need for a priori information. This random initialization ensures robustness of the 
method to variation of user expertise, biased a priori information and errors in input information that could be 
influenced by variations in image quality. Experimentation on three MRI brain data sets showed that an optimal 
partitioning successfully labeled regions that accurately identified white matter, gray matter and cerebrospinal fluid in 
the ventricles. Quantitative evaluation of the segmentation was performed with comparison to manually labeled data 
and computed false positive and false negative assignments of voxels for the three organs.  We report high accuracy 
for the two comparison cases. These results demonstrate the efficiency and flexibility of this segmentation framework 
to perform the challenging task of automatically extracting brain tissue volume contours. 
 
Keywords:  Level set, brain MRI, segmentation, multi-phase. 

1. INTRODUCTION 

Segmenting three-dimensional anatomical brain images into tissue classes has applications in both clinical and research 
settings.  As a clinical example, segmentation can provide volumetric quantification of cortical atrophy and thus aid in 
the diagnosis of degenerative diseases.  These volumetric measurements apply to the research setting as well, where 
segmentation can also be used to define regions of interest for quantifying the physiological responses measured with 
fMRI or PET acquired on the same patients and co-registered with the MRI data.  
 
This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional active contour 
implemented with a level set framework for automated segmentation of brain MRIs. Level set implementation of 
surface propagation offers the advantage of easy initialization, computational efficiency, and the ability to capture deep 
sulcal folds. In recent years, several works have focused on using level set methods for MRI brain segmentation.  
Zeng et al.1 proposed a segmentation method of the cortex from 3-D MR images using coupled level set surface 
propagation, assuming a constant thickness range of the cortical mantle. By evolving two embedded surfaces 
simultaneously, each driven by its own image-derived information while within a certain distance range from each 
other, an efficient segmentation of the cortical gray matter was achieved. Recently, Yang2 et al. proposed a new 
method for 3D MR image segmentation based on the combination of joint-prior shape appearance models with a level 
set deformable model. This method was motivated by the observation that the shapes and gray levels variations in an 
image had some consistent relations. Building a MAP shape-appearance prior model provided some configurations and 
context information to assist the segmentation process. The model was formulated in a level set framework rather than 
using landmark points for parametric shape description. Goldenberg et al.3 formulated their 3D MR image 
segmentation problem as a geometric variational problem for propagation of two coupled bounding surfaces, similar to 
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Zeng et al.1 . The authors put forward an efficient numerical scheme for the implementation of a geodesic active 
surface model, where a surface evolution was performed.  
 
In this work, we have implemented the multi-phase level set framework first proposed by Chan and Vese4. This 
framework simultaneously deforms coupled level set functions without any prior models or geometric constraints. A 
global partition of the image data is performed into 2N homogenous areas for N level set curves, solely based on 
average gray values measures. Initial experiments are presented showing that MRI brain data display sufficient 
homogeneity to exhibit reliable segmentation performance on cortical structures using simple homogeneity measures. 
Quantitative evaluation of the segmentation was performed with comparison to manually labeled data and with 
computated false positive and false negative assignments of voxels for the three cortical structures: white matter (WM), 
gray matter (GM) and cerebrospinal fluid (CSF) in the ventricles. 

2. METHOD 

The segmentation method used in this paper is based on the Mumford-Shah functional and the implicit deformable 
model proposed by Chan and Vese4. 

2.1. Mumford-Shah segmentation functional 
Mumford and Shah proposed a segmentation method based on a variational framework in their pioneering paper5 in 

1989. Let Ω  be a bounded open set of NR , N =2,3, and 0u  an  initial image data (in 2D or 3D) define on Ω . 

Segmentation of the image into homogeneous objects is performed via the search for a pair of objects ( ,u K ), where 

K ⊂ Ω  is a set of discontinuities (i.e. contours), and u is a piecewise smooth approximation of 0u . The optimal 

definition for this pair of objects is performed via minimization of an energy functional ( , )F u K , such that u varies 

smoothly within the connected components of \ KΩ , and rapidly or discontinuously across K . The energy 
functional is defined in 2D as: 

 ( )
2 2 1

0

\

,MS

K K

F u K u u dx u dx dHµ υ
Ω Ω

= − + ∇ +∫ ∫ ∫  (1) 

where 0µ > , 0υ > are fixed parameters. The first term in this functional ensures that u is good approximation of 

0u  , the second term ensures that u is smooth and the third term ensures that the discontinuities K  have minimal 

length,  using the one-dimensional Hausdorff measure 1H . In their seminal paper5, the authors demonstrated the 
existence of a minimizer for this functional such that the edges of the image are represented in the discontinuity set K  

as the union of a finite set of 1C embedded curves.  
 
A reduced case of the above model is obtained by restricting the segmented image u to the piecewise constant 

functions, i.e. u = constant ic inside each connected component iΩ . Then the segmentation problem, called the 

“minimal partition problem”, is solved via minimization of the following functional: 

 
2 1

0 0( , )

i

MS
i

i K

F u K u c dx dHυ
Ω

= − +∑ ∫ ∫ . (2) 

Again, υ is a positive parameter, having a scaling role. In this case, for a fixed K , the energy in Equation (2) is 

minimized through computation of the variables ic  by setting ic = mean ( 0u ) in iΩ .  

2.2. Active contours without edges 
 
A new energy functional for homogeneity-based segmentation derived from the work of Mumford and Shah was 
proposed by Chan and Vese6. Let us assume that a given image, 0u  is formed by two regions of approximate 
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piecewise constant intensities, of distinct values 0
iu and 0

ou . Let us denote the boundary between the two regions by 

0C . Given an initial curve C  defined on the image, the following “fitting energy” can be minimized to segment the 

two regions: 
  

 
2 2

1 2 0 1 0 2

( ) ( )

( ) ( )
inside C outside C

F C F C u c dx u c dx+ = − + −∫ ∫ . (3) 

 
The parameters 1c , 2c  correspond to the mean values of the image inside and outside the curve C . As illustrated in 

Figure 1, the curve 0C  that corresponds to the boundary of the object minimizes this energy functional: 

 

 ( ) ( ){ } ( ) ( )1 2 1 0 2 0inf 0
C

F C F C F C F C+ = = +  (4) 

 
 

C 0

iu  
0

ou
C0 

 
 

Figure 1. Segmentation of a piecewise constant image with an object and a background. Minimization of the 
fitting energy is achieved when the curve is on the boundary of the object. 

 
As a special case of the Mumford-Shah functional, Chan and Vese proposed an active contour model derived from this 
energy functional with the addition of two regularizing terms to constrain the length of C and the area inside C : 
 

 ( )( ) ( )( )
( ) ( )

2 2
1 2 1 0 1 2 0 2( , , )

inside C inside C

F C c c length C area insideC u c dx u c dxµ υ λ λ= + + − + −∫ ∫  (5) 

 
where 1 20, 0, , 0µ υ λ λ≥ ≥ > are fixed parameters.  

 
This energy functional can be extended to the segmentation of multiple homogeneous objects in the image by using 
several curves { }1 2, ,..., iC C C . In the case of two curves we use the following fitting energy. 

 

 
( )
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, , , , ,

( ) ( ) ( ) ( )
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insideC outsideC insideC outsideC

F C C c c c c u c dx u c dx u c dx u c dx

length C length C area insideC area insideC

λ λ λ λ

µ µ υ υ

= − + − + − + −

+ + + +

∫ ∫ ∫ ∫
 (6) 

 
Minimization of this energy functional deforms simultaneously two curves and identifies four homogeneous areas 
defined by the intersection of the two curves as illustrated in Figure 2.  
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Figure 2. Partitioning of an image into four areas with two curves 1 2,C C . 

2.3. Level set formulations of minimization problems 
 
Minimization of the functional in Equations (5) and (6) is performed with a level set implementation. The level set 
framework, introduced by Osher and Sethian7, provides an effective implicit representation for evolving curves and 
surfaces, which has found many applications, as it allows topological changes, such as merging and breaking.  
 
A given curve C (being now the boundary of an open set ω∈Ω ) is represented implicitly, as the zero level set of a 
scalar Lipschitz functionφ : RΩ → (called level set function), such that: 

 

( , ) 0 ,

( , ) 0 \ ,

( , ) 0 .

x y in

x y in

x y on

φ ω
φ ω
φ ω

<
 > Ω
 = ∂

 (7) 

Given the curve C  embedded in a level set functionφ , its associated Heaviside function H and Dirac functionδ  are 

defined respectively as: 

 
0, 0,

( )
1, 0.

if
H

if

φ
φ

φ
≥

=  <
 (8) 

 

 ( ) ( )
d

H
d

δ φ φ
φ

=  (9) 

Using these two functions, different components of the functional in Equation (5), parameterized with the contour 
curve C , can be reformulated with the level functionφ  as: 

− Length of the curve C : ( ) ( )0 ( )Length C Length H dxφ φ
Ω

= = = ∇∫ ,  

− Area inside the curve C : ( ) ( )0 ( )Area C Area H dxφ φ
Ω

= < = ∫ , 

− Average of 0u  inside the curve C : 
2

0 1 ( )u c H dxφ
Ω

−∫ , 

− Average of 0u outside the curve C : ( )( )2

0 2 1u c H dxφ
Ω

− −∫ . 

The single-curve functional in Equation (5) can then be reformulated with the variableφ  and integrals defined on the 

entire domain Ω : 
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Finally the mean values 1c and 2c , are formulated as a function of ( )H φ as: 
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−
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∫

∫
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(11) 
 
The Euler-Lagrange equation of this system is derived by keeping 1c and 2c fixed, and minimizing 1 2( , , )F c cφ  with 

respect toφ  as: 

 ( ) 2 2

1 0 1 2 0 2div u c u c
t ε
φ φδ φ µ υ λ λ

φ
  ∂ ∇= − + − − −   ∂ ∇   

. (12) 

 
In our implementation we kept the Heaviside function negative inside the contour explaining the modification of the 
signs of the 1λ and 2λ terms compared to the paper of Vese4. 

As we mentioned, this segmentation framework can be extended to the detection of multiple objects via the 
introduction of multiple level set functions { }1 2, ,...φ φ and the computation of mean data values in areas of constant 

values defined via the combination of their Heaviside functions: ( ) ( )( )1 2 ...H Hφ φ× × . In this study we implemented 

the segmentation functional with two level set functions generating four phases defined with mean values defined as:  
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 The Euler-Lagrange systems for the two level set functions are defined as: 
 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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We present in the next section some details on the numerical implementation for the minimization of this system of 
equations. 

2.4.  Implementation of the four-phase level set segmentation method  
Segmentation is performed via iteration on the Euler-Lagrange system to deform the level set front until convergence to 
a stable position. The iterative scheme is therefore implemented with discretization of the system of equations as 
follows:  

(1) Initialize system for time n=0, with 0
1, , ,i j kφ and 0

2, , ,i j kφ  defined as the distance functions from an initial set of 

curves. 
(2) For time n>0, while the system is unstable: 

a. Computation of the average values in the four phases 11
nc , 10

nc , 01
nc and 00

nc . 

b. Computation of the curvature terms. 
c. Computation of the density terms. 

d. Computation of 1
1, , ,
n
i j kφ + and 1

2, , ,
n

i j kφ + . 

e. Evaluation of the stability of the system. 
f. Iteration at time n+1 if system is not stable.  

(3) When system is stable: 
a. Extract the four phase binary segmented masks as the combination of inside and outside areas testing 

the sign of the level set functions to separate the inside and outside regions. 
 
In our implementation, the segmentation was initialized with two level set functions defined as the distance function 
from two sets of initial curves. The curves were defined as 64 cylinders centered at regularly spaced seed locations 
across the entire data volume. The two sets of cylinders were slightly shifted from each other as illustrated in Figure 3.  

      
 (a) (b) 

Figure 3: Initialization of the four-phase level set segmentation method. (a) Original MRI slice with two sets of 
circles initialized over the entire image. (b) Corresponding partitioning of the image domain into four phases 
defined by the overlap of the two level set functions obtained from the circle shape. 

 
Note that such initialization does not use any a priori information on the location of particular tissues or on the 
anatomy of the brain and does not require manual input by the user. 
 
The level set algorithm was implemented with a semi-implicit scheme proposed by Chan and Vese6 but extended to 
three dimensions. This implicit scheme provides unconditional stability for any temporal and spatial discretization 
parameters.  

2.5. Segmentation post processing with morphological operators  
Initial experiments on clinical data showed potential misclassification of tissue labels into adjacent phases at pixels 
located at the interface between two structures. This type of error is due to the fact that the segmentation method 
performs a global segmentation of the data and does not apply any constraints on the size or the shape of the tissues 
segmented so that misclassification of pixels might cancel each other in the homogeneity measure. To correct for these 
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errors we designed a simple post-processing scheme that corrected interface pixel assignments. After the level set 
segmentation was completed, WM, GM and CSF structures, corresponding to separate phases, were saved as binary 
volumes. These volumes were then used as masks applied to the original data and a Gaussian fit of the gray levels of 
each phase was performed. A fit of the gray-level histograms to a Gaussian distribution was performed for each 
structure. First, the GM mask was dilated (to correct for the under segmentation of this thin structures). Based on the 
normalized Gaussian fitted distribution, a threshold value was experimentally set between 0 and 1 corresponding to an 
interval of gray values to consider as inside the tissue of interest. Contour pixel with gray values inside this interval 
were kept within the GM phase, while pixels with gray values outside the interval were removed from the phase and 
assigned to the adjacent WM phase. This process was iterated until no new point was added in the GM phase. A similar 
process was then applied to the CSF phase with dilation of the binary mask. Finally, a 3-D connectivity algorithm was 
performed to correct for spurious isolated pixels in the three phases. This simple post-processing approach has provided 
very robust performance on the three clinical MRI cases segmented for this study.  

3. DATA 

3.1. MRI Data Sets 
We applied our segmentation to one phantom and three MRI brain volumes. The three T1-weighted MRI data sets were 
acquired on healthy young volunteers. The MRI data sets were of size (256×256×73) with a 3mm slice thickness and 
0.86mm in-plane resolution. These data sets have been previously labeled via a labor-intensive (40 hours per brain) 
manual method in which expert raters with extensive training in neuro-anatomy choose histogram thresholds on locally 
hand-drawn regions of interest. This labeled data was used as a ground truth for evaluation of the segmentation 
accuracy. 
 
MRI data were pre-processed to remove all non-brain tissue by using the manually labeled data sets as binary masks.  
Before segmenting the data sets, we evaluated the homogeneity of the three main tissues targeted for segmentation: 
WM, GM and CSF. Using the labeled data as a mask, we computed the mean and variance statistics of the gray level 
distribution for each tissue within axial slices. These statistical measurements were performed on axial slices across the 
entire data volumes for the three MRI cases available for the study. 
 
Results, illustrated in 
Figure 4 showed very stable estimates of mean and variance values for each tissue type across the entire volumetric 
data set. Average values of the slice statistics are reported in Table 1 for the three cases.  
 

Mean Standard deviation Tissue 
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

WM 101.12 98.65 97.29 7.59 6.92 7.86 
GM 73.61 71.18 69.99 9.40 10.36 8.62 
CSF 36.21 40.00 38.45 13.55 15.52 13.92 

Table 1. Statistics of tissue gray scale values within entire MRI volumes for the mean and standard deviation, 
computed for the three cases. 

These results confirmed our assumption that a homogeneity-based segmentation method could be applied to these MRI 
data sets to extract the three main tissue types. 
A Gaussian fit was performed on the histogram of the entire gray level distribution of the three brain tissues for each 
case.  Results for our sample cases are illustrated in Figure 4. We observed that the three tissue types have well 
separated average values suggesting that the assumption of homogeneity and separability of gray scale values is valid 
for each patient and each tissue type. The agreement between the volume histograms and the fitted Gaussian 
distribution was calculated with a chi-squared test. Results for the different tissues did not show a systematic agreement 
between the data and the Gaussian fit, at level 0.05, except for the gray matter. Therefore, despite reasonable agreement 
between the data and the fitted Gaussian distribution, we need further investigation before being able to introduce 
additional constraints based on a priori Gaussian statistics to the method as proposed for example by Baillard et al.8 . 
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Figure 4. Statistics from (a-d) WM, (b-e) GM and (c-f) CSF gray levels. (a-c) Average values on consecutive 

slices within three MRI data sets represented with different line styles for the three MRI cases. (d-f) Fit of the 
volume histograms of case 1 to a Gaussian distribution. 

 
We point out here that because the method only uses two level set functions, it is limited to the extraction of four 
homogeneous phases, corresponding to four tissue types at most. There are several other non-cortical structures in the 
brain such as the thalamus, including the caudate, the putamen, the pallidum, the hippocampus and the amygdala. 
These structures are important to extract for detection of neurological diseases such as schizophrenia or Alzheimer's 
disease. As shown in a recent study for manual labeling of whole brain MRI 9 data, these structures have greatly 
overlapping grayscale distributions. This observation explains the failure of simple thresholding methods to perform 
efficient extraction of these individual more subtle structures. On the other hand, as long as the histograms show 
reasonable compactness (with a small standard deviation), the homogeneity-based proposed method should be capable 
of segmenting them into separate phases. For the present study we only focused on cortical structures. Subcortical 
structures were therefore removed prior to segmentation using again the manually labeled data to mask them. For 
future applications of the method to data sets without the benefit of manually labeled data we can either use the 
labeling software used by clinicians to remove these structures or use an in-house “intelligent manual segmentation 
tool” such as the one designed by Barret et al.10.    

Proc. of SPIE Vol. 5370     533

Downloaded from SPIE Digital Library on 25 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms



 

4. RESULTS 

4.1. Level set segmentation set up 
The level set segmentation was initialized for the phantom and three MRI cases with two sets of regularly spaced 
cylinders as illustrated in Figure 3. A stable behavior of the four phases was observed after 10 iterations.  
Results of the segmentation on the phantom and on one clinical case are presented in Figure 5 for a single axial slice 
for the four phases. We observed very close visual correspondence between the volumes and the labeled data for the 
three structures of interest selected with the ground truth.  
The results demonstrate the inherent ability of the level set framework to perform topology splitting and merging of the 
evolving front, enabling the identification of separate structures within a single phase (such as the first three ventricles 
for the CSF) that exist as different spatial objects.  

4.2. Quantitative assessment of segmentation performance 
Segmentation errors were measured using the recent methodology from Udupa 11 for comparison of segmentation 
methods. Accuracy of the object contours obtained with the proposed level set segmentation method, referred to 
respectively as LS  and LSC , is evaluated by comparing the results to our ground truth segmentation of each object, 

using manually labeled contours, referred to as MLC . The overlap and difference between the two contours is 

measured via counting of true positive (TP), false positive (FP) and false negative (FN) pixels. These quantities are 
reported as volume fractions (VF) of the true delineated object volume MLC : 

- FNVF indicates the fraction of tissue defined in MLC  that was missed by the segmentation method LS .  

- FPVF denotes the fraction of tissue defined in LSC  that is falsely identified by the segmentation 

method LS .  
- TPVF describes the fraction of the total amount of tissue in LSC  which overlaps with the true object 

MLC .  

 
We report in the following paragraphs error measurements for segmentation on phantom and clinical MRI data sets.  

4.3. Results for segmentation of MRI phantom 
Segmentation results for the MRI phantom are illustrated in Figure 5 for one axial slice, displaying the four phases 
extracted by the level set method. 
 

 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 5. Phantom results of a 4 phase segmentation (a) Original image with two variable curves; (b) 
Synthesized image with four phases; (c) ~(f) Phase c11 , c10 , c01 and c00 respectively. 
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Tissue FNVF FPVF TPVF 

WM 0 0 100% 
GM 0 0.2% 100% 
CSF 15.4% 0 84.6% 

Table 2: Error measurements for segmentation of MRI phantom. 

This experiment showed excellent performance of the method for piecewise constant objects dividing the data space 
into four phases. In particular the experiment demonstrated the ability of the method to extract highly convoluted 
surfaces and to split a single phase into multiple objects. We also used this phantom to tune the parameters of the 
segmentation method set to: 

8
1 2 3 4

4

0.01, 0, 4.10 Volume_size / Diagonal_distance

10 , 1.t x y z

λ λ λ λ υ µ −= = = = = = ×

∆ = ∆ = ∆ = ∆ =
 

The parameter associated with the curvature term is defined proportional to the data volume size (Volume_size) and 
inversely proportional to the diagonal distance of the volume data (Diagonal_distance). By doing so we consider this 
diagonal distance as the unitary distance of our domain of definition Ω . Setting the constant speed term υ  to zero 
eliminates the use of a constant inflating force on the model. This type of constant force should be used with caution as 
it can override the homogeneity-based speed term when driving the deformable contour.     

4.4. Results for segmentation of brain MRI  
We present in Figure 6 a three-dimensional rendering of each segmented structure for the three MRI clinical cases 
segmented for this study. Visual rendering of the three cortical structures confirmed the overall high performance of the 
multi-phase segmentation method to extract homogenous objects that correspond to distinct anatomical tissues. The 
segmentation method was able to handle multiple challenges without any a priori information or shape constraints that 
include the extraction of highly-convoluted white matter surfaces, the extraction of separate ventricular structures for 
the CSF, and handling of different volume sizes of the three structures in a simultaneous segmentation scheme. 
 
Error measurements for the segmentation of the three clinical cases are reported in Table 3. These results report overall 
clinically satisfactory (useful) performance of the proposed segmentation method.  
 

FNVF FPVF TPVF 
Tissue 

Case1 Case2 Case3 Case1 Case2 Case3 Case1 Case2 Case3 
WM 6.6% 4.9% 5.5% 5.9% 10.1% 5.9% 93.4% 95.1% 94.5% 
GM 5.3% 6.5% 5.1% 6.5% 3.6% 5.4% 94.7% 93.5% 94.9% 
CSF 24.4% 25.5% 30.9% 3.2% 1.4% 3.5% 75.6% 74.5% 69.1% 

Table 3: Error measurements for segmentation of clinical MRI cases. 

Significantly higher FNVF errors were observed for the CSF, corresponding to under segmentation of the ventricles, 
whose pixels were assigned to white matter. Very low resolution at the ventricle borders can explain in part this result. 
On the other hand, labeling of the MRI data for the ventricle can also bear some error as localizations of its borders is 
difficult even for an expert performing manual tracing. In that context, Kikinis et a.l12 reported a variation in 
volumetric measurements of manual observers in the order of 15% for WM, GM and CSF. 
We compared our error measurements to results reported by Zeng et al.1 and Niessen et al.13. In Zeng et al.1, the 
authors tested their algorithm for the segmentation of frontal lobes on seven high-resolution MRI datasets from a 
randomly chosen subset of young autistic and control adult subjects. They ran a coupled-surfaces level set algorithm to 
isolate the brain tissue and segment the cortex. The average TP and FP volume fractions for the cortical gray matter in 
the frontal lobe were 86.7% and 20.8%. In Niessen et al.13, a ‘hyperstack’ segmentation method, based on multiscale 
pixel classification, was tested for 3D brain MRI segmentation. A supervised segmentation framework with manual 
post-editing was applied to a probabilistic brain phantom for estimation of segmentation error. First, a binary 
segmentation of the brain phantom was performed to evaluate the minimal segmentation error due to partial volume 
effects. The study reported a volume fraction of misclassified pixels (FP+FN) around 20% for WM, GM and CSF. 
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‘Hyperstack’ segmentation was applied with and without a probabilistic framework. Optimal (FP+FN) volume fraction 
errors were obtained with the probabilistic version reporting: 10% for WM, 21% for GM, and 25% for CSF. 
 

 

 

 

 
  

 (a) (b) (c) 
 

Figure 6: Three-dimensional rendering of segmented volumes for: (a) WM, (b) GM and (c) CSF of the three 
MRI data sets (one shown per row). 

5. CONCLUSION 

This paper presented a novel clinical application and quantitative evaluation of a recently introduced multiphase level-
set segmentation algorithm using T1-weighted brain MRIs. The segmentation algorithm performs an optimal 
partitioning of a three-dimensional data set based on homogeneity measures that naturally evolves to the extraction of 
different tissue types in the brain. Experimentation on three MRI brain data sets showed that the optimal partitioning 
successfully identified regions that accurately matched WM, GM and CSF areas. This suggests that by combining the 
segmentation results with fiducial anatomical seed points, the method could accurately extract individual tissue types 
from these tissues. Random seeds for initialization was used to speed up the numerical calculation and avoid the need 
for a priori information input. This random initialization ensured robustness of the method to variation of user 
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expertise, biased or erroneous input information that could be influenced by variation in image quality or user 
expertise.  
Tests on three cases demonstrated the efficiency and flexibility of this segmentation framework to perform the 
challenging task of automatically extracting brain tissue volume contours. Future work will include post-processing of 
the segmented volumes to extract individual organs as well as incorporation of available co-registered PET data to 
improve the segmentation performance by running the algorithm on vectorial-type data. 
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