19 research outputs found

    Novel control approaches for the next generation computer numerical control (CNC) system for hybrid micro-machines

    Get PDF
    It is well-recognised that micro-machining is a key enabling technology for manufacturing high value-added 3D micro-products, such as optics, moulds/dies and biomedical implants etc. These products are usually made of a wide range of engineering materials and possess complex freeform surfaces with tight tolerance on form accuracy and surface finish.In recent years, hybrid micro-machining technology has been developed to integrate several machining processes on one platform to tackle the manufacturing challenges for the aforementioned micro-products. However, the complexity of system integration and ever increasing demand for further enhanced productivity impose great challenges on current CNC systems. This thesis develops, implements and evaluates three novel control approaches to overcome the identified three major challenges, i.e. system integration, parametric interpolation and toolpath smoothing. These new control approaches provide solid foundation for the development of next generation CNC system for hybrid micro-machines.There is a growing trend for hybrid micro-machines to integrate more functional modules. Machine developers tend to choose modules from different vendors to satisfy the performance and cost requirements. However, those modules often possess proprietary hardware and software interfaces and the lack of plug-and-play solutions lead to tremendous difficulty in system integration. This thesis proposes a novel three-layer control architecture with component-based approach for system integration. The interaction of hardware is encapsulated into software components, while the data flow among different components is standardised. This approach therefore can significantly enhance the system flexibility. It has been successfully verified through the integration of a six-axis hybrid micro-machine. Parametric curves have been proven to be the optimal toolpath representation method for machining 3D micro-products with freeform surfaces, as they can eliminate the high-frequency fluctuation of feedrate and acceleration caused by the discontinuity in the first derivatives along linear or circular segmented toolpath. The interpolation for parametric curves is essentially an optimization problem, which is extremely difficult to get the time-optimal solution. This thesis develops a novel real-time interpolator for parametric curves (RTIPC), which provides a near time-optimal solution. It limits the machine dynamics (axial velocities, axial accelerations and jerk) and contour error through feedrate lookahead and acceleration lookahead operations. Experiments show that the RTIPC can simplify the coding significantly, and achieve up to ten times productivity than the industry standard linear interpolator. Furthermore, it is as efficient as the state-of-the-art Position-Velocity-Time (PVT) interpolator, while achieving much smoother motion profiles.Despite the fact that parametric curves have huge advantage in toolpath continuity, linear segmented toolpath is still dominantly used on the factory floor due to its straightforward coding and excellent compatibility with various CNC systems. This thesis presents a new real-time global toolpath smoothing algorithm, which bridges the gap in toolpath representation for CNC systems. This approach uses a cubic B-spline to approximate a sequence of linear segments. The approximation deviation is controlled by inserting and moving new control points on the control polygon. Experiments show that the proposed approach can increase the productivity by more than three times than the standard toolpath traversing algorithm, and 40% than the state-of-the-art corner blending algorithm, while achieving excellent surface finish.Finally, some further improvements for CNC systems, such as adaptive cutting force control and on-line machining parameters adjustment with metrology, are discussed in the future work section.It is well-recognised that micro-machining is a key enabling technology for manufacturing high value-added 3D micro-products, such as optics, moulds/dies and biomedical implants etc. These products are usually made of a wide range of engineering materials and possess complex freeform surfaces with tight tolerance on form accuracy and surface finish.In recent years, hybrid micro-machining technology has been developed to integrate several machining processes on one platform to tackle the manufacturing challenges for the aforementioned micro-products. However, the complexity of system integration and ever increasing demand for further enhanced productivity impose great challenges on current CNC systems. This thesis develops, implements and evaluates three novel control approaches to overcome the identified three major challenges, i.e. system integration, parametric interpolation and toolpath smoothing. These new control approaches provide solid foundation for the development of next generation CNC system for hybrid micro-machines.There is a growing trend for hybrid micro-machines to integrate more functional modules. Machine developers tend to choose modules from different vendors to satisfy the performance and cost requirements. However, those modules often possess proprietary hardware and software interfaces and the lack of plug-and-play solutions lead to tremendous difficulty in system integration. This thesis proposes a novel three-layer control architecture with component-based approach for system integration. The interaction of hardware is encapsulated into software components, while the data flow among different components is standardised. This approach therefore can significantly enhance the system flexibility. It has been successfully verified through the integration of a six-axis hybrid micro-machine. Parametric curves have been proven to be the optimal toolpath representation method for machining 3D micro-products with freeform surfaces, as they can eliminate the high-frequency fluctuation of feedrate and acceleration caused by the discontinuity in the first derivatives along linear or circular segmented toolpath. The interpolation for parametric curves is essentially an optimization problem, which is extremely difficult to get the time-optimal solution. This thesis develops a novel real-time interpolator for parametric curves (RTIPC), which provides a near time-optimal solution. It limits the machine dynamics (axial velocities, axial accelerations and jerk) and contour error through feedrate lookahead and acceleration lookahead operations. Experiments show that the RTIPC can simplify the coding significantly, and achieve up to ten times productivity than the industry standard linear interpolator. Furthermore, it is as efficient as the state-of-the-art Position-Velocity-Time (PVT) interpolator, while achieving much smoother motion profiles.Despite the fact that parametric curves have huge advantage in toolpath continuity, linear segmented toolpath is still dominantly used on the factory floor due to its straightforward coding and excellent compatibility with various CNC systems. This thesis presents a new real-time global toolpath smoothing algorithm, which bridges the gap in toolpath representation for CNC systems. This approach uses a cubic B-spline to approximate a sequence of linear segments. The approximation deviation is controlled by inserting and moving new control points on the control polygon. Experiments show that the proposed approach can increase the productivity by more than three times than the standard toolpath traversing algorithm, and 40% than the state-of-the-art corner blending algorithm, while achieving excellent surface finish.Finally, some further improvements for CNC systems, such as adaptive cutting force control and on-line machining parameters adjustment with metrology, are discussed in the future work section

    Arc-Length Parameterized NURBS Tool Path Generation and Velocity Profile Planning for Accurate 3-Axis Curve Milling

    Get PDF
    In modern industrial CNC (Computer Numerical Control) machining processes, the pursuing of higher accuracy and efficiency has always been one of the most important tasks to be discussed and studied. A lot of proposed algorithms are developed in order to optimize the machining performance in either of the above focused domains. Nevertheless, there is forever a trade-off between gaining less machining error and providing higher feed rate. As for machining a free-shaped curve (e.g., Bezier curves, B-splines and NURBS) in a three-dimensional space, a better manner to balance out the aforementioned trade-offs turns out to be even more critical and essential. The conventional iterative function used for tool path generation could cause feed rate fluctuation during the actual machining, and it thus might lead to failure on constraining the error within the machining accuracy requirement. Another potential problem occurs when the machining process comes across into a relatively high curvature segment with the prescribed high feed rate, due to the machine axial acceleration limit, the machine may not be able to maintain the tool tip trajectory within the error tolerance. Therefore, a new approach to NURBS tool path generation for high feed rate machining is proposed. In this work, several criterions are set for checking the viability of the prescribed feed rate and adjusting it according to the actual shape of the objective curve and the capability of the machine. After the offline feed rate viability check and readjustment, a new iterative algorithm based on the arc-length re-parameterized NURBS function would be implemented to calculate the tool path in real-time. By using this proposed method, the feed rate fluctuation is diminished and the overall efficiency of the machining process would have been optimized under the condition of accuracy guaranteed

    OPTIMIZATION OF PRODUCTION LINES USING ADVANCED CNC INTERPOLATION METHODS AND DISTRIBUTION OF CONTROL LOGIC

    Get PDF
    These days, information technology really makes the difference in manufacturing industry. High performance computers allow to realize control algorithms of increasing complexity and high speed reliable computer networks allows the communication between different devices and realization of advanced distributed control applications. In this thesis, we focus on the optimization of the production lines using two different approaches. First we focus on the improvement of a single workstation of the production line, then we focus on the improvement of the interactions between various stations of the production line.. A typical workstation that can be found in a production line is the machine tool for manufacturing workpieces. Advances in manufacturing technologies allow to increase quality and efficiency in production lines, but also ask for new and increasing requirements on the motion planning and control systems. The increase of CPU processing power has permitted, in traditional CNC systems, the introduction of NURBS interpolation capabilities, thus determining a further increase in machining quality and efficiency. This has posed new and still unsolved issues, such as the need to satisfy multiple opposite constraints like limiting chord error, acceleration and jerk and offering real-time guarantees. In addition, the ability of privileging the production throughput by relaxing one or more of the previous constraints in a simple way has emerged as another requirement of modern manufacturing plants. Nevertheless, none of the existing NURBS interpolators have these characteristics. In this thesis, we propose a NURBS interpolator that is able to satisfy all the manufacturing technology requirements and is able to respect, thanks to its bounded computational complexity, the position control real-time constraints. Such interpolator is easily reconfigurable, i.e. it can relax some of the constraints and can be adapted in order to include constraints that were not originally considered. Performances of the proposed algorithm have been evaluated both by simulations and by real milling experiments. However, improvements in productivity of a the machine tool can be neutralized if the various workstations of the production line are not properly synchronized. Distributed control allows to improve the coordination of different workstations but its design is challenging. The IEC 61499 standard has been developed to ease the modeling and design of distributed control systems, providing advanced concepts of software engineering (such as abstraction, encapsulation, reuse) to the world of control engineering. The introduction of such standard in already existing control environments poses challenges, since the widespread IEC 61131-3 programming standard is not compatible with the new standard. In order to solve this problem, this thesis presents an architecture that permits to integrate modules of the two standards, allowing to exploit the benefits of both. The proposed architecture is based on coexistence of control logic of both standards. Each standard interacts with some particular interfaces that encapsulate information and functionalities to be exchanged with the other standard. A methodology of integration of 61131-3 modules in a 61499 distributed solution based on such architecture is also developed, and it is described via a case study to prove feasibility and benefits

    A Novel Approach for NURBS Interpolation with Minimal Feed Rate Fluctuation Based on Improved Adams-Moulton Method

    Get PDF
    In order to reduce the feed rate fluctuation of interpolation, a novel approach for NURBS interpolation with minimal feed rate fluctuation based on improved Adams-Moulton (IAM) method is proposed. At first, the representation and calculation of NURBS curve interpolation are described. Then, the constraints of feeding step length are firstly given out to calculate the minimal hoping feeding step length and the detailed IAM method of NURBS curve interpolation is presented. Finally, simulations and experiments are carried out to verify the feasibility and applicability of proposed IAM method

    Analytical and experimental study of feed rate in high-speed milling

    Get PDF
    In the context of high-speed milling (HSM), during the machining process dynamic machine response has to be identified. To achieve this, we have to calculate the feed rate evolution in linear and circular interpolation according to dynamic performance of machine. In addition to that, actual trajectory for transition passages between two interpolations must be estimated with take into account of specific machining tolerances. This article proposes a model of machine tool behavior for a tool path with linear and circular interpolations and machining cycle time prediction. The method involves subdividing the trajectories into elementary geometries according to the type of interpolation (circular or linear). At points where different trajectories meet, there is often a discontinuity in curvature or in tangency, which decreases the feed rate. At the points of discontinuity in tangency, a fillet radius is inserted. In this article, the influence of the geometry for elementary trajectories was determined. Then, the value of the fillet radius between linear and circular contours in different combinations was modeled. An industrial application was carried out in order to validate models and to determine the influence of feed rate evolution on the machining cycle time

    Toolpath interpolation and smoothing for computer numerical control machining of freeform surfaces : a review

    Get PDF
    Driven by the ever increasing demand in function integration, more and more next generation high value-added products, such as head-up displays, solar concentrators and intra-ocular-lens, etc., are designed to possess freeform (i.e., non-rotational symmetric) surfaces. The toolpath, composed of high density of short linear and circular segments, is generally used in computer numerical control (CNC) systems to machine those products. However, the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration, which will decrease the machining efficiency and product surface finish. Driven by the ever-increasing need for high-speed high-precision machining of those products, many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry, aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods. This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications. The advantages and disadvantages of these approaches are discussed. Possible future research directions are also offered

    Piecewise Arc-Length Parameterized NURBS Tool Paths Generation for 3-Axis CNC Machining of Accurate, Smooth Sculptured Surfaces

    Get PDF
    In current industrial applications many engineering parts having complex shapes are designed using sculptured surfaces in CAD system. Due to the lack of smooth motions and accurate machining of these surfaces using standard linear and circular motions in conventional CNC machines, new commercial CNC systems are equipped with parametric curve interpolation function. However, in some applications these surfaces can be very complex that are susceptible to gouging and due to the approximation of; CL-path in CAM system and path parameter in real –time, high machining accuracy, smooth kinematic and feed-rate profiles, are difficult to achieve. This dissertation focuses on developing algorithms that generate tool paths in NURBS form for smooth, high speed and accurate sculptured surface machining. The first part of the research identifies and eliminates gouge cutter location (CL) point from the tool path. The proposed algorithm uses global optimization technique (Particle Swarm Optimization) to check all the CC-points along a tool-path with high accuracy, and only gouging free CC-points are used to generate the set of valid CL-points. Mathematical models have been developed and implemented to cover most of the cutter shapes, used in the industry. In the second phase of the research, all valid CL-points along the tool-path are used to generate CL-path in B-spline form. The main contribution of this part is to formulate an error function of the offset approximation and to represent it in NURBS form to globally bound the approximation errors. Based on this error function, an algorithm is proposed to generate tool-paths in B-spline from with; globally controlled accuracy, fewer control points and low function degree, compared to its contemporaries. The proposed approach thus presents an error-bounded method for B-spline curve approximation to the ideal CL-path within the accuracy. This part of research has two components, one is for 2½- axis (pocket) and the other one is for 3-axis (surface) CNC machining. The third part deals with the problem of CL-path parameter estimation during machining in real time. Once the gouging free CL-path in NURBS form with globally controlled accuracy is produced, it is re-parameterized with approximate arc-length in the off-line stage. The main features of this work are; (1) sampling points and calculating their approximate arc-lengths within error bound by decomposing the input path into Bezier curve segments, (2) fitting the NURBS curve with approximate arc-length parameter to the sample points until the path and parameterization errors are within the tolerance, and (3) segment the curve into pieces with different feed rates if during machining the cutter trajectory errors are beyond the tolerance at highly curved regions in the NURBS tool path

    A new geometric-and-physics model of milling and an effective approach to medial axis transforms of free-form pockets for high performance machining

    Get PDF
    Mechanical part quality and productivity depend on many parameters in CNC milling processes, such as workpiece material, cutters, tool paths, feed rate, and spindle speed, etc. To pursue high performance machining, the cutting parameter optimization is in high demand in industry, though it is quite challenge. This innovative research successfully addresses some essential problems in optimizing the cutting parameters by developing a new geometric-and-physics integrated model of milling and proposing an effective approach to the medial axis transforms of free-form pockets. In this research, an original geometric model of 21/2- and 3-axis CNC milling is developed and integrated with a well-established mechanistic model. A main research contribution is that this integrated model can predict complex milling processes in higher fidelity with instantaneous material remove rates, cutting forces and spindle powers, compared to prior machining models. In the geometric model, an in-process workpiece model is introduced by using a group of discrete Z-layers and applying the B-Rep scheme to represent the workpiece shape on each layer, in order to accurately represent instantaneous cutter-and-workpiece engagement in 2Yz- and 3-axis milling. Hence, the un-deformed chip geometry can be found even for complex part milling, which is then fed to the mechanistic model to predict instantaneous cutting forces. By using this integrated model, cutting parameters can be optimized for profiling, pocketing, and surface milling to ensure steady cut and the maximum material removal rates. This model has been verified by experiments, and will be implemented into a software tool for Bombardier Aerospace. Another important research in this work is to propose aggressive roughing of free-form pockets for ultimately high cutting efficiency. For this purpose, an accurate, efficient approach to the medial axis transforms of free-form pockets and an optimal approach to multiple cutters selection and their path generation are proposed. The main contributions of this research include (1) a new mathematical model of medial axis point, (2) an innovative global optimization solver, the hybrid global optimization method, (3) an optimization model of selecting multiple cutters for the maximum material removal rate. This research can substantially promote aggressive roughing in the machining industry to increase cutting efficiency of free-form pockets. The technique has been validated using considerable number of cutting tests and can be directly implemented into commercial CAD/CAM softwar
    corecore