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ABSTRACT

Piecewise Arc-Length Parameterized NURBS Tool Paths Generation for 3-Axis CNC

Machining of Accurate, Smooth Sculptured Surfaces

Magsood A. Khan, Ph.D.

Concordia University, 2010

In current industrial applications many engineering parts having complex
shapes are designed using sculptured surfaces in CAD system. Due to the lack of
smooth motions and accurate machining of these surfaces using standard linear and
circular motions in conventional CNC machines, new commercial CNC systems are
equipped with parametric curve interpolation function. However, in some
applications these surfaces can be very complex that are susceptible to gouging and
due to the approximation of; CL-path in CAM system and path parameter in real -
time, high machining accuracy, smooth kinematic and feed-rate profiles, are difficult
to achieve. This dissertation focuses on developing algorithms that generate tool
paths in NURBS form for smooth, high speed and accurate sculptured surface
machining. The first part of the research identifies and eliminates gouge cutter
location (CL) point from the tool path. The proposed algorithm uses global
optimization technique (Particle Swarm Optimization) to check all the CC-points
along a tool-path with high accuracy, and only gouging free CC-points are used to
generate the set of valid CL-points. Mathematical models have been developed and

implemented to cover most of the cutter shapes, used in the industry.
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In the second phase of the research, all valid CL-points along the tool-path
are used to generate CL-path in B-spline form. The main contribution of this part is
to formulate an error function of the offset approximation and to represent it in
NURBS form to globally bound the approximation errors. Based on this error
function, an algorithm is proposed to generate tool-paths in B-spline from with;
globally controlled accuracy, fewer control points and low function degree,
compared to its contemporaries. The proposed approach thus presents an error-
bounded method for B-spline curve approximation to the ideal CL-path within the
accuracy. This part of research has two components, one is for 2%- axis (pocket)
and the other one is for 3-axis (surface) CNC machining.

The third part deals with the problem of CL-path parameter estimation
during machining in real time. Once the gouging free CL-path in NURBS form with
globally controlled accuracy is produced, it is re-parameterized with approximate
arc-length in the off-line stage. The main features of this work are; (1) sampling
points and calculating their approximate arc-lengths within error bound by
decomposing the input path into Bezier curve segments, (2) fitting the NURBS curve
with approximate arc-length parameter to the sample points until the path and
parameterization errors are within the tolerance, and (3) segment the curve into
pieces with different feed rates if during machining the cutter trajectory errors are

beyond the tolerance at highly curved regions in the NURBS tool path.
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Chapter 1 Introduction

1.1 Research Problems

Many products with complex shapes are designed with sculptured surfaces
to enhance their aesthetic appeal for customer satisfaction, especially in the
automobile and consumer electronics industries. Other products have sculptured
shapes to meet functional requirements, such as; turbine blades, plastic injection
molds and sheet metal dies. Usually, for these products, several surface patches are
required to be connected (compound surface) to generate the desired shape.
Mathematically geometric objects can be represented in three forms; parametric,
implicit and explicit. Implicit and explicit forms are often referred as nonparametric
forms. Usually, freeform or sculptured shapes are represented in parametric forms
like Bezier, B-spline or non-uniform rational B-spline (NURBS) [1]. Among different
representations, NURBS is a general form that includes non-rational B-splines, and

rational/non-rational Bezier curves and surfaces.

1.1.1 NURBS curve

Mathematically a pth-degree NURBS curve is defined by [1]

SN, (ulw,P
Cu)=2— 0<u<l (1.1)

ZNW (u)w,
i=0

1



P. denotes (n+1) control points (forming a control polygon); N, ,(u) are the B-spline

basis functions; p is the degree of N, ,(u); W are the corresponding weights of

control points. Basis functions can be defined by a recursion equation:

1 ifususu,,
plU)= ‘ - (p=0)
0 otherwise (1.2)
u—u: u: 1 —u
Ni,p (u)= —IN[,p—l(u) + LNHl,p—l(u)
Uirp —Uj Uirpr1 — i1

defined over the strictly non decreasing clamped knot vector:

There are (m+1) elements of the vector, called knots where, (m = n + p +1).

Polygonal curve defined by the control points is called control polygon. Following

are some relevant properties of NURBS curves.

1. €(0)=P, and C(1)=P,

2. Strong convex hull property: if ue[u;,u;,,), then C(u)lies within the convex
hull of the control points P,-_p,...,P,-.

3. A NURBS curve with no interior knots is a rational Bezier curve. Furthermore
if all weights W.are equal to one, then NURBS curve contain non-rational B-

spline and rational and non-rational Bezier curves as special cases.



4. Local approximation: If the control P, is moved, or the weights W, is changed,

it affects only that portion of the curve on the interval ue [u,,u,+p+l)

Pl PZ

Ps

Figure 1.1 A cubic NURBS curve and its control polygon.
1.1.2 NURBS surface

A NURBS surface of degree p in the u direction and degree g in thev

direction is a bivariate vector-valued piecewise rational function of the form

ZZNf.p(U W, (vVIw, P,
S(u) =2 0<uyv<l (1.3)

SIS N, U,

i=0 j=0

The {P, ;} form a bidirectional control net (control polyhedron); the {w, ;} are
the weights; and the {N, (u)} and {N,(v)} are the non-rational B-spline basis

functions defined on the knot vectors



Figure 1.2 A NURBS surface and its control net.

1.1.3 Production of sculptured parts

While the sculptured surfaces are created using CAGD techniques, it is the
role of manufacturing engineers to realize them in physical form. As an ever-
increasing variety of products are being designed with sculptured surfaces, efficient

machining of these surfaces is becoming increasingly important in many areas of



manufacturing. In order to machine sculptured surfaces by a cutting tool on a CNC
milling machine, it is necessary to generate a series of points called cutter location
points, and the trajectory of these is termed as NC tool path. The point of contact
between the cutter and surface is denoted by CC (cutter contact) point while the
corresponding reference point on the cutter is defined by CL (cutter location) point

(Figure 1.3).

Cutting tool ‘
|
‘ CL-path
CL-point 1 v CC-path
Part surface

Figure 1.3 Illustration of CC-path and the corresponding CL-path.

For producing free form (sculptured surface) parts on a CNC machine

following three phases are required [2]:

1. Process planning phase: machining-tolerance, cutter specification, tool-
path topology and milling strategy (up/down milling and upward/downward
milling).

2. Tool-path generation phase: tool-path planning and CL-data computation.



3. Validation phase: gouging detection and cutting simulation.

In tool-path generation phase the first step (tool-path planning), is to
determine the values of step-length and path-interval based on the information
from process planning phase and machining-tolerance requirements. The output of
this step is a set of CC-points from the part surface, and then in the next step each
CC-point is converted to a CL-point along with cutting conditions (federate and
spindle speed). Once the CL-path is computed, in validation stage the gouging and
interference is detected and eliminated and finally the cutting simulations are

conducted to verify the final set of CL-paths.

1.1.4 NURBS tool path

For sculptured surface machining, conventional CNC machines provide only
linear and circular arc interpolators. Therefore, CAD/CAM systems must segment
the tool path into huge number of small line segments and transmit them to CNC
machines [3]. However this approach causes several problems like; large NC data
file, increased machining and data transmission time, and surface inaccuracies [4].
Furthermore, the modern high speed machining requires federates up to 40m/min
with accelerations up to 2g [5] and the cutter needs to accelerate/decelerate at the
beginning and end of each line segment which results in chatter and vibration. In
addition to this, the real cutting speed is also lower than input speed; therefore the

cutting time is prolonged.

Owing to the above reasons, the curve interpolator has recently been

accepted as an alternative to replace these conventional linear and circular
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interpolators. Since, they are potentially more suitable for high speed and high
accuracy machining with smooth feed rate profiles; some of the CNC controller
manufacturers (FANUC, SIEMENS, HEIDENHAIN and MITSUBISHI) have developed
this curve interpolation function. Shiuh et al. [6] conducted real machining
experiments and found that machining time was reduced about 23% when NURBS

tool-path was used instead of conventional linear segments.

Among the techniques used for representing parametric curves and surfaces,
the Non-Uniform Rational B-spline (NURBS) has several advantages [7]. Since late
1980s, NURBS has emerged as the standard free-form geometry representation tool
because it is a superset of Bezier and B-spline, and can represent quadric curves and
surfaces exactly. In Piegl’s renowned survey paper [8], he pointed out that NURBS
offers a common mathematical form for representing and designing both standard
analytical shapes and free-form curves (surfaces). By manipulating the values of
weights, knot vector and control points, a wide variety of shapes can be produced
using NURBS.

In NC machining, when NURBS data is used to interpolate movements for the
machine tool, it results in much finer and smoother NC movements. NURBS
Interpolation can reduce cycle time by up to 30% in the manufacture of highly
complex, curved dies and molds, while providing higher accuracy and improved
surface finish. According to GE Fanuc, its NURBS Interpolation function results in a
reduction of program size to 1/10th to 1/100th that of a comparable linear
interpolation part program and significantly improves the fundamental accuracy

issues. “NURBS program allows for faster machining” (Makino) [9].
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Due to the superior geometric and manufacturing features of NURBS

representation as compare to the other forms we have adopted NURBS curve to

represent the final CL-path. The general approach for 3-axis CNC machining of

sculptured parts using NURBS CL-path includes the following

1.

2.

3D geometric model is generated in a CAD module

In CAM module the CC-points are generated for the given cutter size and
shape, machining tolerance and geometric features of the part surface.
Gouging and interference is detected and eliminated for all CC-point.

The set of valid CC-points is used to generate the CL-points, based on the
cutter and surface normal informations.

NURBS curve is fit to all CL-points within the specified curve fitting tolerance
along a tool-path.

The CL-path in NURBS form is post processed for a particular CNC machine.
After post processing the NURBS tool-path in ISO codes is fed to the CNC
machine controller.

The NURBS interpolator within the CNC controller generates reference
positions along the path for the motion control (servo control) system to

machine the part.

1.1.5 Error sources in NURBS machining of sculptured parts

Inaccuracies in CNC machining can be traced to several major sources like;

cutting tool deflection, cutting tool wear, machine tool vibration, and improper

coolant/lubricant. To improve part accuracy, much research has been done to



predict cutting forces and machining errors in different cutting condition. However,
in milling of sculptured surface parts, due to their curved shapes, the geometries of
the cutting tools do not match the part surface well. As a consequence, machining
error is inevitable, even if there is no other source of errors in ideal machining
conditions. Sometimes, geometric errors caused by this tool-surface mismatch along

the tool-path are more harmful and result in surface gouging.

As mentioned before, the geometric model of the part with sculptured
surface is designed in CAD system, and then corresponding tool paths for CNC
machining are automatically generated in CAM module. Since the sculptured
surfaces are complex and due to the tool-surface mismatch, close-form equations of
the ideal tool paths for the surfaces do not exist. Therefore, discrete CC- points need
to be sampled based on chordal deviation tolerance to approximate the ideal CC-
path. Basically, this tolerance is a measure of how accurately the line segments
joining the sampled CC-points approximate the shape of the ideal path (Figure 1.4).
Smaller tolerances result in a path that follow the original shape more accurately,

but often result in a larger G-code file.



Cutting tool

Chordal Deviation

Line approximation

Curve CC path /

Figure 1.4 Illustration of Chordal deviation.

The CC-points satisfying the chordal deviation tolerance may still damage
the part surface because of the surface gouging. Gouging occurs when a cutting tool,
contacting at a CC-point, interfere with other portions of the part surface more than
tolerance value (Figure 1.5). Gouging damages the part surface and can break the
cutter also, it is therefore necessary to detect and remove all CC-points which cause
gouging. Most of the existing methods only focus on point sampling on the grid
(therefore accuracy depends on grid density), and limited to only ball-end mill cutter.
Normally, extreme curvature values are compared with cutter radius to detect
gouging. It should be noted that curvature is a local geometric property and it
cannot avoid global gouging around the cutting tool tip. Sculptured surface parts
such as stamping dies and injection molds are designed with compound surfaces
because of shape complexity. During machining of these surfaces, while removing
material around a CC point, the tool may interfere with another point (gouging) on

the neighboring surface patches. Detection and elimination of gouging from

10



compound surfaces is more challenging especially for cutters other than ball end
mill. Another problem is faced, while machining a sculptured surface the tool body
and/or the tool holder may also collide with the surface in addition to the bottom
cutting edge of the cutter. Therefore, the gouging detection algorithm must (1) be
able to detect and eliminate gouging from the tool path for compound surface
machining with high accuracy and efficiency, and (2) consider the whole tooling
system instead of only the bottom cutting edge of the tool (which has been the focus
of many researchers). In three-axis machining ball end mills are more popular than
flat and round end mills. It is easy to locate a ball end mill on a surface due to its
simple geometric shape. The cusp (remaining material) produced on the surface
after machining is also uniform; therefore the grinding or polishing efforts are
reduced in the next operation. However, flat and round end mills offer higher
cutting efficiency than ball end mill, because parts can always be cut by the
periphery of these cutters at the maximum cutting efficiency. Therefore the

algorithm should be applicable for different cutting tool shapes.
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CL-point
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Figure 1.5 Illustration of gouging.

Once all the CC-points have been evaluated and corrected for gouging, they
are converted to CL-points, and used to generate NURBS CL-path. For deep
understanding of NURBS tool path generation process, a mathematical problem can

be formulated as follows. Suppose that we want to cut surface S(u,v) using ball end

mill cutter along the CC-path as shown in Figure 1.6(a). Since, the ideal CC-path is
unknown a set of CC-points is sampled along the curve based on chordal deviation
tolerance. Using the surface normal n at CC-points and cutter radius r, the
corresponding set of CL-points is generated (Figure 1.6(b)). Fit a NURBS curve to all
CL-points to approximate the ideal CL-path (Figure 1.6(c)). To evaluate the quality of
the CL-path, compute the perpendicular distance to calculate the approximation
error by projecting each CL-point on the curve. The approximated CL-path is said to
be acceptable if the maximum approximation error is within the fitting tolerance.

Sampling of CL-points needs one tolerance to respect allowable chordal deviation
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and the generation of NURBS CL-path also needs curve fitting tolerance. However,
this double-tolerance approach only makes sure that the approximated CL-curve
respects the ideal tool-path at discrete CL-points. But, it is possible that the
approximated CL-path deviates from the ideal path more than allowable tolerance at

locations other than discrete CL-points. If it is happened, the usage of this CL-path for

machining will damage the part surface.

Ball end-mill

Chordal
deviation

(a) Ideal CC-path and sampled CC-points  (b) generate set of CL-points

Fitting\%//v
error

(c) Fit NURBS curve using CL-points to approximate ideal CL-path

Figure 1.6 CL-path generation process
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To avoid this problem, it is essential to make sure that the approximated
curve respects the ideal path along its whole length, instead of at only discrete
points. There are some existing methods which guarantee the global control over
the approximation error, but they need high curve degree, and large number of
control points to generate the offset curves (CL-paths). Furthermore, the CL-paths
generated by these methods are only planar curve, which can only be used for
pocket machining. Therefore, in the second part of the research an algorithm is
proposed to generate CL-path in NURBS form; (1) which approximates the ideal CL-
path within the given tolerance along the whole curve length i.e. the error is globally
bounded, (2) with flexibility to choose curve degree, (3) needs minimum number of
control points to represent the curve, and (4) applicable for both 2%:- axis (pocket)

and 3-axis sculptured surface machining.

Once the CL-path is generated, it is ready to be send to the CNC machine for
producing the sculptured part. Usually the free-form CL-path C(u):[x(u) y(u) z(u)]T is

represented via unit less parameter (u-parameter), which needs to be converted
into time domain during machining. Tool positions in terms of time instead of u-
parameter are called reference commands and become the input of position servo
control in CNC machine. This process of command generation for curves is called

parametric interpolation and is performed in the CNC controller during machining.
Let V and 7, are the required machining feed-rate and sampling time of servo
control respectively. The linear distance travelled by cutter along the tool path

during time T, is VI, . The job of parametric interpolator is to generate a point on
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C(u) by incrementing U within each interpolation period T,. In simplest way, this

increment can be a uniform value i.e. AU =constant. But, unfortunately uniform
increment in parametric space does not correspond to uniform length of cutter
movement in machining space due to the non-linearity between a curve and its

parameter. Consequently, the travelling distance in each interpolation period will be
different during the same T, which means values of actual feed-rate are different

from the commanded feed-rate, resulting in feed rate fluctuations, which produces

surface finish variations and unnecessary longer machining time.

Since, cutter moves in straight path between two consecutive interpolated
points, the chordal error is unavoidable. Another problem of NURBS interpolation is
that it is difficult to get analytical solutions for the chordal error between the
interpolated curve and the ideal curve. If the extreme variations in curve derivatives
among the knot spans and/or high curvature values are encountered, existing
interpolators may produce cutter trajectory errors beyond the tolerance. Although,
NC program cannot change the way the controller moves the cutter, the CL-path can
be changed in such a way that these errors are minimized or at least decreased.
Therefore, the last part of the research deals with the re parameterization of the CL-
path, so that the real time parametric interpolator will be able to compute an
appropriate value of parametric increment for each interpolation cycle, which, in
turn, guarantees smooth feed rate profiles and cutter trajectory errors within the

allowable limits.
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1.2 Research Objectives

The first objective of this research is to develop efficient, and accurate
generalized gouging detection algorithms for compound sculptured surface
machining on 3-axis CNC milling. To achieve this objective, it is essential to develop
a technique to check all CC-points accurately with high searching efficiency. One
purpose of this part is to make the algorithm as generic as possible so that, the
methodology can be applied to different cutting tool shapes (flat end mill to form

milling cutters) and complex part surfaces (simple to compound surfaces).

After gouging detection and elimination from CL-points, the next main
objective is to develop a methodology for generating smooth CL-path in NURBS
form with fewer control points, lower base function degree, and higher geometric

accuracy. To get this objective following tasks are required:

(1) Formulate a mathematical function to globally bound the approximation
error.

(2) For global error control, it is necessary to know the maximum error
(upper bound). Therefore, the error function needs to be converted into
scalar NURBS form, and based on convex hull property the maximum
coefficient of the NURBS curve can be used to estimate the maximum
error.

(3) An algorithm is also required, to adjust the approximated CL-path at
proper locations according to the positions of maximum coefficient of the

NURBS error function, and finally produce the desired tool-path having
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less function degree, fewer control points and guaranteed to be within the

allowable approximation error.

Once the general NURBS CL-path with unit less parameter (ue[0 1]) is

developed the last objective is to convert it into piecewise NURBS tool paths with

the arc length parameter (s€[0 L]). It is generated off-line by taking the NURBS

interpolation into consideration. This type of tool path is essential for high speed
and accuracy machining along the NURBS CL-paths with high curvatures. To

generate this path

(1) A methodology is required to sample the cutter location points,
estimation of their arc-lengths and fit a NURBS curve to these CL-points.

(2) The path and parameterization errors need to be within the prescribed
tolerances.

(3) For accurate tool trajectory and consistent tool velocity in high speed
machining the highly curved arc-length parameterized CL-path needs to
broken into segments to generate piecewise NURBS tool path with

different feed rates for different pieces.

Overall, the objective of this research is to develop algorithms for generating

NURBS tool paths if

(1) The design surface has extreme curvature values and it needs to be

machined with high accuracy and good surface finish
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(2) The machining speed is very high and it is required to keep consistent

feed rate profile to reduce machine vibrations.

1.3 Dissertation Organization

The remaining sections of this dissertation are organized as follows. Chapter
2 reviews the current technologies of gouging detection and elimination, NURBS NC
tool-path for pocket machining and three axis surface machining and real time CNC
interpolator. Chapter 3 presents a generalized optimization based gouging detection

and elimination technique for three axis machining using different shapes of cutters.

Several examples are used to verify the correctness and effectiveness of the
proposed method. Chapter 4 presents a new method to approximate 2D free form
curve offsets for B-Spline NC tool-paths with offset error globally bounded.
Simulation results are presented to show that our method is better than existing
methods in terms of number of control points and order of the curve for a given
tolerance value. Chapter 5 develops an integrated approach to generate cutter
location path in B-Spline form for three axis surface machining with high accuracy.
Finally chapter 6 introduces a new method to reparameterize the cutter location
path with approximate arc length parameter. Chapter 7 contains the summary of

this work.

18



Chapter 2 Literature Review

This chapter reviews the state-of-the-art technologies of gouging detection
and elimination, 2D curve offsetting, 3D NURBS tool-paths and real-time CNC

interpolation. The limitations of the current methods are also discussed.

2.1 Gouging Detection and Elimination

In surface machining, gouging and interference hinder the surface quality
and production efficiency. To overcome these problems, extensive research has
been conducted in this topic. However, there is no effective solution to them so far.
Conceptually, there are two approaches by which gouging can be avoided. The first
is a conservative approach in which a smaller cutter size is selected to cut the whole
surface without gouging, but it results in low machining efficiency. In the second
approach the machining efficiency is increased by selecting large cutter size for only
those surface regions which are gouging free and then the remaining surface is

machined with smaller cutter.

Choi and Jun [10] studied interference detection for CC-point tool path
generation approach. First the CC points were converted into a triangular mesh and
interference was detected by comparing each CC-point with its neighbor CC-points.

Wenliang et al. [11] also used discrete definition of the surface using triangles to
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detect gouging for ball end-mill cutter. Yang et al [12] found the optimal ball end-
mill cutter size for gouging free machining of free form surface represented by point
cloud data. Zhou [13] Checked gouging by evaluating the intersection of vertical
lines (from the grid on xy-plan) with the part surface and the ball end mill cutter.
Oliver et al. [14] termed the overcutting because of true chordal deviation as local
gouging, for correcting this type of gouging they calculated true chordal deviation. If
the local radius of curvature is less than the ball end mill radius, then this location
will be gouged and it is termed as global gouging. George et al. [15] used surface
offsets to detect interference, and checked for the self intersection curve. The tool
path is then planned over the CC surface after removing the CC data that lies inside
the self intersection curve. The key problems in this approach are to find offset
surface first and then to identify its self intersections. This method is only applicable
for ball-end mill cutter. Hatana et al. [16] isolated the interfering regions of the
surface by comparing the radius of curvature at discrete points on the grid with
cutter radius, Ding X. M. et al. [17] also used grid of points to identify interference
regions in concave and saddle surfaces by comparing extreme curvature values with
cutter. Yang et al. [18] proposed a methodology for local interference detection, by
finding the total interference area (TIA) using extreme curvature values. Global
interference is detected by checking the collision of the cutter with surface during
its movement. All of these research studies, however, only focused on point
sampling on the grid, and limited to ball-end mill cutter. Beside this curvature is a

local geometric property and it cannot avoid global gouging around the cutting tool
tip.
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These methods cannot detect local and global gouging for compound
continuous sculptured surface machining while using different cutter shapes with
high accuracy. To incorporate different cutter shapes, Z.C. Chen and G. Liu [19]
proposed a mathematical model (imaginary cutter size model) for a compound
surface to determine the largest allowable cutter size using particle swarm
optimization (PSO) method. But this method requires large computational time
because it randomly searches the whole compound surface for a given CC-point.
Finding gouge locations for complex surface machining is a global optimization
problem. Among several heuristic tools (genetic algorithm, ant colony, differential
evolution) particle swam optimization (PSO) method, first introduced by Kennedy
and Eberhart [20] is becoming more popular due to its simplicity and ability to

quickly converge to a solution [21].

2.2 NURBS NC Tool Path

After gouging detection and elimination, all valid cutter location (CL) points
are transferred to the CNC machine tool in the form of NC tool-paths. However, in
case of parametric curve (NURBS, B-spline, Bezier, quintic splines etc) interpolation,
these CL points need to be represented by curves. For NURBS machining, NURBS
curves are used to approximate this CL-data. For pocket machining, planer curves
which are generally the offsets to the design pocket profile are generated (Figure
2.1(a)). In sculptured surface machining 3D space curves are used to approximate

the CL-points Figure 2.1(b).
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Figure 2.1 (a) Pocket profile to be machined and its corresponding planer B-
spline offset as NC tool-path (b) surface machining along 3D B-spline curve
tool-path.

2.2.1 Planar offsets as tool-paths for pocketing

In the past decade, besides the exact solutions (Farouki and Sakkalis [28]) to
the offsets of special geometries, such as the analytical and the Pythagorean-
hodographs (PH) curves, several researchers [24-27, 29-31] have proposed a
number of methods of finding the offset of free-form curve approximately. The
common way of evaluating the approximate offset accuracy in these methods is to
calculate the deviations of the approximate from the exact offsets at the discrete
sample points. But these deviations cannot demonstrate the overall maximum
approximation error [35]. If the individual deviations are not less than the specified
tolerance, the curve is subdivided at the midpoint regardless the actual maximum

error location.
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Some researchers [32, 33, 35-37, 39, 40] have rendered methods of

approximating offsets with the errors globally bounded. To estimated the overall

deviations between the approximate offset CJ(u) and the exact offset C,(u) of a

source curve C(u), Elber and Cohen [32] established a function

2
CZ(U)—C(U)H —d? (d is the offset distance) to represent the deviations.

e(u)=

Then, this function e(u) is represented with a scalar NURBS curve. Based on a

property of the NURBS curve, its largest coefficient is greater than the maximum

value of 8(u). The curve locations with unsatisfactory offsetting results are

identified and new knots are simultaneously inserted, until the global error is within

the allowable tolerance. Reference [35] mentioned the underestimation problem of

g(u). To remedy this problem, [32] proposed angle function also (between
5(u)=€5(u)—€(u) and unit normal vectorN(u)) in addition to the difference

function g(u) )

Lee, et al. [35] adopted a different approach based on unit circle

approximation to bound the maximum offset error. Let U(s) denotes a unit circular
arc such that C (u)IIU‘ (S(u)).Then the exact offset curve can be computed as
C,(u)=Clu)+d-U(s(u)). They approximated U(s) with a quadratic polynomial curve
segment Q(s) within the tolerance &, and using the parallel constraint C()]|Q(s(w))

, they achieved the unique solution of parameterization s(u), which provides the

approximated offset curve, bounded byd.¢, as follows
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5 (u)=C(u) +d-Q(s(u))
Cg(u) is a planar rational curve of degree 3p—2, where p is the degree of C(u). In
the work of [36], Lee, et al. approximated the re-parameterization S(u) and
represented U(S) exactly using a quadratic rational polynomial curve. In this
method, the only error source is from the approximation of S(u) , which violates the

parallel constraint C'(U)IIQ'(S(U)). In [37] they proposed 3 re-parameterization

based offset approximation methods, LRC, TMC, SRC and this time the offset

approximation error is bounded by ¢ ~d.sin@, where @ is the angle between the

normal vector N(u) and the difference vector € (u)—C(u).In 2007, Zhao et al. [41]

improved the error bound from d.sind to d.sin’@ in re-parameterization based
approaches, for curve offsetting. They calculated the Hausdorff distance to estimate

the approximation error, instead of the angular deviation 4.

2.2.2 NURBS tool-paths for surface machining

For generating curve CL-paths off-line, generally there are two approaches.
In the first approach cubic and quintic splines are used to interpolate the CL-points
with near arc length parameterization [42-44, 47, 48]. In the second approach the
CL-points are interpolated or approximated by NURBS or B-spline curves [49-54]
with unit less parameter. The main weakness of both approaches is the accuracy of
CL-path can only be guaranteed at discrete CL-points. The CL-paths from first

approach do not need any parameter approximation in real-time. In the second
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approach, because of the discrepancy between path parameter and path length
increments in real-time the parameter needs to be approximated. Therefore several
interpolation techniques [66-72] have also been developed to adjust path parameter

in real-time for non-arc-length-parameterized curve CL-paths.

Cubic splines have inherent problem of parameterization, if spline parameter
is based on chord length between two consecutive sample points, and even if they
are parameterized with arc-length, the performance is not better than quintic spline

[42]. In quintic spline interpolation a set of CL points, say Py,P,,...,P, are fit to a set

of (n-1) composite quintic spline with C2-continuity condition at the junctions of
spline segments. Since only CL points are known, so the first and second derivatives
at segment junctions are approximated using chord lengths. To reduce the contour
and feed-rate errors, all spline segments should be parameterized with arc-length
instead of chord length. To solve this problem [42] and [43] fit cubic spline with
chord length parameterization to get unit tangent and second derivative at data
points and approximated the arc-length between two consecutive data points by
solving fourth degree polynomial. But their methods can only guarantee arc length
parameterization at both ends and middle point of the quintic spline segment, which
is termed as nearly arc-length parameterized quintic spline. Wang, et al. [44]
improved above discussed method, by considering more locations, deviating from
arc-length characteristic between two data points. Auxiliary data points are added
and the quality of parameterization is checked, this iterative process is continued

until the arc-length parameterization is achieved within some tolerance value. Again
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in [47] Wang, et al. used same approach but added C3-continuity, and the spline is
termed as approximately arc-length parameterized C3-quintic interpolator spline.
Erkorkmaz, et al. [48] proposed two approaches for quintic spline interpolation. In
the first part, derivatives at data points and arc lengths are estimated using
optimization with an objective to improve arc length parameterization, instead of
using C2-cubic spline for derivatives. But this may produce a geometrically different

tool path from the original shape.

In the second approach Taosheng, et al. [49] approximated the cutter
location path by interpolating the discrete CL points using B-spline segment. Their
method is limited to only isoperimetric tool-path generation method. The largest
deviation distance between the cutter location path and the corresponding
isoperimetric path is calculated numerically at different parameter values. If the
deviation is larger than tolerance then the tool path is divided into segments. This

process is continued until the deviation is within the tolerance value.

Method proposed in [50] is limited to iso-planar tool path generation
strategy and based on checking fitting errors at each mid-span of the two
consecutive CL points. First, the sample points are generated by computing the
intersection of offset surface and the tool driving plane (plane parallel to the axis of
tool). These points are interpolated by a planar cubic B-spline curve. The accuracy of
B-spline tool-path is evaluated and more sample points are added if the error is

higher than the allowable fitting tolerance.
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Yau and Kuo [51] proposed a post-processing approach to converting G1 NC
tool-paths generated with the CAD/CAM systems to NURBS paths for high speed
contour machining. Langeron, et al. [52] developed an approach to generating 5-
axis NURBS tool-paths in the part coordinate system and introduced an
interpolation format to ensure continuous evolution of the rotation axis speed. Chen
and Yang [53, 54] improved the existent fitting method with rough and fine fitting to
a group of sample cutter locations. Bey, et al. [55] generated NURBS tool-paths with
the parallel-plane strategy by using three methods of computing given points’
parameters in order to find paths with the minimum number of control points. Lin,
et al. [56] converted G1/G2 paths of a NC program into NURBS paths in two steps:
(1) dividing the CLs according to their geometric shape into several groups, and (2)
fitting a NURBS tool-path to each group of CLs in a iterative process of reducing the
deviations between the sample CLs and the path and the chord errors within the
prescribed tolerances. Similarly, Li et al. [57] designed a NURBS pre-interpolator to
convert G1/G2 tool-paths into NURBS tool-paths. Shih and Chuang [58] constructed
a one-sided polygon to approximate a 2-D NURBS part profile, offset the polygon to
establish a wunilateral tolerance zone, and generated a C!-continuous and
interference-free planar NURBS tool-paths to cut the profile. Lai [59] optimized the
2-D offsets of planar NURBS curves, which are NURBS tool-paths, by introducing an
evaluating bound error and a radiating web-like searching path. In all, these
methods cannot generate high quality 3-D NURBS tool-paths for high speed-and-
accuracy NURBS machining of sculptured surfaces. Now, it is important to

understand that 3-D NURBS tool-paths should be spatial arc-length parameterized
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curves that are gouging-and-interference free and approximate theoretical tool-

paths within a prescribed tolerance.

The NURBS fitting technique is useful to NURBS tool-path generation, though
it is not all. A number of articles of this topic are reviewed. Rogers and Fog [60]
developed a technique for constrained B-spline fitting by modifying the parameter
values of a group of given points in iterations. Weiyin and Kruth [61] presented a
simple method to assign parameter values to randomly measured points for the
least squares fitting of B-spline curves. Park et al. [62] proposed a method of
repetitively fitting input curves on a common knot vector in order to have them
evenly transited. Borges and Pastva [63] applied Gauss-Newton method to minimize
the fitting error of a single Bezier segment to a set of ordered points and directly
evaluated the Jacobian by implicitly differentiating a pseudo-inverse. Park and Lee
[64] selected a number of dominant points among a group of given points,
determined the knots using the dominant point parameters, and fit a B-spline with
lease squares minimization. Brujic et al. [65] precisely defined the sparsity
structures of the relevant matrices and fully exploited the structures to reduce

computation time and storage.

Since the CL paths generated by using second approach are not
parameterized by their arc lengths therefore during machining the appropriate path
parameter value is approximated. Initially tool path in parametric form is
represented in unit less form (u-parameter), which needs to be converted into time

domain. Tool positions in terms of time instead of u-parameter are called reference
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commands and become the input of position servo control in CNC machine. This
process of command generation for curves is called parametric interpolation and is
performed in the CNC controller during machining. Different strategies have been
adopted in the development of parametric interpolators [66-72], and will be

discussed in the next section.

2.3 Real Time CNC Interpolation

It was mentioned before that to cut smooth sculptured surfaces accurately and
efficiently in CNC machining, NURBS (non-uniform rational B-spline) interpolation
has recently been developed in some CNC controllers. As a reference, a pre-
generated NURBS path of cutter location is fed into the controllers, and then the
NURBS interpolator calculates in real-time cutter locations along the path to
instantaneously execute finite motions of the tool NURBS trajectory in machining.
Current research on NURBS machining includes two types: (1) NURBS tool paths
generation prior to machining and (2) real-time NURBS interpolation for NURBS
tool trajectory in CNC machining. Type 1 research is to generate accurate NURBS
paths from geometric perspective, and type 2 is to develop real-time NURBS
interpolation algorithms of CNC controllers to make sure that (a) the deviation
between the tool trajectory and the path is less than the prescribed tolerance and
(b) the tool consistently feeds in the prescribed rate within the acceptable
fluctuation range. However, current CAM software usually generates NURBS paths
with a unit free parameter, which could be highly non-linear between the parameter

of a cutter location and its corresponding arc length of the path. Fed with these
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paths, the interpolation methods are not able to properly process them, resulting in
the real-time cutter trajectories with errors beyond the tolerance and much feed
rate fluctuation. Even though many researchers are working for better NURBS
interpolation algorithms to solve this problem, it is quite passive and challenging
due to the in-appropriate tool paths generated prior to machining. Hence, an
effective solution is to generate better reference paths in the phase of tool path
planning. Moreover, upon increasing demand for high speed machining in industry,
the feed rate can be very high, which is a new challenge to the NURBS interpolation
algorithms and can cause large trajectory errors. To find a completed solution,

review on papers of NURBS path generation and interpolation is carried out.

Bedi et al. [66] developed a uniform interpolator by fixing the parameter
increment at a constant value. Although the constant parameter increment
simplifies the computation of cutter locations in the online interpolation process,
this method cannot control the cutter trajectory error, the feed rate error, and the
feed acceleration /deceleration. Shpitalni et al. [67] represented the relationship of
the parameters of two points using the first order Taylor’s expansion, instead of
using the constant parameter increment. This method provides better results of the
feed rate, compared to Bedi’s method. Yang and Kong [68] mentioned that the
approximation error using the first order Taylor’s expansion is proportional to the
sampling time and path curvature, causing feed rate fluctuation; therefore, the
second order Taylor’s approximation was proposed for higher precision. Yeh and
Hsu [69] proposed an adaptive feed rate interpolator to adjust the curve speed and

to confine the contour error (depends on curvature) within the specified tolerance
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during interpolation. Xu et al. [70] proposed a NURBS interpolation algorithm with
variable feed rates. Lo [71] used an iterative method in real-time to calculate the
parametric increment, instead of using Taylor's expansion, because of heavy
computation; however, the convergence time of this method is not fixed [72]. A
time-series forecasting model was proposed in [73] to predict the arc length change
rate in terms of the parameter. Since this method is predictive, it can result in
contour and feed-rate errors. The higher order terms of the Taylor’s expansion are
neglected in the first order approximation in order to reduce computation load;
however, this causes feed-rate fluctuation. Thus, Yeh et al. [74] proposed a speed
controlled algorithm to avoid approximation errors, and higher order terms were
estimated by calculating a compensatory value. But their algorithm is unable to

handle tool paths with high curvatures.

In case of abrupt change of curve derivative among knot spans the Taylor
expansion interpolator may produce large contour and feed-rate errors. An
algorithm was proposed in [76] to remedy this problem by making sure that the
next estimated path parameter is in the current knot span. But this makes Taylor
expansion interpolation method complex which is not suitable in real time. In [77]
they used chord-length parameterization for quintic spline causing feed-rate and
contour errors, which leads to high acceleration and jerk values. To avoid this
problem a tenth degree polynomial is solved iteratively in real time, to get spline
parameter for a fixed interpolation displacement. With the development in NC
controllers, the sampling time is decreasing to achieve high speed and precision;

therefore, the iterative methods are not suitable for real time interpolation because
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the convergence time is not fixed [75]. Erkorkmaz et al. [48] in his second approach
developed a seventh degree feed correction polynomial for each spline segment by
applying a least square fit over the arc displacement and spline parameter values.
For each spline segment a separate seventh degree polynomial is required, which
have to be included along with the data points in NC program, therefore, in high
precision applications the amount of information becomes huge. A quintic
polynomial was proposed in [75] for the same purpose. Since error bound is
calculated with the assumption that the curvature varies with parameter
monotonically, during segmentation monoticity is checked, so that the estimated arc
length differ from the actual one no more than the error bound, otherwise the
segment is bisected. Although the monoticity of curvature is checked by comparing
the end curvatures with the curvature at middle point, even then the calculated
error bound may differ from the actual error bound because of uneven variation of
curvature between two consecutive data points. Lei et al. [78] used Hermit curve for
each sub-interval to relate the curve parameter u to path length / and termed it as
Inverse length function. NURBS curve’s length is calculated numerically using
adaptive quadrature method and divided into segments until the length of each
segment is within the tolerance. If the curve length is estimated numerically using
the adaptive quadrature method, short knot spans can be skipped, and cause wrong
length estimation. The same problem was mentioned by [76] in estimating the curve
length numerically, if these special knot spans are encountered, which they termed
as extreme knot spans. Sharpe and Thorne [79] introduced a numerical technique of

representing spacing of points as function of arc length for any parameter curve.
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Farouki [80] reformulated a degree n polynomial curve as a rational curve with a
parameterization closest to the ideal arc length parameterization. Gil and Keren [81]
developed a family of curves to construct arc length parameterized curves between
two arbitrary points. Hernandez and Estrada [82] proposed an iterative algorithm
to generate a sequence of a prescribed number of points on a parametric curve with

control of their distribution.

2.4 Summary

In this chapter, we reviewed current techniques closely related to this
research, including gouging detection and its elimination from the NC tool path,
NURBS tool path generation methods for pocket and three axis sculptured surface
machining and finally the NURBS interpolation techniques to generate the cutter
trajectories during machining. Some of the current methods still suffer certain
drawbacks. In the following chapters, new methods to; solve gouging related
problems, generate accurate NURBS CL path for both pocket and three axis surface

machining and reparameterize the NURBS path with arc length, are developed.
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Chapter 3 Gouging Detection & Removal for

3-Axis Surface Machining

3.1 Introduction

Today, there is a great demand for sculptured surface parts, which are
challenging in design and manufacturing. During machining, in some applications
these surfaces can be very complex that are susceptible to gouging. The term
‘gouging’ is used here to mean overcutting the design surface. To check gouging,
normally the part surface is discretized to form a grid, but the size of grid directly
influences the accuracy of gouging detection. Furthermore, most of the researchers
have only considered ball-end mill cutter, however flat and round end mills are also
used in 3-axis milling because of higher cutting efficiency. It is also important to
include the tool shank and holder during gouging check, instead of only the bottom

cutting edge (which has been the focus of many researchers).

The aim of this chapter is to introduce a generalized methodology to detect
gouging for complex compound surface. The proposed method uses global
optimization technique to improve the accuracy, and a discrete hybrid PSO method
is introduced for increased searching efficiency. Mathematical models have been

developed and implemented to cover most of the cutter shapes including free-form
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milling cutters. Current approach reduces the long computational time for
evaluating the whole compound surface, by checking only the potential gouge
surface patches. An effective method is used to calculate the CL-points and detect
gouging for free-form milling cutter also. Different examples are used to
demonstrate that the proposed method can be used to identify and eliminate

gouging in complex compound surface machining using a variety of cutter shapes.

3.2 Gouging Types in 3-Axis Machining

Sculptured surface parts such as stamping dies and injection molds are
designed with compound surfaces because of shape complexity. A compound

surface, S is composed of several surface patches S,.(u,v), (i:O,l,...n) connected

each other with different continuity conditions. During NC machining of these
surfaces, while removing material around a CC point, the tool may interfere with
another point (or points) on the same surface patch or the neighboring patches. If
this interference (overcut) is beyond the machining accuracy, it is called gouging
and damages the part surface. Therefore, gouging detection and its removal for the

NC tool-path generation becomes crucial.

We consider a 3-axis milling machine and assume that the tool cuts surface

patch Sy, at a CC-point P,.=[x,. ¥, Z.) and the corresponding CL-point is

P, =[xy Vq Zo).In the current work, different cutter shapes; ball, flat, round

and free form end mills are considered, which are used for sculptured surface

machining. These cutters may gouge the surface in several ways. The most typical
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gouges are illustrated in Figure 3.1 using ball end mill as an example:- local
gouging: when the local radius of curvature is less than the tool radius, the bottom
of the cutter interferes with the surface see Figure 3.1(b); global gouging: If
anywhere the angle 6 between the surface normal 7 and the z-axis exceeds 90°, the
cutter body gouges the surface in that region, see Figure 3.1(a); gouging with
neighboring patch: If two or more surface patches are connected each other in
such a way that the cutter accessibility to a CC-point on one surface patch is
restricted by the surrounding surface patches, then machining at that CC-point

gouges the surface (Figure 3.1(c)).

|
|
! CL-point

CC-point Over cuttin;

(a) (b) ©

Figure 3.1 Three types of gouging: (a) global gouging, (b) local gouging and
(c) gouging with neighboring patch.

3.3 Proposed Gouging Detection Method

The relationship between a cutter and a test point P, on the surface for three

cutter shapes is shown in Figure 3.2. The corresponding mathematical formulation

of gouging detection is given by

36



= T2+(z(u,v)—zo )Z—Rlz zep <z<1z,

where T:\/(x(u,v)-xCL )2 +(r(wv) - yer )2 - R,

= -1;ifT<0 Round end mill
2 2
= (x(u,v)—xCL) +(y(u,v)—yCL) —(R1+R2)2 7>z, (3 1)
f(z) = :
= (x(u,v)—xCL )2 +(y(u,v) -Yer )2 -R? z>za} R=R,; R;=0 Flatend mill

(x(u,v)—xo)z +(y(u,v)—ya)2 +(z(u,v)—zo)2 - R? zep <z<z,

R=R;; R, =0 Ball end mill
- R? z>z

o

At a CL-point P, the minimum value of f(z) is calculated using optimization. If
Min.f(z)<0 then, machining the surface at this location will cause gouging. The
representation of f (z)changes according to the cutter shapes and z-value of the

testpoint P=[x y z]" asshown inEq. (3.1).

OXo,Y0:2,)

CL(XcL Yo Z
(XeLYeriZer) R CL(XeL Yol ZeL) O (X0 Yo:2o)

A=

P(x,y.z)

P(x.y.2)
CC Point

CC Point P(x.y.2)

—

CL(Xc Yer ZeL)

Figure 3.2 Three scenarios of gouging for different cutter shapes.
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3.3.1 Global optimization procedure

As it was mentioned that for gouging detection the minimum value of f(z) is

required, but for different shapes of cutting tools and complex part surface, large
number of local optimum solutions are possible. Therefore at a CC point the
detection of gouging becomes a global optimization problem. Finding an arbitrary
local optimum is relatively straightforward by using local optimization methods.
Finding the global maximum or minimum of a function is much more challenging.
Several modern heuristic tools have evolved in the last two decades that facilitates
solving global optimization problems like; genetic algorithm, ant colony, differential
evolution and particle swarm optimization. Among these methods particle swarm
optimization is becoming popular due to its simplicity of implementation and ability
to quickly converge to a reasonably good solution [21]. Like other population-based
optimization methods PSO also randomly searches the global best solution and it
may take longer time to pinpoint the global optimum. On the other side gradient-
based method can quickly find the local optimum solution, but they are unable to
find the global solution if multiple local optimums exist. In order to further increase
the searching efficiency of PSO, the parametric domain of the surface is discretized
to form a two dimensional grid. We have combined this discrete domain approach of
PSO with gradient method to reach the global solution quickly, and termed it as

discrete hybrid method (will be discussed in chapter 5).
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3.3.2 Algorithm of gouging detection and removal

In this section we explain all the steps required to find gouging for a
compound surface. A compound surface has several patches, and for a CC-point only
few of them may interfere with the cutting tool. Since, the computational cost for
gouging detection is proportional to the number of patches; only intersecting
neighbouring patches are scanned. Therefore, the first step is to find those patches

by evaluating each patch against a criterion. The criterion is explained as follows:

Consider S as the compound surface; the cutter is positioned at a CC-point on
the patch Spyand S; is one of the neighboring surface patches, enclosed by its
convex hull of the control polyhedron, denoted by &. According to the convex hull
property of a NURBS surface [1], if the tool does not intersect with £, S, will not be

gouged by the cutter at that location (Figure 3.3(a)), which is necessary and

sufficient condition. On the other side the intersection of ¢ with the cutter

envelope (Figure 3.3(c)) is a necessary condition for gouging the corresponding

patch, but it is not sufficient as it can be seen from (Figure 3.3(b))

Once the intersecting patches are identified, the optimization tool discussed
above is applied to the base patch (where the CC-point resides) and all intersecting

patches one by one. The form of the objective function in Equation 3.1 depends on
the shape of the cutter and the location of the test point P, =[xt Ve Z ]T . Finally all

CC-points which cause gouging are eliminated from the tool path.
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Figure 3.3 Three types of interactions between a cutter and the neighboring
patch at a CC-point: (a) S, will not be gouged, (b) the cutter is intersecting

with the control polyhedron of S, but without gouging and (c) the cutter is

intersecting with the control polyhedron of S, and gouging it also.

Algorithm: Gouging detection

Define:

So(ug,v) » base surface patch where CL-point exists

S,(u;,v;)(i=1,2,...m), intersecting patches

(d,v), rough estimation of the global optimum position

(u”,v’), estimation of the global optimum position within tolerance

Input:

S, the compound NURBS surface

Pe (XcL s Vel 2c) » CL-point

7, tolerance for gouging detection

Output:

Gouging free CL-points
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Algorithm:

For a CL-point P
Find all intersecting patches s,,i=1,2,..m
For j=0 to m
1. Discretize S,
2. Run PSO to find (g, v)
3. Use (4,v)as the input to the gradient method to find (u",v") within ¢
4. Iff(u',v')<0 then eliminate this CL-point from the CL-path, and exit

for the next CL-point
End

End

3.4 Free Form Cutters

Custom non-standard form cutters exhibit higher machining efficiency than
the conventional end milling cutters for specific machining applications. Since the
shape of the cutter is according to a particular part design, the profile of the cutter
might be designed using free form curves; Figure 3.4 shows some examples of these

cutters.
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Figure 3.4 Form milling cutters with curve profile.

For conventional cutters the geometry is defined using some standard geometrical
entities like lines and arcs; therefore the computation of a CL-point is straight
forward. On the other side free form cutters require a curve to define their profile,
therefore the calculation of a CL-point for this type of cutter is different. For this

purpose we consider the profile curve and assume that it is in parametric form,
denoted by C(u) =[x(u) y(u) z(u)]T (Figure 3.5(a)). To calculate a CL-point P the
parameter value t.. on the profile curve is searched by matching the direction of
cutter profile normal n, and part surface normal n; when the cutter is in contact

with the part surface at P.-. Because of the strictly convex shape of the curve
(curve tangent touches the curve only at a single point) there is only one unique

value of t_.; therefore, any gradient-based method can be used to quickly find it.
Once t.. is known the CL-point P, which is the summation of two translations b;

and b, (Figure 3.5(b)) can be calculated as:
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PCL :PCC +bl+b2

The first translation isb; which is from P to point 0 and it is given by

_[ax(n,xa)
by = ] %x(nsxa)u b1

where 1, is the horizontal component of the vector fromP, to Q. (Figure 3.5(a))
The second translation is b, which is from point 0 to P and it is given by:

and r,, is the vertical component of the vector from P, to Qcc

Pa

Control \
polygon

(a) Curve profile of the form milling cutter (b) CC-point and its corresponding CL-point

Figure 3.5 Computation of the cutter location point for a given CC-point and
cutter profile curve.
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Checking of a point on the surface to avoid gouging is more challenging when free
form cutter is used to machine the surface. Say, P, =[x, y, zt]Tis a point on the

part surface and we want to check that the point is outside the cutter envelope (no
gouging) or inside (gouging). The first task is to find a point on the curve, that has

the same z-elevation as of the test point P,, and call it as profile point

P, :[xp Yp zp}T (shown in Figure 3.6(a)).

Z A
C(2)
P, =C(Z=z) -
‘/Pto 77777

Z =1z,
PeL >
Y :

”z - — —

(@ (b)

Figure 3.6(a) The Curve profile and the location of profile point according to
the test point and (b) the corresponding envelope of the cutter.

Finding profile point P,requires the estimation of curve parameter value U,

which gives a point on the curve having same z-elevation as of the test point
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P, i.e. z,= z,. For parametric curves the computation of such z, is highly non

linear problem therefore to facilitate the computation of P, the profile curve

Cw)=[x(u) y() zw):[0 11 >R is re-parameterized along z-axis. Since for
arbitrary parametric curves the desired re-parameterization can only be

approximated, therefore the objective is to approximate the function

f(m)=[x(m) y(m) m] by another curve C(Z). The feature of this approximated

re-parameterized curve C(Z)is that Pp can be directly calculated from the z-

elevation of the test point as the curve parameter value instead of searching the

curve parameter. Let r, and r, denote the distances of P, and P, fromPg

respectively on xy-plan, if r, < r,, the test point P, will be gouged.

3.5 Application

Example-1: Machining of a single surface patch using ball end mill.

A B-spline surface patch with high curvature variation, shown in Figure 3.7,
is selected to show the effectivness of the proposed gouging detection algorithm. A
ball end mill cutter of radius 0.5 inch is used to generate the gouge free CC-paths.
The CC-points, shown in the Figure 3.7, are the gouging points, and should be
eliminated from the tool-path. The gouge area associated to the cutter R = 0.5 inch
can be machined after using smaller cutter size. Figure 3.8 shows the error for the
given gouging allowance of 0.05 inch, and it is clear from the figure that all the CC-
points are within the gouging allowance. The same surface was machined in CATIA

45



surface machining work bench, without changing the machining parameters and

cutting tool. It was observed that the cutting tool gouged the surface at high

curvature regions, which is shown in Figure 3.9.
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Figure 3.7 Gouge CC-points when using ball end mill cutter of radius 0.5 inch.

Example-2: Machining of a single surface patch using Round End Mill.

In 3-axis milling, ball endmills are more frequently used than other types of

cutters because of its simple geometric shape. However, flat and round end mills

offer higher cutting efficiency, because parts can always be cut by the periphery of
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Figure 3.8 Error of gouging free tool path for ball end mill of 0.5 inch
diameter and 0.05 gouging allowance
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Figure 3.9 Error of gouging free tool path generated in CATIA for ball end

mill of 0.5 inch diameter and 0.05 gouging allowance

these cutters at the maximum cutting efficiency [23]. Therfore roughing operation
can be done with high machining efficiency using flat or round end mills, followed
by fininshing operation with smaller size ball end mill cutter. In this example we
have selected a surface, shown in Figure 3.10(a), with high curvature variations, and

a round end mill cutter to show that the proposed method can handle complex
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surfaces and a variety of cutter shaps. Figure 3.10(b), shows the gouging free CC-

paths by using round end mill (R1 = 0.2 inch, Rz = 0.2 inch).
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Figure 3.10 (a) Surface for Example-2 and (b) gouging free CC-path using
round end mill R1 = 0.2 inch, R2 = 0.2 inch.

xample-3: Machining of a Composite surface using ball end mill.

E
Surface models of industrial parts with complicated shape are usually composed of

many surface patches, called compound surface. During machining of one patch the
cutter may gouge the other neighboring patches, therefore it is important for
gouging detection algorithm to check the suspected neighboring patches also. Figure
3.11, shows a compound surface which contains six surface patches. We have used
three different sizes (Radius=0.2 inch, 0.55 inch, 0.7 inch) of ball end mill cutters,

and the corresponding gouge free CC-points (squares) and gouge CC-points (circles)

are shown in Figure 3.12.
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Figure 3.11 Composite NURBS surface with six surface patches.
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Figure 3.12 CC-points using ball end mill of (a) 0.7 inch diameter, (b) 0.5
inch diameter and (c) 0.2 inch diameter
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3.6 Summary

In this paper a generalized gouging detection algorithm has been proposed
for three axis compound surface machining. For higher accuracy the proposed
method uses optimization technique and a discrete hybrid PSO method is developed
to improve the computational efficiency. The cutter shapes mostly used in the
industry have been discussed to check gouging for complex surface machining. To
avoid searching across the whole surface, which is normally composed of several
surface patches, a method for the query of only potential gouge patches has been
developed. Different examples have shown that the proposed method is versatile
and robust enough to be used from simple to complex surfaces for a variety of cutter

shapes with higher accuracy and efficiency.
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Chapter 4 Offset for B-Spline NC Tool-Path
with Offset Error Globally

Bounded

4.1 Introduction

The topic of representing the offset of a 2-D B-spline curve in the same form
has been under research for a long time, and it has many industrial applications,
especially, in NC tool path generation for pocketing. For B-spline tool paths, it is
often required that the tool paths have fewer control points, lower base function
degree, and higher geometric accuracy. However, the existing methods often
generate the offsets of 2-D free-form curves in the form of B-spline curves with high
function degree and many control points. Although these offsets are useful in
computer-aided design, they are inappropriate for the use of CNC machining. To
address the problems in order to generate high quality B-spline tool paths, this
original work formulates an error function of the offset approximation and then
constructs a NURBS curve to globally bound the errors. By checking the maximum
coefficient of the bounding curve, the upper bound of all the approximated offset
errors is found and the errors can be reduced by adding more offset points at the

appropriate locations. The proposed new approach is more efficient, and the
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resulting offsets in B-spline are more accurate with fewer control points and low
function degree. It is useful to generate B-spline tool paths for CNC pocketing, and

has potential for other applications in industry.

In this chapter we use a different approach from Elber and Cohen [32] to

bound the error globally in curve offset approximation. They computed the

difference of CZ(u) and C(u) to generate the difference function, which may
underestimate the error bound (for details see [35]). In contrast, we estimate the
difference function between the approximated offset and C} (u) and the exact offset
C,(u) to develop the error function 0 (u) , which guarantees to avoid the

underestimation problem, faced by [32]. Although the approximation methods
based on circular approximation [35, 36, 41] give exact and sharper error bound
than our method, but normally produce high degree approximate offset curve with
larger number of control points (curve segments) compare to our method. The
proposed method is robust against the presence of inflection points and loops in the

exact and approximated offset curve, unlike the other methods [35, 36, and 41].

4.2 Formulation of Upper Bound Function &(u) for Offset Error

For a given regular B-spline curveC(u)= [x(u), y(u)]T, its true offset curve

C,(u) at distance d along its unit normal vector N(u) is given by

cd(u){Xd(“)}zc(u)m.m(u) 4.1)



Where,

or

To represent the offset with a B-spline curve, the true offset Cd(u) is approximated

by fitting a B-spline to it. Basically, the approximate offset C; (u) is represented as
T
CZ(u):[xZ(u),yZ(u)} :

By considering Figure 4.1, the difference R(u)between the true offset and the

original curve is
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Figure 4.1 A B-spline curve its offset and error ¢

and the difference s(x)between the approximate offset and the original curve is

The offset error g(u) is defined as the distance between the true offset Cd(u) and

the approximate offset Cj (u) The representation of the offset error is
e(u) =[R(0) ~S(u)| =[x (u) =, (4) y, (u)=ys(u)]

Because of the presence of square root, g(u)cannot be represented in polynomial

form. Therefore, the square of the offset error is introduced as

2

0 =(x, (u) s (1)) + (v, () =¥ (u)) (42)
To simplify the offset error function, set

Al =R(u)] +[s () =d? +x, (u)? +y, (u)’
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and
() =[R(@)]-5(w)]-c050 =, (u) . (u) 43, (1) ¥ ()
where @ is the angle between R(u) and S(u), and Eq. (4.2) can be simplified as
e(u)’ ~fi(u)=-2-£,(v) (4.3)
Taking square on both sides
(e(uf ()] =(2-5,(w))
#(u)" ~26(u)" fi(u) + fi(u) =45 ()’
Since ¢ is normally very small therefore; &(u)* ~0
26 (u)} fi(u)+ f(u) =45 (v)’

where &° (u) is the approximated offset error function

fiu) =4f(u)’
2f,(u)

() =

(4.4)

oo U250 (0)-25,()
24,(u)

P (U)Z _ (0,5+ E((Z))](fl(u) -2f, (u))
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using Eq. (4.3)

£ (u)’ :E+%j.g(u)2 (4.5)

Lemma: For a given B-spline curve C(u) and its offset distance d, the true offset
curve C, (u) cannot be represented with a B-spline curve. To represent the true
offset curve, a B-spline curve Cg(u) is fit to sample points on Cd(u) to approximate

it. The offset error function &°(u) is defined above. A function &(u) of an upper

bound of the offset error is found as

Proof:

The module of the difference R(u) between the true offset and the original

curve is ‘R(u) , and the module of the difference S(u) between the true offset and

the approximate curve is |S(u)| . The following relationship always holds,

(R()|-ls(u))" =0

Then we can get
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o \R(uz)\.‘s(u)\z%
‘R(u)‘ +‘S(u)‘
Since angle @ is the angle between R(u) and S(u), generally, the in-equation

0<cosf@<1is true. By multiplying this in-equation with the above in-equation, we

get

0< ‘R(u)HS(u)‘ .cos @ sl
R(u) +|s(u)” 2

which is

N

—~
<

~

=
—~

<
N—

IA
N |-

meanwhile, we can get an in-equation

therefore,

using Eq. (4.5),
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2 fi(v)
and
a/ A2
5(U): g(u) >
£+2 fZ(U)Z
2 fi(w)
[End]

The function can be further simplified as

5(u)=

fi(u)' =4 (u)’

fi(v)

Since the function is always equal to or larger than the square of the offset
error function, it is an upper bound function of the offset error function. In other
words, the square root of the maximum value of the bound function is guaranteed to
be larger than all the error along the offset curve. The function is a rational function;
and its numerator and denominator are polynomials without square root. Thus, it

can be re-represented as a NURBS curve function, which is crucial to have offset

fi(u) +4-f(u)

error globally bounded in the offset approximation.
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4.3 Globally Bounded Offset Error in the Offset Approximation

The main feature of this work is to effectively control the maximum offset
error within a specified tolerance in the process of approximating the true offset
with a B-spline curve. The resulting offset in B-spline form is accurate with less
control points and lower function degree. This feature is superior for the purpose of
generating B-spline tool paths, compared to the current offset methods. In the
current work of finding approximate offsets in B-spline form, the offset errors
between the approximate and the true offsets are not globally checked. It is always
a concern about the errors of the approximate offset between the sample points.
This is why some researchers have proposed offset approximation methods with the

errors bounded all along the offset curve.

To globally control the offset error, it is necessary to know the maximum
error of an approximate offset or the upper bound of this error. For this purpose

upper bound function of the offset error function is represented in NURBS form as

Zn:N,lp (u) w,.F,
ou)==2 (4.6)

ZN,,p(u) w;
i=0

Where F, are the control points, w;are the weights, and N,-'p(u) are the pth—degree
basis functions. Among the scalar coefficients F;, we can find the maximum

coefficient o (o =max(F;)) and it can be proved that aZmax(g(u)z) by assuming all

the coefficients in Eq. (4.6) equal to o
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ZN,,p (u) w;.o
ou) <=2
N; p(u) w;
i=0

and

5u)< N, ,(ulwy.0 + N, ,(Uw,.0+,...,N, ,(U)w,.0

Ny, (Ulwy + N, p(ulwy+,.., N, L (u)w,

which leads to

U-(Nl,p (Uwy + N, p(ulwy +,..., N, (U)W, )

o(u) <
(Nl,p (Uwy + Ny p(ulwy +,..., N, L (Uw, )

then, we have

ou)<ao
This result implies that

o >max(5(u)) = max(&(u)?) (4.7)

Therefore, \/g is an upper bound of the approximate offset errors, and it can be

used to estimate the maximum offset error. Hence, the principle of approximating a

true offset by controlling its error under the tolerance is to construct an appropriate

offset error function and represent it with a NURBS curve, if the upper bound Jo is
larger than the specified tolerance ¢, the original B-spline curve is subdivided at a

location of a domain where the maximum coefficient controls. This process is

continued until the error along the whole curve length is within the tolerance. The
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main procedure of finding an approximate offset with the error globally bounded is

outlined as follows.

1. Sample points on the offset curve C,(u) using Eq. (4.1), Figure 4.2(b).

2. Apply the least square method to approximate the exact offset C,(u) by a B-

spline curve Cj(u) with any suitable degree, Figure 4.3(a).

3. Find the corresponding upper bound function 6(u) of the offset error, Figure.
4.3(b).

4. Find the maximum value of the coefficients of J(u), max(F) in Eq. (4.6) to
bound the maximum offset error according to Eq. (4.7).

5. Ifymax(F)>7, break the base curve into segments at u;and u,,, knot

values of C(u).

6. Repeat steps 2-5 for each segment of the base curve, until the offset
approximation errors for all segments are within the tolerance, Figure 4.5.

7. Eliminate removable control points from the approximated offset curve
segments generated in the above steps so long as the errors are within the
tolerance.

8. Output the composite approximated offset in B-spline form with offset error

globally bounded and relatively small number of control points.

To demonstrate the advantages of the proposed method, it is applied to a

planar B-spline curve of degree five, termed as original curve (see Figure 4.2(a)) in

61



order to approximate its exact offset. The control points of the base curve are listed
in Table-4.1, the offset distance d is 0.5 inch and the offset approximation tolerance
7 is 10-2. Figures 4.2 to 4.5 demonstrate graphically the process of generating offset

approximations. First, points are sampled on the offset curve C,(u), Figure.4 2(b).

There are several techniques of curve fitting to the sample points; we have chosen

global least square approximation technique and parameterization from the base

curve to get offset approximation C;(u) using a 34 degree B-spline curve with 28

control points, Figure 4.3(a). To determine the accuracy of C;(u), the proposed error
bound function d(u)is computed. To represent o(u) as a NURBS curve, let the

numerator is A(u)
(0 — 4+ £y () lu) = Alu) = g“’w P
and the denominator is B(u)
fU)? +4- f,(u)? =B(u)= ,:ioN"" (w) Q;

WherePF, and p are the control points and degree of A(u) and similarly Q; and q are

the control points and degree of B(u). We have used Matlab spline tool box to solve

for A(u) and B(u) and found as follows
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1000

DN, 3g(u) P

Slu) = 2:5; = 20 (4.8)
2N 25(U) Q;
=0

Since g < p and m<n, therefore to match the degree and number of control points

of B(u) to A(u) we used degree elevation and knot insertion processes which

1000
converts B(u) into D(u)= Z N; ss(u)w; (note that degree elevation and knot insertion
j=0

does not change the original curve). Now Eq. (4.8) becomes

1000
N. o (U) P.
5 _A(U)_ ; 1,38( ) i 49
(U) - D(u) - 1000 ( ' )
z Ni,38(u) Wi
i=0
Assume F, =i (i=0,...,1000) and O(u) is written as
w;
N; 35(u) w;.F;
Alu) o
o(u)= D) =700 (4.10)
DN, gglu) w;

i=0

Eq. (4.10) is the standard NURBS representation of o(u) (see Figure 4.3(b)). To find
o(u) in NURBS form using Matlab spline tool box on duel core processor of 2.40

GHz, the total computation time was 3.581 seconds.
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We have already proved that offset error can be globally bounded by the

maximum value of the coefficients of o(u). In this example the 129t coefficient of

5(u) is the extreme value and it is found to be F,q =6.021x107*. Since, /R, >7 the

approximated offset is segmented with the objective to decrease the offset error.
Using the local property of NURBS curve the base curve C(u)is broken at u;,q and
U3z to convert it into three segments. For all segments, new offset curves are

approximated and upper bound functions are generated which are within the

tolerance as shown in Figure 4.5.

Initially, 28 control points were used to approximate the offset and the errors
were higher than the prescribed tolerance, Figure 4.3(b). When the proposed upper
bound function is used to find the maximum error and its location; after

segmentation only 23 control points are required and the maximum offset error is
lower than the tolerance. Figure 4.4(a) shows the square of exact offset error &(u)? to

compare with the error estimated by the proposed upper bound functiond(u),

Figure 4.3(b). For further clarification the difference of §(u) and &(u)?is depicted in

Figure 4.4(b), which reveals two important facts; (1) the upper bound function is
always larger than the exact offset error as it was proved by the lemma in section-

4.2, the difference is very small, means the over estimation cost is low.
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Figure 4.2(a) A planar B-spline curve of degree 5 and its control polygon; (b)
sample points on the offset curve.

Table 4.1 Control points of the B-spline curve shown in Figure 4.2(a).

Control 1 2 3 4 5 6 7
points

X (inch) 0.3002 0.6007 3.3409 4.3524 4.8219 5.7489 6.3163

y (inch) 0.0479 5.3615 -1.1651  -1.0703 0.4364 1.1416  -0.0375
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Figure 4.3(a) Offset approximation in the first iteration and its control
polygon; (b) upper bound function of the offset error d(u).
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Figure 4.4 (a) Square of the exact offset error; (b) difference between the
estimated and exact errors.
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Figure 4.5. Offset approximation consists of three B-spline curve segments
and the corresponding d(u) for 3 segments.

4.4 Application and Comparisons

In this section, we give the comparison of our method based on error
function with other offset approximation methods. Lee et al. [35] gave the
comparison of the existing curve offsetting methods with their method in terms of

accuracy and number of control points using different curve shapes. We have
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selected the same curve shapes to demonstrate the effectiveness of our method in
terms of the number of control points and order of the curve for a given tolerance
value. The first example in Figure 4.6 is a cubic Bezier curve with four control

points: (-0.7859, 0.8918), (-0.9933, -0.5969), (0.3000, -2.5000) and (0.9000, -

0.2000). An approximate offset curve Cj(u) at radius 1.0 is generated using the least
square method and the distance between C,(u) and Cj(u) is estimated using the
error function§(u). The maximum deviation of Cj(u) form C(u)is bounded by

(d+Jo) as shown in Figure 4.7(a). The corresponding error 6(u) is shown in Figure

4.7(b). The offset approximations for different tolerance values along the upper

bound functions 6(u) are shown in Figure 4.8(a)-(e).
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Figure 4.6 Cubic Bezier curve with control polygon.
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Figure 4.7(a) Approximate offset to cubic Bezier curve with error bound
curves; (b) the corresponding error function.
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Figure 4.8 Offset approximations to the cubic Bezier curve and the
corresponding upper bound functions for different tolerance values.
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The last column (proposed method) of Tabel-4.2 shows the number of
control points to approximate offset curve of degree 5 for different values of
tolerances, and it is clear that the proposed method requires least number of control
points as compare to other methods (we have used the same abbreviations, M2 is

the method proposed by [37], for the details of methods and symbols see [37]).

Table 4.2: Comparison of the proposed method with current methods for the
number of control points.

® Cobb Elb Elb-2 Til Lst Lst-2 M-2 Prop.
10" 10 11 13 10 7 10 22 7
10 31 24 25 31 13 19 29 12
10° 94 74 97 97 19 31 43 18
10" 316 216 322 322 31 46 71 23
10” 865 974 769 886 50 88 127 29

The second example in Figure 4.9 is a cubic uniform B-spline curve with 7
control points (-3.0162, 2.3414), (-3.9719, 2.2084), (-1.0705, 0.07228), (0.3196, -

2.7752), (-0.1528, 2.299), (2.9242, -0.9399) and (2.8027, 3.0278). The approximate
offset curves Cj(u) of degree 5 at radius 0.5 are generated for different tolerance

values, shown in Figure 4.10(a)-(e) along with deviations J(u) from the exact offset.
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Figure 4.10 (a) Approximate offset to cubic B-spline curve with error
bounds; (b) the corresponding error function

For higher tolerance values the curve was divided into segments at proper
knot values as discussed in section-3. Table-4.3 shows the comparison of our
method (last column) in terms of total number of control points required to meet
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the prescribed tolerances for offset approximation to the cubic B-spline curve in

Figure 4.9.

Table 4.3: Comparison of the proposed method with current methods for the number of
control points.

® Cobb Elb Elb-2 Til Lst Lst-2 M-2 Prop.
10" 28 19 22 25 16 31 78 19
10° 73 57 55 67 48 49 92 39
10° 208 174 190 202 84 94 120 65
10" 637 417 550 640 138 166 176 94
10° 1846 1357 1690 1918 240 277 302 146

4.5 Summary

This work has proposed a new approach to approximating B-spline offsets
with curves in the same form, which are appropriate for CNC pocketing. The main
feature of this approach is that the offset error is globally bounded during the
approximation process. The research contribution is the upper bound function of
the offset error function constructed in this work, which can be used to easily
estimate the maximum offset error in order to globally control the offset error.
Many tests have demonstrated the effectiveness of the upper bound function. The
approximate offsets in B-spline form basically have fewer control points, less
function degree, and all their offset errors are within the specified tolerance.
Therefore, the offsets are appropriate for the use of CNC pocket machining. This
new approach has great potential to generate high precision NC tool paths for

pocketing.
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Chapter 5 Arc-Length Parameterized
NURBS Tool-Paths with Global
Error Control for Smooth and
Accurate Sculptured Surfaces in

3-Axis Machining

5.1 Introduction

Non-uniform rational B-spline (NURBS) tool-paths have already been
accepted in industry for machining sculptured surfaces of aerospace, aeronautical,
mould, and automotive parts. Compared to free-form surface machining of the
conventional linear and circular tool-paths, the advantages of using NURBS tool-
paths in surface machining [43, 44] include: (a) the cutters can move faster with
better kinematics, (b) the machined surfaces are smoother, and (c) the NC programs
are smaller in size. To ensure these advantages, high quality NURBS tool-paths are
essential, which should be arc-length accurately parameterized [45, 46], gouging-
and-interference completely free, and machining-error globally bounded. However,
people often regard that NURBS tool-path generation simply is to fit a NURBS curve

to a group of discrete cutter locations. This prevailing opinion is wrong and hinders
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research on high quality NURBS tool-path generation. Unfortunately, current tool-
path generation methods and commercial CAD/CAM software cannot generate the
high quality NURBS tool-paths; as a result, NURBS machining is not widely used in
industry. Technically, the current methods of generating a NURBS tool-path are in a
similar procedure: (1) finding a group of cutter contact (CC) points on a sculptured
surface according to a path planning strategy, (2) calculating the corresponding
cutter locations, (3) fitting a NURBS path to these locations to ensure the deviation
between them is with a prescribed tolerance, and (4) conducting gouging detection
to delete path segments with gouging. Although the methods can work on simple
shaped parts, the resulting paths have the problems: (a) the path is accurate to a
number of discrete CL points, but not to the theoretical CL path, which means the
machining error is not globally bounded; (b) the path is not arc-length
parameterized NURBS path, which is required by the NURBS interpolation of the
CNC controller; and (c) the detection gouging along a NURBS path is difficult and

deleting the NURBS path segments with gouging is troublesome.

To address the problems in order to promote this machining, NURBS tool-
paths with the arc-length parameter is proposed, and a new approach is established
to ensure the path accuracy in terms of the theoretical smooth CL path, keep good
tool kinematics, and effectively eliminate gouging and interference. Several cutting
tests have clearly demonstrated that the arc-length parameterized NURBS CL paths
generated in this work can cut accurate, smooth sculptured surfaces. The approach
can be implemented into current CAD/CAM software to benefit the manufacturing

industry.
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First, the arc-length parameterized NURBS tool-paths are introduced in
Section 5.2. Second, the theoretical cutter location path is defined and samples
cutter locations and their arc-lengths are computed in Section 5.3. Third, gouging-
and interference detection is applied to the discrete cutter locations to eliminate the
defective locations in Section 5.4. Then, a NURBS curve is fit to the sample cutter
locations with the parameterization and path errors are globally bounded in Section
5.5. Finally, two practical examples are provided to demonstrate the effectiveness of

this new approach in Section 5.6.

5.2 Arc-Length Parameterized NURBS Tool Paths

With development of NURBS interpolation in CNC controllers for CNC
machining of accurate, smooth sculptured surfaces, NURBS tool-paths are necessary
in order to use this new function. As the core of this emerging high technique, the
NURBS interpolation and the NURBS tool-path generation have not been well-
established yet and are under extensive research in academia and industry. In
machining, the NURBS tool-path is input to the interpolation algorithm as a
reference; and it is expected that the controller guides the tool in real-time moving
along a NURBS trajectory with the prescribed feed rate, thus, they are closely
related. It is well known that, if the NURBS tool-path is arc-length parameterized,
the interpolation algorithm can easily generate accurate tool trajectory complying
with the path and ensure good tool kinematics. Although many researchers are
developing advanced NUBRS interpolation algorithms to handle non-linear NURBS

tool-paths with a unit free parameter real-time, it is important and feasible to
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generate accurate NURBS paths with the arc-length parameter prior to machining.

This type of tool-path is an efficient solution to the problems of the NURBS

interpolation.

Kb
Fillet end-

along CL
path

Control points
«and polygon

mill moving | /

Sculptured

CC path surface

Figure 5.1 [llustration of a smooth NURBS CL path for machining a
sculptured surface.

Mathematically, arc-length parameterized NURBS paths and general NURBS

curves are formulated with similar parametric equations; however, they are

essentially different. The NURBS curves are a new type of curve model in computer-

aided design to represent free-form geometry. A general NURBS curve can be

attained by fitting a group of points with the least square method; by taking the

chord lengths as the point parameters, an approximate arc-length NURBS curve can

be found. The major concern is the deviations between the points and the curve

should be less than a tolerance. A NURBS path can be generated by fitting a group of

cutter locations of a theoretical path. Compared to the general NURBS curves, the

major difference of the NURBS paths includes that (1) the paths should be gouging

free, and (2) the overall deviations between the NURBS path and the theoretical CL
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path should be with the prescribed tolerance. Unfortunately, the existent approach
to the approximate arc-length NURBS curve cannot be used for arc-length

parameterized NURBS tool-paths.

As a new type of NC tool-path, the arc-length parameterized NURBS cutter
location (CL) path is better than the conventional linear cutter location path in free-
form curve and surface machining. Since the NURBS CL path is represented with the
NURBS equation, and the linear CL path is represented with the polygon of a group
of discrete cutter locations. The form of the NURBS CL path is simpler than that of
the linear CL path. The other advantages of the NURBS CL paths include that (1) the
NURBS CL path is smoother than the linear CL path, and (2) the tool kinematics of
cutting along the NURBS CL path in high feed rate is better than that along the linear
CL path. To generate CL paths for a surface milling, first, a group of discrete points
on the surface are calculated as cutter contact (CC) points, according to a tool-path
planning strategy, such as the parallel-plane, the iso-cusp and the steepest
ascending methods (see Figure 5.1). In the conventional CNC machining with the G1
linear interpolation, the polygon of the CC points (called CC polygon) that is not on
the part surface is used to approximate the theoretical, smooth path of cutter
contact points (called CC path) that is on the part surface. Second, based on the CC
points, the corresponding CLs are computed and their polygon is used as the path of
cutter locations (called CL path), which is illustrated in Figure 5.2. Then, simulation
for the tool cutting the surface along the CL path is conducted to detect possible
tool-and-part gouging and interference, and the CLs causing the defects are deleted

from the CL path. Finally, the CL path is fed into the CNC controller of the machine
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tool to be used. This is the main steps of the conventional tool-path generation

method.

CL path
segment and
polygon

Fillet end- R Sculptured

mitl moving o surface
T alongcL *CC points on
path *  thesurface
polygon

Figure 5.2 Illustration of a conventional linear (G1) CL path represented
with a polygon.

Suppose a whole NURBS CL path is calculated using a conventional way and
represented with one equation. If a segment of the path can cause gouging and/or
interference, the path has to be decomposed to remove the invalid segment. This
would be complicated and require a lot of un-necessary effort. To address the
problems in this work, prior to calculating arc-length parameterized NURBS tool-
paths, gouging and interference detection is conducted with an optimization model.
To ensure the path in accordance with the theoretical CL path and its
parameterization unity, an optimization model for error globally bounded is
established. By using this method, the NURBS path accuracy can be increased and

the number of control points can be reduced.
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5.3 Theoretical Cutter Location Paths and Their Points Arc-Length

Calculation

5.3.1 Theoretical cutter contact paths on sculptured surfaces

As a critical model of free-form surface in CAD/CAM software, NURBS surface

type is often used to design sculptured parts, and its simple form, B-spline surface, is

defined [60] as

S(u,v)= ZZ[N 'P;,,-]:' U €[ Ui Unnox |V € [Viinr Vi ] (5-1)

where P, are control points, u and v are parameters, and N, (u) and N, (v) are

blending functions with orders of K and L, respectively. The first derivatives of the

. os(u, Oxs(u, dys(u, 0zs(u,
surface in terms of u and v are (;u”):[*igj” vs(u) ZS;:V)} and

Oxs(u,v uyv zs(u,v T . . . .
as(a”v'v) :[° S(gv’ ) a"s(,gv’ ) asgv, )} , respectively. According to the differential geometry

theory, the components of the first fundamental matrix of the surface are defined as
T T T
o[ o] [ton] [ ] [iton] g =[] [59] Ty, the first

derivatives of E, F and G in terms of u are

B3 :2.[65(U,V)I .{625(112,v)} 52)

ou ou ou
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£ {me] [ ] )

and

8_6_2_{85(U,V)T.{azs(u,v)}

ou ov ou-ov

respectively. The first derivatives of E, F and G in terms of v are

oF =2'{85(U,V)T '{GZS(U,V)}

E ou ou-ov

X | [T, ] 25

and

ov ov ov?

a_GZZ'{GS(u,V)}T _{azs(u,v)}

respectively.

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

By applying a tool-path planning strategy, number of M. CC points, CC,, CC,, ..,

and chcc , of the surface can be calculated for each tool-path as

cC,:=S(u,,v,), €C,:=S(u,,v,), .., and S,,_ ::S(u

).
MCC ’ MCC
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A polygon is constructed by sequentially passing the CC points, which is often

called their CC path in practice. By definition, the theoretical CC path, CC(t), is a

smooth curve with a parameter ¢, passing through the CC points and exactly lying on
the surface (see Figure 5.3(a)). Currently, the CC path is used to approximate the
theoretical CC path for CNC machining with the G1 interpolation. However, the

theoretical CC path is indispensible in computing NURBS tool-paths.

Given the CC points, the theoretical CC path CC(t) can be easily found. First, a

polynomial with a parameter ¢t is fit to the CC points in the parametric space u-v of

the surface. (see Figure 5.3(b)) The coordinates of the CC pointsCC;, CC,, ..., EMCC
are [u,,v, ], [u,,v, ], oo [uMcc ,vMCJ in the parametric space, respectively. By using the

least squares method, a polynomial with a parametric ¢, e.g., a cubic B-spline curve,

can be found as

cc(t):= {“(t)}, teltt ] (5.8)

— T
The first derivative of this curve is << = [d”(t) dv(t)} . By substituting Eq. (5.8) into

dt dt 7 dt

Eq. (5.1), the theoretical CC path can be formulated as

CC(t)=| vec (t) [=| vs(u(t) V(1)) |, t €[tmimstmn] (5.9)
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With change of parameter ¢, all CC points of the theoretical CC path can be

calculated. The CC path is necessary to find the theoretical CL path.

(a)

Sculptured
surface

Theoretical CC path
on the surface CC(t

(b) A
Vimax
CC path in the
parametric space E
el 4
CC(t):=
=)
te [tmin’tmax]
Vinin &1 =[U1,V1] _
Umin Umax U

Figure 5.3 (a) A group of CC points determined with a machining strategy
and a theoretical CC path on the sculptured surface and (b) the points in the
parametric space corresponding to the CC points and a curve fit to these
points.

5.3.2 Formula of the theoretical cutter location paths for fillet end-mills

Since fillet (or bull-nose) end-mill is in a generic shape of end-mills, the

theoretical CL path and its arc-length equations are derived here for this type of
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cutter, which can also be applied to ball and flat end-mills directly. According to Eq.

(5.9) of the theoretical CC path CC(t), its corresponding theoretical CL path for a

fillet end-mill is formulated, and some equations are prepared for estimating arc-

length of this CL path afterward. In this work, the end-mill’s radius is denoted as R,
and its fillet (or corner) radius as R.. Based on the sculptured surface equation, Eq.

(5.1), its unit normal vector is represented as

X -t | 0S(uv) as(u,v)
n(u,v)=|y,(uv) =(E-G—F) 1= e (5.10)

Then, the equations of the first derivatives of the unit normal vector in terms of u

and v are

X

on(u,v) _ (E-G p )7% '{825(u,v) oS(u,v) .\ oS(u,v) y 825(u,v)}_

ou ou’ ov ou ou-ov
. (5.11)
E-G-F)°
u_(@%.aﬁ_z.Fﬁ],[as(m ) as<u,v>}
2 ou ou ou ou ov
and
on(u,v) _ (E-G—FZ )_% . 0°S(u,v) y oS(u,v) .\ os(u,v) § 0°S(u,v) ~
ov oudv ov ou ov’
(5.12)

E-G-F)"
u_((;.&E.G_G_Z.Fﬁj_{asw,v)xas(u,v)}
2 ov ov ov ou ov
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respectively. It is evident that the unit vector of the tool axis a, is a,:=[0 0 1]T.

Besides, a constant matrix a, is setas

b(u,v)=|y,(uv) ::(nT -a, -n)ﬁ(a2 n) (5.13)

The first derivatives of b(u,v)in terms of u and v can be formulated as

ab(aZ'V) :(nT a, .n),% (az ‘5_n)_(nT a, .n)f% (nT -a, .@j(az ‘n) (5.14)

and

8b(al‘l/,V) (w"a,n)” (az %)_(m an)? (nT a %}(az N (5.15)

respectively. Therefore, the equation of calculating CLs for the fillet end-mill is

derived as
X (u,v)
CL(u,v)=|yq (uv) ::CC(u,v)+RF-[n(u,v)—a1]+(RT—RF)-b(u,v) (5.16)
z. (u,v)
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Meanwhile, the equations of the first derivatives of CL(u,v) in terms of u and v are

found as
oCL(u,v) _ os(u,v) R on(u,v) +(R,R,) db(u,v) (5.17)
ou ou ou ou
and
ocL(u,v) _os(u,v) iR on(u,v) +(R, -R,)- ob(u,v) (5.18)
ov ov ov ov

respectively.

According to Egs. (5.8) and (5.16), the formula of the theoretical CL path is attained

CL(t):=| ye (u(t)v(t)) |, t €[tmtom] (5.19)
)

Egs. (5.11), (5.12), (5.14), (5.15), (5.17) and (5.18) will be used to calculate the arc-
length of any point on the theoretical CL path in the next section. This path is a
critical reference for generating its NURBS representation because it can better
control the NURBS accuracy and smoothness. Currently, people select a group of
discrete points and fit a NURBS path to these points. In this way, the NURBS path
around the sample points are ensured; however, the path between these points

could wiggle around these points, resulting an un-smooth path.
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Theoretical CL path
CL(t), teft

min/ tmax

Sculptured
surface

Theoretical CC path
on the surface

Figure 5.4 A theoretical CL path determined with a theoretical CC path on
the sculptured surface.

5.3.3 Cutter locations sampling and their arc-lengths calculation

In this work, an initial NURBS CL path is generated using the conventional
way, which is to sample a group of CLs of the theoretical CL path, and then fit a

NURBS curve to these CLs using the least squares method. By using Eq. (5.19),

number of Mg, CLs can be sampled along the theoretical CL path,

cL, =C(u(t,)v(t,)), €L, =CL{(u(t,),v(t,)), .. and L, =CL{u(ty, )v(ty, )) (see

Figure 5.5). In order to generate an arc-length parameterized path, it is necessary to
calculate the true arc-lengths of the samples. Thus, the equations of the first
derivatives of the theoretical CL path in Eq. (5.19) in terms of u and v have to be

found as follows.

dCL(t) _ocCL(u(t)v(t)) du(t) .\ OCL(u(t),v(t)) dv(t)
dt ou dt ov dt

(5.20)
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oCL(u,v) (’)CL(u,v) du(t)

where —-— and —— have been found in Egs. (5.17) and (5.18); —;~ and d';,—(:)

using Eq. (5.8). Hence, the arc-length of a CL point with parameter t can be

calculated as

t

I(t)= j

t

dc (e

dt, te|t_,t
" €[ tinrtmax (5.21)

min

To calculate true arc-lengths of the sample CLs, the adaptive Simpson
quadrature method is applied to Eq. (5.21). After the sample CLs and their arc-
lengths are computed, gouging and interference detection should be conducted at
these CLs in order to eliminate defective CLs and re-group sample CLs, before an

initial NURBS CL path is fit to each group of valid sample CLs.

Theoretical CL path
CcL(t)

NURBS surface

Theoretical CC pa
on the surface g

Figure 5.5 Sampling a group of CLs of the theoretical CL path and calculating
their arc-lengths.
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5.4 Gouging-and-Interference Detection for Valid Sample Cutter

Locations

In sculptured surfaces machining, the cutter is prone to gouge and interfere
with the surfaces due to their complex geometric shape. Figures 5.6(a) and 5.6(b)
show a tool gouging and interfering with a part, respectively. Thus, it is important to
conduct gouging and interference check in high accuracy. Suppose the NURBS path
is planned in the same way as G1 CL path planning: (1) generating a whole path, and
(2) delete the path segments causing gouging after machining simulation. In the
NURBS machining of sculptured surfaces, if the cutter overcuts the surfaces while
moving along the NURBS path in simulation, the NURBS path has to be decomposed
at the CL points between gouging and non-gouging segments, and the segments with
gouging or interference have to be cut off and removed. This is troublesome and
time consuming. An example is rendered in Figure 5.7. To address this problem, a
new approach different from the conventional way is proposed. In this work, a
number of CC points of the theoretical CC path are sampled and their CL points are
calculated. Then, gouging and interference detection at these CL points are
conducted; the defected CL points are eliminated, and the valid consecutive CL
points are grouped. Finally, each group of CL points is fit with a NURBS path, which

is free of gouging and interference.
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Figure 5.6 (a) The tool is locally gouging the part surface while cutting at a
CC point and (b) the tool is globally interfering with the part.

A NURBS CL path

generated without

gouging detection

Part

Sculptured
surface

This path segment will
gouge the part.

Figure 5.7 A NURBS CL path with a segment that will cause gouging on the
sculptured surface.

5.4.1 A general optimization model of gouging and interference detection

To detect the cutter gouging and interference with the part’s surfaces

including the sculptured surface and its surroundings, computer graphics methods

are the dominate tool in current CAD/CAM software. Although they are

continuously improved by taking advantage of the latest computer graphics

techniques, their methodology is mainly based on simple, arduous geometric

operations, such as Boolean operations and polygon intersection, without much
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intelligence. With ever increasing demand for higher part precision in industry, a
perceivable, common weakness of them is that it often takes a long time for them to
conduct the detection; they could cause memory overflow, freezing the computer.
To find an effective solution, a new, general optimization model of gouging-and-
interference detection is established in this section, which is more precise, efficient

and completed.

Specifically, in this completed model, the geometry of the whole tooling
system and the part geometry are considered; the tooling system includes the APT
cutter’s cutting edges, cutter shank and the tool holder, meanwhile, the part includes
the sculptured surface and its surroundings. The APT cutter is with the generic
shape of flat, ball and fillet end-mills. Thus, the profile of the tooling system is
constructed with six segments, A-B (the bottom cutting edge), B-C (the fillet), C-D
(the side cutting edge), D-E (the side cutting edge and the shank), E-F (the tool
holder) and F-G (the tool holder). In Figure 5.8, the profile with the parameters as «

, B, 7,Re, R, Ry, Ly, Lg and Ly are defined in the cutter coordinate system
r—0—h. Ball, flat and fillet end-mills are special cases of the APT cutter. For ball
end-mills, « = =0 and Rg=Ry; for flat end-mills, « = =0 and Rg=0; and for fillet
end-mills,a = #=0 and O0<Rg <Ry. For a general APT cutter, o # f#0; thus, AB

and CD can be found as

AB:m.[RF-sin(a+ﬂ)+RT :cos B—Rg —Lysin 3]

and
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—m'[RF‘Sm(“JﬁB)—RT sina —Rg +L7 'cosa]

respectively. The heights of the turning points of the profile can be found
accordingly. HB =AB-sina , HC :LT—LS—CD'COSﬂ ) HD :LT—LS , HE :LT )

He =Hg + Ii;n; and Hg =Lt +Ly. The relationship between the height and the radius

of the profile point is represented as

0, (h<0)
h
tana’

(0<h<H,)

AB-cosa —R. -sina+\/R§ ~(Recosa—h+AB-sina)’, (H, <h<H.)

r(h)=1R; =(L; ~L,—h)-tanp, (H.<h<H)  (5.22)
Rr, (H, <h<H)
(h-L;)-tany +R;, (H.<h<H,)
Rys (H <h<Hg)
0, (He <h)

This relationship is used in gouging-and-interference detection to check whether or
not a point under inspection is within the tooling system while machining.
Compared to the existent methods only considering the cutting section of a tool

without the tool shank and holder, this tooling system is completed in geometry.
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Figure 5.8 The geometric model of the tooling system including the APT

Geometrically, when the cutter gouges or collides with the part surfaces at a
cutter location, at least one point on the part is within the revolving surface of the
profile modeled above (see Figure 5.8). In the other words, the distance between
this point and the cutter axis is less than the profile radius at the height of the point.
Figure 5.6 demonstrates the geometric relationship between the cutter and the part
in gouging and interference. Thus, the optimization model for gouging and
interference detection is constructed to minimize the objective function of the
distances between the cutter axis and the part points minus their corresponding

cutter profile radii. Suppose the tip A of the APT cutter is at a CL in 3-axis milling

and the coordinate of the CL point is [x, ¥, ,Zq | - For any point [x,y,z] on the part

surfaces {S,Sl,- =S, } , the objective function is represented as



Minimize f=[x—xo | +[y-va] —[r(z—za)]2 (5.23)
and
Subject to [x,y,z]T e{s,S,,+S,, "}

If the minimum of f is greater than zero, the surface is not within the volume of the

tooling system, and the tool will not gouge and interfere with the part. However, if
the minimum is negative, the cutter will overcut the part and damage the part. Since
this is a global optimization problem, solving it using the conventional method takes
a long time. In this work, the hybrid optimization method is employed, and the

result is very satisfactory.

5.4.2 Hybrid optimization method

To solve global optimization problems, genetic algorithm (GA), simulate
annealing (SA), ant colony, differential evolution and particle swarm optimization
(PSO) are often used. Among them, the PSO method is more popular for its simple
implementation and quick convergence within good accuracy. However, it can take
a long time for the PSO to pinpoint the global optimum, if the required accuracy is
very high. On the contrary, the Newton gradient method, a local optimization solver,
is able to quickly find the local optimum solution, but it is unable to find the global
solution. To increase computing efficiency, Chen and Liu [19] proposed the hybrid
optimization method that adopts the PSO in the rough search stage and the Newton

gradient method in the fine search stage, in order to take the advantages of the
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global and local optimization methods. In this work, this method is further improved

by using the discrete PSO method.

To improve the hybrid optimization method, in the rough search stage, the
continuous problem domain is discretized, and the discrete PSO method is then
applied. Compared to searching in the continuous domain, the solver can find the
pseudo optimum in the discrete domain more efficiently. With the pseudo optimum
as the initial point, the Newton gradient method can accurately pinpoint in a
fraction of second. Figure 5.9 shows an example of using the improved hybrid
optimization method. In this example, a NURBS surface with several local
maximums is used. The new and the PSO methods are applied to find the global
maximum value of the surface, and the results are listed Table 5.1. It is evident that
the improved hybrid method is much more efficient in solving this problem with the
same accuracy, compared to the PSO method. Therefore, the improved hybrid
method is employed to the optimization model of gouging-and-interference

detection.
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Table5.1 Comparison between the improved hybrid PSO optimization and the PSO method

PSO Improved hybrid optimization method
Test1 Test 2 Test 3
Discrete PSO Gradient Discrete PSO Gradient
method method method method
Accuracy 10* 107 10" 10! 10™*
Iteration # 109 77 2 34 4
Time (s) 5.2513 3.7044 0.1927 1.6509 0.3991
Total Time (s) 5.2513 3.8972 2.0501
Improvement 25.78% 60.96%

Global Maximum
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Figure 5.9 Estimation of the global minimum for a NURBS surface with
several local minimums.

For a theoretical CL path, a group of CLs are selected. By applying the hybrid
optimization method to the gouging-and-interference model at these CLs, the CLs
are inspected for validity. Meanwhile, the critical CL between a valid and an invalid
CL is calculated as well. Then, the invalid CLs are deleted, and the valid CL points

are re-grouped for generating piecewise NURBS tool paths in the next section.
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5.5 NURBS CL Path with the Arc-Length Parameterization

For a group of gouging-free CL points, by using the least squares method [1],

a NURBS curve can be found as

>[N (1)P s 1€ [l (5.24)
a(h] "~

(@]
-
—~
—
~
Il
N X
2l
o
—~
-
~
Il

where parameter [ is the arc length. In the fitting process, the deviation between the
NURBS CL path and the theoretical CL path should be less than a prescribed

tolerance t_, for high accuracy. As a feature of arc-length parameterized NURBS

path
paths, the first derivative of the path in terms of the arc-length parameter should be
unity. Hence, the difference between the magnitude of the first derivative and one

should be reduced within a prescribed tolerance t__ . in the iterative fitting for high

para
accuracy. lIdeally, it is necessary to ensure that the paths deviation and the first
derivative non-unity at every point of the paths are less than the tolerances, which
means the errors are globally bounded. However, it is not practical. An alternative
way of generating the CL path with error globally bounded in this work is to find the
maximum error with the global optimization method and reduce the error within

the tolerance.
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5.5.1 Fitting with parameterization error globally bounded

In theory, a genuine arc-length parameterized NURBS CL path is
characterized with the unity of the first derivative in terms of the arc-length

parameter, which is represented as
H_a H (5.25)

However, the NURBS path cannot meet the characteristic equation at the beginning
of fitting the CL points. The deviation between the first derivative and one is called

the parameterization error, which is formulated as
H_a H (5.26)

In the iterative fitting process, the NURBS path is modified by changing the number
of control points or/and the base function order in order to reduce the

parameterization error, until it is less than a prescribed tolerancet . So, this

criterion is represented as

)1+t (5.27)

Pa ra para

1t <)

After an arc-length parameterized CL path is generated, all points of the path should
be checked against the criterion. If all points are qualified, this CL path is truly
parameterized with the arc-length. Otherwise, the path is improved in a new round

of fitting. However, it is not practical to check all points. For this purpose, the hybrid
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optimization method is used, which is effective to find the maximum
parameterization error along the path. Thus, the maximum error should be less than

the tolerancet

para*

5.5.2 Path error bounded fitting

For an arc-length parameterized NURBS CL path a(l) generated above, the

deviation of the path E(/) compared to the theoretical CL path CL(t) refers to the

path error, and it is important that the path error is within a prescribed tolerance

t Mathematically, the path error is defined here. At a point

path *

[ %e (t0) Ve (t) 2 (2, )]T of the theoretical NURBS pathCL(t), the tangent vector of

the path is [dx (t,)/dt,dy, (t,)/dt,dz (t, )/dt]T . The equation of a plane
perpendicular to the tangent vector and passing through the point is

dt dt
d d
[x v 2] % =[xa(ts) yalts) za(to)] % (5.28)
ICLI o dt |

where the coordinates [x,y,z]T refers to any point of the plane. The point

[xa(lo),ya (1), 2= (1, )T on path CL(/) is the intersection between the path and the

r4a
plane, so the point should meet Eq. (5.28). The distance between points
(x5 (o), va (1) 2 (1,) ] and [xq (t,),ve (t). 2 (t;)] is the error of path CL(1) with
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reference to path CL(t) (see Figure 5.10). Upon all points of the theoretical path

CL(t), the maximum error of path CL(/) can be found in the following optimization

model.

2

Maximize f(t,/):\/[xa(t)—xa(/)] Hye ©)=va (V] +za ()2 (D] (5.29)

Subject to: te(t .t . ],

l€[linrlose ], @nd

min 7 “max

dXCL(t) dXCL(t)
S dt dt
[x2(1) v=() 2z (1] dyd—ft) =[x (t) va(t) z.(t)] —dyf;t(t)
dZCL(t) dzCL(t)
| dt [ dt ]

As a criterion of the error-bounded fitting, the maximum path error f (t*,l*), the

max

solution of this optimization model, should be less than the tolerancet So the

path *

criterion is represented as

fmax (t* ! l*) < tpath (530)
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Figure 5.10 The definition of the NURBS CL path error in terms of the
theoretical CL path.

Sculptured
surface

Similarly, the hybrid optimization method is used to solve the above optimization

problem for the maximum path error. In the fitting iteration, when the path E(/)

meets the criteria of the path and the parameterization errors, the path is a qualified

NURBS CL path with the arc length parameter. The path can be fed into the

controller of a CNC machine tool to cut the sculptured surface.

5.6 The Approach Procedure

With the innovative key techniques for generating NURBS CL paths, the new

approach can be easily implemented and its procedure is clearly shown in the

following flow chart in Figure.5 11.
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Figure 5.11 The flow chart of the approach procedure.
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5.7 Applications

To demonstrate its effectiveness in generating accurate, gouging-and-
interference free, arc-length parameterized NURBS CL paths and its advantages over
major CAD/CAM software, CATIA V5, the new approach is applied to two sculptured
surfaces to generate the paths, and then CATIA is used to generate its NURBS CL
paths for finish machining of the surfaces. The parts of the two examples are
machined on an OKUMA 5-axis CNC milling center to verify the surface quality cut
with our and CATIA NURBS paths. In the first example, a sculptured surface to be
machined is a NURBS surface with four by four control points shown in Figure 5.12.
A ball end-mill of half an inch diameter is used in finish machining. The surface
tolerance is 0.01 inches. In this approach, the tolerances of the path and the
parameterization errors are prescribed as 0.01 inches and 0.01, respectively. Using
this new approach, 30 NURBS CL paths are generated for finish machining and are
plotted in Figure 5.13. These paths are smooth and free of gouging and interference.

Their path and parameterization errors are within the tolerances.

Z-axis (inch)

. / Y-axis (inch)
1 y E

3 "D

X-axis (inch) 4

Figure 5.12 A sculptured surface with four by four control points.
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Figure 5.13 The arc-length NURBS CL paths generated with the proposed method.

Among the arc-length NURBS CL paths generated above, a path in the middle
is selected and plotted in Figure 5.14(a). It is evident that the path is smooth. The
curves of its path and parameterization errors are plotted in Figures 5.14(b) and
5.14(c), respectively. It is clear that all the path errors and the parameterization

errors are less than the prescribed tolerances. Thus, this path, as a typical example
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Figure 5.14(a) An arc-length NURBS CL path with five control points, (b) the
path error plot of the CL path, and (c) the parameterization error plot of the
CL path.

To compare our approach to the NURBS path generation function of CATIA,
CATIA is used to plan NURBS CL paths for machining the same sculptured surface.
The same number of NURBS paths is generated as the path number of our approach,
and the CATIA paths are plotted in Figure 5.15(a). However, it is clear that the
CATIA paths are not smooth. Figure 5.15(b) shows a zoom-in of the paths, which are
not smooth. Moreover, the number of the total control points of the CATIA NURBS
paths is 1074, and that of our paths is 225. By using the NURBS tool paths, the
surface cut with our paths is much smoother that the surface cut with the CATIA

paths. The photos of the machined parts are provided in Figure 5.16.
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CATIA NURBS CL paths (b)
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Figure 5.16(a) The sculptured surface cut with our NURBS CL paths, and (b)
the sculptured surface cut with the CATIA NURBS CL paths.
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In the second example, a sculptured surface is adopted and shown in Figure
5.17. To cut the surface, a ball end-mill with half an inch diameter is used and the
tolerance is 0.025 inch. In our approach, since the cutter cannot access the bottom of
the surface, the NURBS CL paths are truncated to avoid gouging and interference,

which are plotted in Figure 5.18. The part is cut with the tool-paths and the surface
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bottom is then cut with a ball end-mill with a quarter inch diameter. The machined
Figure 5.17 A sculptured surface with four by six control points.

part is rendered in Figure 5.19.
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Figure 5.18 Arc-length NURBS CL paths generated with our approach.
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Figure 5.19 The sculptured surface cut with our NURBS CL paths.

For comparison, CATIA is also applied to the surface in the second example. After
CATIA generates the NURBS CL paths and conducts gouging and interference
detection, paths are attained and plotted in Figure 5.20. Unfortunately, the paths are
not smooth and still cause gouging at the bottom of the surface. The machined part

verified the surface quality is bad (see Figure 5.21).

In the two examples, it is confirmed that the arc-length NURBS CL paths
generated with our approach are accurate, smooth, and gouging-free. This approach

can be implemented in CATIA for sculptured surface machining.
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Figure 5.20 The NURBS CL paths generated with CATIA.

Figure 5.21 The sculptured surface cut with the CATIA NURBS CL paths.

5.8 Summary

This work proposes a new approach to generating accurate, gouging-free,
smooth NURBS CL paths with the arc-length parameter. The main contributions of

this work include (1) generating arc-length parameterized NURBS CL paths with the
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path and parameterization errors globally bounded using a new optimization model,
(2) conducting gouging and interference detection to eliminate invalid sample CLs
before fitting a NURBS CL path to them, which is different from the conventional
method, and (3) the close-form equations are derived to calculate the true arc-
length for points on the theoretical CL paths. The approach can be easily
implemented into current CAD/CAM software to benefit the manufacturing

industry.
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Chapter 6 Piecewise NURBS Tool-Paths with
the Arc-Length Parameter and
their Application on High Feed,
Accuracy CNC Milling of 2-D

Curved Profiles

6.1 Introduction

Current research on NURBS (non-uniform rational B-spline) machining
includes two types: (1) NURBS tool paths generation prior to machining and (2)
real-time NURBS interpolation for NURBS tool trajectory in CNC machining. The first
type is only focused on interpolating a group of cutter locations with a NURBS path
in geometry, subject to a constraint that the path errors should be less than a
prescribed tolerance; and the second type simply assumes a general NURBS path as
input and calculates cutter locations of the path in real-time of machining, in order
to ensure that tool trajectory errors are less than the tolerance and tool kinematics
is under control. The first type work actually is the input of the second type;
unfortunately, they are isolated without interaction. The consequence includes that

(a) general non-linear NURBS paths of the first type are difficult for algorithms of
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the second type to work on, and (b) if the feed is high, the interpolation is
challenged to keep the trajectory errors within tolerance and maintain good tool
kinematics along highly curved paths. To root out the problems in this work, a new
type of tool path B piecewise NURBS tool paths with the arc length parameter & is
first proposed for high feed and accuracy NURBS machining, and an innovative
approach is established to generate this type of tool path off-line by taking the
NURBS interpolation into consideration. First, an accurate NURBS path with the arc
length parameter is generated, and then the tool trajectory errors are predicted. If
the maximum tool trajectory error is larger than the tolerance in the prescribed high
feed rate, the path is decomposed at the breaking points. For qualified curved
segments, their feed rates remain the same; and, for disqualified curved segments,
their feed rates are reduced. The piecewise NURBS tool paths with the arc length
parameter are generated prior to machining, and they are a genuine solution to high
feed and accuracy NURBS machining. This work can greatly promote the NURBS

machining in industrial practice.

In the phase of NC tool path planning, based on a reference path - a general
NURBS cutter location path, it is re-parameterized with the arc length. This path is
then fed to the NURBS interpolator for CNC machining. Since it takes into account
the interpolation mechanism, this path can reduce the cutter trajectory and feed
rate errors. To generate this type of tool path, an innovative approach is proposed
with two features. One is to sample points on the reference path and calculate their
arc lengths by decomposing the reference tool path into Bezier curve segments. The

other is to fit a NURBS path by bounding the parameterization error.
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6.2 Piecewise NURBS NC Tool Paths with Arc Length Parameter and

Different feeds

In CNC milling, the real-time cutter trajectory is mainly determined by a pre-
generated path of cutter location (also called a reference tool path in the work), a
prescribed feed rate and the interpolation algorithm used in the CNC controller.
After the G-codes of the reference tool path are fed into the controller, it
instantaneously extracts cutter locations of the path to execute finite tool motions,
eventually composing the actual tool trajectory. For linear and circular reference
paths, their corresponding interpolators can easily generate highly accurate cutter
trajectories, compared to the reference paths, with a consistent feed as prescribed.
Thus, these reference paths are often planned without taking controllers into
consideration. Recently, some CNC controllers such as Siemens 840D and Fanuc 32i
are empowered with the NURBS interpolation in order for tools cutting free-form
shape along curved trajectory. However, if the prescribed feed rate is high, it is quite
challenging for these controllers to keep the chord errors of the tool trajectory
within the tolerance and the feed rate constant as the prescribed. To root out this
difficult problem, it is necessary to understand the real-time NURBS interpolation
mechanism and improve reference NURBS tool paths prior to machining; therefore,
piecewise NURBS NC tool paths with the arc length parameter for high feed,

accurate milling is originally proposed in this work.

As background, the real-time NURBS interpolation mechanism is introduced

here and the unsolved technical problems are stressed. It is common in industry
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practise that general NURBS cutter location paths CL(u):[x(u),y(u),z(u)]T, in

which the parameter u is unit free, are generated as reference tool paths and fed

into CNC controllers. Usually, this type of tool path is represented as

CL(u)="2 - > (R (1)), (6.1)

where u is a general parameter ranging between a and b, P. (izO,...,n) are the
control points, w; (i=0,...,n) are the corresponding weights, and N, ,(u) (i=0,...n)

are the base functions with degree of m. The knot vector is

U=[u where  u,=u,=---=U_=a  and

"um’u "’un’un+1"”un+m+1] 4

m+1’

u ., =--=u =b. At present, the general NURBS tool path is the only type of

n+1 ~ Yn+m+1
NURBS tool path that can be calculated using existent methods or commercial
CAD/CAM software. After this type of path is fed into controllers together with a
specified feed rate v, it is expected that the cutter truly moves along this reference
path in the same velocity of v. Then, the NURBS interpolator calculates, in real time,
instantaneous cutter locations along the reference path, and the tool directly feeds

among the locations in finite motions. Thus, the cutter trajectory is composed of the
chords connecting the locations, and the trajectory error &, is the deviation between

the chords and the reference tool path. The objective of the NURBS interpolator is to
ensure the trajectory and feed rate errors are within the specified tolerances. The

feed rate is defined as
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< (e H

du

du v

-~ __ Y 6.2
d ~ Jov ] (62

Because the solution of Eq. (6.2) is difficult in the general case, approximation
techniques are used based on Taylor’s expansion. For small curvatures, the first
order approximation is normally acceptable:

du v-AT
=U +—
dtl,., lcL'(w)]

u=u

=u, +AT-—

(6.3)

If the tool path has high curvature values then second order approximation is

suitable

v 1V
i =UA——AT-=.— . AT? 6.4
u.,, =y ||C|.’(Uf)|| 2 ||C|.”(LI,.)||4 ( )

After the parameter U,,, of the next cutter location is calculated, its 3-D
coordinate CL(UM) is computed, then the cutter moves straight from points CL(u,.)

to CL(U,+1). For some general NURBS tool paths, the relationship between the

parameter u of cutter location and its arc length is highly non-linear; hence, the

value of the second derivative HCL”(U)H can be much larger than zero. The chord

length ‘CL(U,» )CL(UHl )

varies greatly at different locations; so the instantaneous feed

rate v, —‘CL CL

/ AT fluctuates significantly and the feed rate error ¢, is high
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(see Figure 6.1). Moverover, the arc length CL(u,)CL(qu) of the NURBS path
between cutter locations CL(u,) and CL(u,+1) can be quite different from the chord
length. Consequently, the trajectory error &, could be larger than the tolerance of

the part, scraping it in this cut. Meanwhile, the cutter feed rate error ¢, is large,

causing high acceleration and deceleration in tool motion.

A general NURBS tool
path with a unit free
parameter u

/Chords of tool
' trajectory

CL(u)
CL(0 —
%ength cL(o)CL(u)#k-u

Figure 6.1 An exaggerated, illustrative diagram for real-time NURBS
interpolation of a general, non-linear NURBS tool path with a unit free
parameter u.

To address the aforementioned problems, many researchers have improved
the conventional representation of the non-linear relationship between path
segments and their chords using different orders of Taylor’s expansion [67, 68], the
spline interpolation [42-44, 47, 48] and the length-to-parameter function [76, 48,

78]. Unfortunately, these methods cannot root out the problems because of the

inappropriate tool path, NURBS tool paths CL(u) with a unit-free parameter. In this

work, first, a NURBS cutter location path CL(S) with the arc length parameter s is
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proposed. This new path can be calculated by re-parameterizing the general NURBS
tool path, and it is an effective solution to the problems of the existent NURBS

interpolators.

To better understand the NURBS cutter location path with the arc length

parameter in theory, it is necessary to introduce its main properties and advantages
here. This type of path is denoted as CL(s)= [X(s),Y(s),Z(s)]T, in which the

parameter s is the arc length. A parameter value corresponds to a cutter location on
the path and is the arc length between the start of the path and the cutter location.

Since
ds =[d(cL(s))| (6.5)

the characteristic equation of the path is

, dx\ (dv\ (dzY ,
v (S)H(Ej *[Ej *(Ej ~1 and | (u)] =0 (66)

Therefore, the governing equation for the NURBS interpolation can simply be

Sy =S +V-AT (6.7)

where the feed v is not very high. The two parameters, S; and S, correspond to
two cutter locations on the path, CL(S,.) and CL(SM), respectively. Ideally, the chord

length ‘CL(s, )CL(s,..)

meets the following equation,
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=v-AT (6.8)

lcL(s,)CL(s...)

The arc length between points CL(S,.) and CL(S,+1) is

) (6.9)

=515

cL(s)eL(s.)

Since

lcL(s;)cL(s,,,) (6.10)

~ ‘CL(S, )CL(s,,.)

the chords of the finite tool motions can accurately represent the reference NURBS
tool path. Thus, the tool trajectory closely matches the reference path (see Figure
6.2(a)). Meanwhile, the chord lengths of the tool motions are the same, and the
cutter can remain the same feed rate v along the path. However, the NURBS path
with the arc length parameter is quite effective only when the feed rate is small and
normal; if the feed is very high, Eq. (6.10) cannot hold at locations with large
curvatures, and the chord errors could be way beyond the tolerance (see Figure
6.2(b)). Therefore, a general, non-linear NURBS tool path with a unit free parameter
is a major source of error; and for a NURBS tool path with the arc length parameter,

high feed rate is another main source of error in NURBS machining.
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(a) Smaller
chord error

normal feed
rate v
A NURBS tool path
with the arc length

paremeter s
CL(s)

CL(0) Arc length CL(O)CL(S) =S

Figure 6.2 An exaggerated, illustrative diagram for real-time NURBS interpolation of a
NURBS tool path with the arc length parameter; (a) in a prescribed normal feed rate

(b) Larger chord

CL(s,) error

v’ tool trajectary

CL(S,‘.z) ‘ )
Prescribed

high feed

rate v’ A NURBS tool path

with the arc length

cLs) paremeter s

CL(0)
Arc length CL(O)CL(S) =s

Figure 6.2 (b) prescribed high feed rate.

To increase the tool trajectory accuracy and kinematics in NURBS machining,
although many NURBS interpolation algorithms have been proposed to solve the
aforementioned problems, it is easier and better to improve NURBS tool paths prior
to machining. In this work, the type of NURBS tool path with the arc length
parameter is adopted to eliminate the first source of error, and when the feed rate is
high, multiple NURBS tool paths with different feed rates are used to root out the
second source of error. First, to generate a NURBS tool path with the arc length
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parameter, based on a reference NURBS cutter location path with a unit-free
parameter computed with commercial CAD/CAM software, it is re-parameterized
with the arc length parameter. The main features of this work include (1) a new
efficient approach to sampling cutter locations and calculating their arc lengths, and
(2) fitting a new NURBS tool path with the arc length parameter by having its
geometric and parameterization deviations bounded. This work is mainly focused

on 2-D NURBS tool path generation with the arc length parameter.

6.3 A New Approach to Cutter Locations Sampling and their Arc

Lengths Calculation

Given a NURBS cutter location path CL(u) with a unit free parameter (also

called a general NURBS path), this work essentially is to re-represent it with the arc

length parameter as CL(s). In the re-parameterization, an important work is to

select a group of cutter locations along CL(u), according to a guide of less samples

for less curved segment and more samples for highly curved segment, and compute
their arc lengths. Existent methods of re-parameterizing a general NURBS curve are
similarly to extract cutter locations sequentially along the curve and calculate their
arc lengths using numerical methods, such as the quadrature method [76]. However,
these methods are not effective to sample cutter locations according to the
reference path curvature and are not robust in computing arc lengths. In this work,
an original, efficient approach to cutter locations sampling and their arc lengths

calculation is proposed to address the aforesaid problems. Its kernel technique is to
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decompose the general NURBS path into short Bezier curve segments continuously
until the control polygon of every Bezier curve segment can accurately represent
the curve segment; as a result, the sample cutter locations are the end control points
of each Bezier segment and their arc lengths can be easily calculated using the

control polygons.

6.3.1 Decomposition of a general NURBS path into Bezier curve segments

To decompose a general NURBS path CL(u) into a number of short Bezier

curve segments, a well-established method is adopted and is briefly introduced

n

here. A general NURBS path is defined as CL(u)= Z(R,,m (u)-P,.O) with the knot vector

i=0

U =[uy, -, U,,u

m+1”

“Us Uy U4,

n+1’

“Upma] - By inserting a  knot U

(um <u fu<u, < unﬂ) into the knot vector, a new knot vector U* is generated as

1 [ 1 _
U _I:uo...u ]_[uo’...,um,u -y

n+m+2

(6.11)

"Uk,U,UkH,"',Un,U n+m+1]

m+17 n+17

Then, this tool path can be represented, using the new knot vector and a new set of

control points, as

n+1

CLu)=) | R, ()P ] (6.12)

i=0

where R, (u) are defined with the knot vector U'. The new control points are

calculated with the following equation:
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P =(1-c) P, +a P (6.13)
and
1 0<i<k—-m
e i k—m+1<i<k (6.14)
——p
0 k+1<i<n+1

where P’ and P°, are not defined and their terms are ignored in Eq. (6.13). To
simply decompose the general NURBS path into two NURBS curve segments, the
inserted knot U is equal to an existing knot u, and has to be inserted several times
until the multiplicity of the knot u, is equal to m . If the original multiplicity of the
knot u, is g, the insertion has to repeat by m—g times. The control points in the rt

insertion can be calculated as

P =(1-a )P +af R (6.15)
and
1 0<i<k-m+r-1
o ={—"%  k—m+r<i<k—gq (6.16)
iem-r+1 ~ U
0 k—q+1<i<n+r

where 1<r<m-gq. For control points P,.r__l1 and P,’_1 not defined, their terms are

ignored in Eq. (6.15). Thus, the general NURBS path is decomposed into two
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segments; the control points of one segment are P, ?,P",..., and P|" 7, and the

control points of the second segment are P, 7, P,.%, ..., P .. The first and last

control points of the segments are on the general NURBS path. This is a basic
method of decomposing a NURBS tool path (including a Bezier curve) into two

shorter segments.

After increasing the multiplicity of each distinct knot to the degree m, the
NURBS tool path is decomposed into shorter Bezier curve segments, and the
segment number is the same as the number of non-zero knot intervals in the knot
vector. By using this method, a general NURBS tool path can be decomposed into a

group of Bezier curve segments (see Figure 6.3).

(a) (b)
il R 50 A control polygon
60 /\ The control /\ with 3 control
\ polygon | points of a cubic
40t ;
/ \ \ Bezier segment
/ \ / \
20+ \ /
/ \ / \ ol
ol
] 2
2 0l 2 23 cgntrol
< L points
o >
40 -50¢ A general NURBS tool
A general NURBS tool . .
; . path with a unit free
-60 path with a unit free 4
parameter | 7 co_ntrol parameter
801 points
\ f’
100+ \ / 100}
-120 L L L v L L 1 1 1 1 1 1 1 1 1 1 |
-100 -50 0 50 100 -100 -80 -60 -40 -20 0 20 40 60 80 100 120
X-Axis X-axis

Figure 6.3 (a) A general NURBS tool path with a unit free parameter and its
control polygon and (b) the Bezier curve segments and their control
polygons after the general NURBS path is decomposed.
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6.3.2 Criterion of cutter location sampling

The main advantage of this approach is efficient, accurate computation of the
arc lengths of sample cutter locations and path curvature dependent sampling. After
the general NURBS path is decomposed into shorter Bezier curve segments, they are
repetitively decomposed in the same way; thus, their control polygons represent the

path better with less deviation. Until the deviation is less than a prescribed, small
tolerance &,, the arc length of the path can be simply calculated using its control

polygon, which is more accurate and efficient than using the quadrature method.

The approach is mathematically approved with the following lemma.

Lemma: For a Bezier curve CL(u) (CL(U) = iB[,m (u)~P[J with control points P, ,P,,

i=0
P, the first and last control points P, and P, are on the Bezier curve (see Figure

ey m?

6.4). The control polygon is PP,...P and its edge length L, is |P0P1...Pm|
(L, =[P,P,|+|P,P,|+--+[P,_,P,|). The chord of the curve is PP, and its length L, is

|P0Pm| . A small tolerance &, of the closeness between L, and L, is specified as a very

small positive number. If
PP |—[PP,| <&, (6.17)

the Bezier curve arc length L, is

L ~ |P0Pm|+|P0PiPi+1Pm|
o 2

(6.18)
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and the maximum deviation between the Bezier curve and the chord is at the same

level of &,.

[Proof]

According to the convex hull property of Bezier curve, the curve is within the
region confined by the convex hull of the control polygon. Generally, the convex hull
is composed of the first and the last control points, and some or all of the control

points between them. Without losing generality, the convex hull is assumed to be

composed of four control points such as P,, P., P.,, P_, and the length of the convex

i+12 "m?

hull is
PoPPy.1PPo| = PoP| PP | (PP, | +[P, Py (6.19)
B, R

_

Convex Hull “
/ \

R ‘

Uu=u u=1u,

N

Figure 6.4 A Bezier segment with its control points, control polygon, chord
and convex hull (hatched region).

According to a theorem of polygon that the length of an edge is less than the

sum of the lengths of the other edges (see Figure 6.4), we can have
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IP.P|<|P,P,|+|PP,|+---+[P_P] (6.20)
and
PP, <[P P, |+ + [P, P, (6.21)
Thus, the length of the control polygon is less than the length of the convex hull.
If,
PP.--P|-|PP,| <&, (6.22)

This in-equation means the control polygon is very close to the chord. Since the

Bezier curve is within its convex hull, the length of the curve L, is
IP,PP..P.|>L,>|PP,| (6.23)
and
L,—|P,P,| <&, and [PPP..P.|-L, <&, (6.24)
Therefore

| PR +PPRp|
o 2

(6.25)

Project the control polygon onto the chord, and the projected length is equal to the

chord length.
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|P0P,.|-cosa0J +|P,P,.+1| -CoSQ, +|P,+1Pm|-cosa/. :|P0Pm| (6.26)

+1,m

where ¢, ; is the angle between PP, and PP, , & ., is the angle between PP_, and

PP., &, is the angle between P_,P, and PP . Substituting this into Eq. (6.22), we

i+1" m

get
PP|-(1-cosa,,)+[PP.,|-(1-cosa,., ) +[P..P,|-(1-cosa., . ) <&,  (6.27)

Thus, the in-equations 1-cosq,; <¢,, 1-cosg,

i,i+1

<g, 1-« < ¢, hold, which

i+1,m

and ¢,

i+1,m?

means the angles, ¢, ;, & are very small. [t can be approximate that

i,i+17?

1-cosq,, =sina,,;, 1-cosa, ., =sing,, ,and1-cose,, , =sina,,, . (6.28)
Substituting this equation into Eq. (6.27), we get
|POP,.|-sina0,i +|I:’,AP,A+1|-sinozi,i+1 +|R+1Pm|-sinai+1ym <g, (6.29)

It is reasonable to assume that P, is the farthest control point away from the chord,
and the greatest distance between the control points and the chord is the distance

D, .. between P_, and the chord, which is |P0P,.|-sina0,,. +|RF’,+1|-sina.

ii+1"

Hence,

D <&, (6.30)
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Since the Bezier curve is bounded by the convex hull, the largest deviation between

the curve and the chord is less than the distance D,_, . Therefore, the maximum

deviation between the Bezier curve and the chord is at the level of &,. [End]

Based on the lemma, the criterion for cutter locations sampling is established

here. If the difference between the lengths of the control polygon and the chord of a
Bezier curve segment is within the tolerance¢,, the end control points are two

sample points and the arc length of the segment is approximated with the length of
control polygon. If the criterion is not met, the Bezier curve segment is decomposed
into two shorter sub-Bezier segments by inserting a knot into the current knot
vector m times. This process continues until all the Bezier curve segments meet the
criterion of sampling points. Since curved path segments have to be represented
with more Bezier curves polygons, the method can sample more cutter locations on

the large curvature portion and fewer locations on the small curvature portion.
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(a)

50r More sample cutter locations on the curved
segments than on the flat segments

The end control
points of the control
polygons (not plotted)

P

A general NURBS tool
path with a unit free
parameter

Tolerance of the sampling
criterion is 1 mm.

-100+

1 1 |
-100 -80 -60 -40 -20 0 20 40 60 80 100 120
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Figure 6.5 A general NURBS tool path with a unit free parameter is decomposed for
sample cutter locations based on prescribed tolerances: (a) 1 mm,

(b) sof More sample cutter locations on the path with a
smaller sampling tolerance, compared to (a)

Y-Axis

The end control
points of the control
polygons

A general NURBS tool
path with a unit free
parameter

Tolerance of the sampling

-100 - o .
criterion is 0.1 mm.

Il Il I
-100 -80 -60 -40 -20 0 20 40 60 80 100 120
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Figure 6.5 (b) 0.1 mm
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-100 -80 -60 -40 -20 0 20 40 60 80 100 120
X-Axis
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6.3.3 Problems of the adaptive quadrature method

Existent curve re-parametrization approaches often adopt the adaptive
quadrature method to calculate the arc lengths of sample points on a given curve.
This method works on many curves; however, for some NURBS (including Bezier)

curves, it is defective. Our new approach is a valid solution. Given a NURBS curve
CL(u)=|:x(u),y(u),z(u)]T with a knot vector

U=[u,, - u,,u

m+1”

' 'uk ’ uk+1 " 'un ’ un+1 2 'un+m+1

] and ue(a, b]. Let L(u) represents the arc

length of a point with parameter u on CL(u), and its formulae is

)=l (o) -du= [\ (@ (o) +2 (o) -t (631)

Since a simple form of Eq. (6.31) cannot be derived, a numerical method, the

adaptive quadrature method, is often used to calculate the arc length, and
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mathematically, the quadrature method is based on Simpson’s rule. For NURBS
curves with dramatic change of curve derivatives and short knot spans, the

quadrature method could ignore that curve portion within the short knot span and

with high value of | CL'(u)

, causing an arc length error.

To demonstrate the problem, a quadratic NURBS curve is given and plotted
in Figure 6.6. The control points are P, (100,0), P2 (150,0), P3 (150,0), P4 (190,0), Ps
(190,50), P¢ (150,50), P7 (150,50), Pg (150,50), and P9 (100,50); their knot vector
[uo, u1, uz, uz, us, us, us, Uz, us, Us, Uio, u11] is [0, 0, 0, 200, 200.005, 200.01, 200.015,
200.02, 200.025, 400, 400, 400]; and their weights vectoris [1,1,1,1,1,1,1, 1, 1].
Using the quadrature method, the arc length of this curve is 100.000 mm, while our

new approach finds the arc length is 213.222 mm, which is the true arc length. The

quadrature method is wrong; the reason is the presence of a short knot span[ug,us] .
When the quadrature method bisects the initial parameter interval [uo,ull] into two

sub-intervals, the midpoints of the sub-intervals do not fall into [ug,us], but the

determination condition is met. Consequently, the curve length in this short
parametric interval is ignored. Fortunately, our new approach can find the correct

result, since only the addition and subtraction are required.
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Figure 6.6 A quadratic NURBS curve and its knot locations.

6.4 NURBS Tool Path Generation with Error Bounded Fitting

Based on a group of sample cutter locations found above, a NURBS path with
the arc length parameter is fit to them using the least square method. To ensure high
quality of the path, the path and parameterization errors, which are defined in the
following, are bounded in an iterative process. At the beginning, the control points
and the order of blending functions are specified. After using the least square
method, a NURBS tool path is attained. Then its path and parameterization errors
are checked against the prescribed tolerances. If they are not within the tolerances,
more control points will be used or the order of the blending functions will be
increased. After several iterations, a NURBS tool path with the arc length parameter

will be calculated, whose error is small with regard to the general NURBS tool path
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and whose first derivative is almost equal to one. Here, the path and

parameterization errors are defined.
6.4.1 Path error definition
Suppose a general NURBS path CL(u)= [x(u), y(u):|T is given, and the

NURBS path with the arc length parameter CL(s)=[X(s), Y(s)]T is found. The

normal N(u) of the general NURBS path at any point can be represented as

N(u)=CL(u)+d(u)-n(u)

where the unit normal n(u) can be found as

The error of the NURBS path with the arc length parameter CL(S) with respect to
CL(u) is the length d(u) at the intersection between the normal N(u) and path

CL(S) (see Figure 6.7). Assume the specified tolerance is t_, , if the maximum path

path ?

error max(d(u)) at parameter U, is less than t the path is accurate, its

X path ?

parameterization error is then checked. If the maximum error is greater than ¢,

the number of control points is increased by one and a new fitting process starts

until the path errorislessthan t .
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Figure 6.7 An illustration diagram of a general NURBS tool path with a unit
free parameter and a NURBS tool path with the arc length parameter.

6.4.2 Parameterization error definition

For a genuine NURBS tool path with the arc length parameter CL(S), the
parameter of a cutter location is equal to the arc length of the path from the

beginning to this location. Theoretically, the first derivative of this path HCL’(S)H is

equal to one (see Figure 6.7). However, re-parameterization of a general NURBS
path using the arc length parameter cannot be carried out using closed-form
equations; and the first derivative is not exactly equal to one. The fluctuation of the
first derivative about one is defined as the parameterization error, which is

represented as
&(s) :HCL’(S)H—l

In the iterative process of generating this path, the NURBS path re-parameterization

is gradually improved. After a NURBS path is attained, its first derivative is
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calculated and compared with one. The prescribed tolerance for the

parameterization error is t

para *

If the maximum parameterization error max(g(s)) is

less than t,,,,, the NURBS path is qualified; otherwise, the number of control points

para’

or the order of the blending functions will be increased by one.

The general NURBS curve in Figure 6.3(a) is taken as an example to re-
parameterized with arc length. The corresponding path and parameterization error

are shown in Figures 6.8 and 6.9.
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Figure 6.8 For the example in Fig. 3, (a) the path error plot and (b) the
parameterization error plot of a NURBS path with the arc length parameter
and 27 control points.
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Figure 6.9 For the example in Fig. 3, (a) the path error plot and (b) the
parameterization error plot of a NURBS path with the arc length parameter
and 50 control points.

6.5 Piecewise NURBS Tool Paths Generation

A NURBS tool path with the arc length parameter is crucial to the NURBS
interpolation for accurate tool trajectory and consistent tool velocity, if the
prescribed feed rate is not high and the path is not dramatically curved. However,
the high feed free-form profile end-milling does not meet the preposition. Even with
a NURBS path with the arc length parameter, the tool trajectory error could be much
larger than the prescribed tolerance (see Figure 6.10), if the feed rate is high. To
solve this problem, several NURBS interpolation algorithms try to reduce the
instantaneous tool velocity to ensure the trajectory error, acceleration/deceleration,
and jerk are under the limits. Technically, these solutions are passive and are
difficult to eliminate the problem. Our work proposes an effective solution that is to
represent the highly curved path segments with piecewise NURBS tool paths (see

Figure 6.11(a)) and apply reduced feed rates to the piecewise paths.
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Figure 6.10 For the example in Fig. 3, (a) a NURBS path with the arc length
parameter and (b) the cutter trajectory error plot

To decompose a whole NURBS tool path with the arc length parameter into
pieces, the popular NURBS interpolation algorithm, which is represented in Eg.
(6.4), is adopted in this work. Applying the high feed rate to the algorithm, the tool
trajectory errors can be predicted, which are compared against the prescribed
tolerance. If no error is larger than the tolerance, this NURBS path is qualified to
feed to the CNC controllers. Otherwise, the whole path is decomposed into the
segments with larger errors and the qualified segments. For the qualified segments,
the aforementioned method is applied to find piecewise NURBS tool paths with the
arc length parameter. For the disqualified segments, the feed rate is gradually
reduced and the tool trajectory errors are predicted accordingly. Until the errors are
less than the tolerance (see Figure 6.11(b)), the segments are presented with
piecewise NURBS paths with the newly found feed rates. Finally, the piecewise
NURBS tool paths with different feed rates can be fed to the CNC controllers. The
tool trajectory can be easily generated with high accuracy, and the tool can feed with

good kinematics.
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Figure 6.11 For the example in Fig. 3, (a) piecewise NURBS paths with the
arc length parameter and (b) the cutter trajectory error plot

6.6 Procedure of Planning the New NURBS Paths

NURBS tool paths with the arc length parameter for machining sculptured

part surfaces are planned in process planning. Fortunately, it can root out the

problems of the existing NURBS interpolation methods for accurate NURBS cutter

trajectory. Thus, it is necessary to calculate this type of tool path in the phase of NC

path generation. The main procedure of planning the tool path includes three steps.
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Given: a general NURBS tool path
Feed rate
Tolerance of tool trajectory
Tolerance of path error
Tolerance of parameterization error

'

Decompose the general NURBS tool path into
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and their arc lengths
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i

Using the popular NURBS interpolation
algorithm to predict the tool trajectory errors
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L
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'
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i
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until the errors are less than the tolerance

'
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paths with the newly found feed rates

'
(e

Figure 6.12 The flowchart of the procedure of this work.
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6.7 Applications

To demonstrate the advantage of piecewise NURBS tool paths with the arc
length parameter in CNC machining and the new approach for this type of path, a 2-
D NURBS profile is adopted, and a general NURBS tool path with a unit free
parameter for CNC NURBS machining of this profile is generated with the CATIA
CAD/CAM software, which is shown in Figure 6.13. The 16 control points of this
general NURBS path are listed in Table 6.1. For high feed machining, the feed rate is

prescribed as 400 mm/sec; and for high accuracy, the tolerances are specified in

Table 6.2.

120

100 +

80~
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Q
\

16 control points of
the control polygon

0 20 40 60 8 100 120 140
X-axis (mm)

Figure 6.13 A general NURBS tool path with a unit free parameter.
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Table6.1 Control points of a general NURBS tool path with a unit free parameter

Control 2 3 4 5 6 7 8
points
X (mm) 0 1.7878 40.5466 30.7910 41.3353 54.1981 69.3975 77.2690
y (mm) 0 51.5414 118.6363 39.9483 18.7282 3.0307 -0.2338 14.0278
Cor.ltrol 9 10 11 12 13 14 15 16
points
X (mm) 83.7591 92.1069 95.3723 127.8367 126.6988 129.4184 131.6819 140.0000
y (mm) 28.7536  49.0031 64.1980 123.8235 59.9702 42.4562 26.7862 0
Table6.2 Prescribed tolerances used in the proposed approach
Tolerances Sampling Path Parameterization Tool trajectory
points (T)) error (T;) error (T,) error (T,)
Prescribed 0.0001 mm 0.005 mm 0.005 0.005 mm
values

First, the general path is continuously decomposed, until the cutter locations

of the path meet the sampling criterion given in Section 6.3.2, resulting 7374 sample

cutter locations (see Figure 6.14). By using the least square method and subject to

the tolerances of the path and parameterization errors defined in Section 6.4, a

NURBS tool path with the arc length parameter is generated and plotted in Figure

6.15. The path error curve is plotted in Figure 6.16(a), and the maximum path error

is close to 1.6x1073 mm, which is less than the tolerance 5.0x10°2 mm. The

parameterization error is plotted in Figure 6.16(b), and the maximum path error is

less than the tolerance 5.0x10° mm. Thus, the NURBS path with the arc length

parameter geometrically is a qualified arc length parameter path.
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Figure 6.14 By decomposing the NURBS path, sample cutter locations are
computed and plotted.
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Figure 6.15 A NURBS tool path with the arc length parameter is generated
and is plotted with the general NURBS path.
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Figure 6.16 (a) The path error curve and (b) the parameterization error
curve of the NURBS tool path with the arc length parameter.

Second, by applying the popular NURBS interpolation algorithm to the new
NURBS path, the cutter trajectory and feed rate error curves are attained and

plotted in Figures 6.17(a) and 6.17(b), respectively. However, the trajectory errors

in three curved path segments are beyond the tolerance 5.0x10® mm. Likewise, the

feed rate significantly fluctuates in these segments. With such a high feed rate (400
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mm/sec), the cutter trajectory error could reach 0.025 mm; even a good NURBS

path with the arc length parameter is used. If this path is fed into the CNC controller,

it is difficult for the controller to reduce the feed rate in real time to ensure the

trajectory accuracy and the tool kinematics.
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Figure 6.17 (a) The cutter trajectory error curve and (b) the feed rate error

curve o

f the NURBS path with the arc length parameter.
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Then, the NURBS tool path with the arc length parameter is decomposed into
pieces, and reduced feed rates are applied to the path segments with large trajectory
errors. In the cutter trajectory error plot in Figure 6.17(a), the points close to and
less than the tolerance are used to divide the NURBS path into seven NURBS tool
paths with the arc length parameter, and these points are called breaking points
(see Figure 6.18). The control points of the seven NURBS paths are 15, 31, 18, 24, 17,

30 and 15. Since the trajectory errors of the 2nd, 4th and 6th NURBS paths are larger

than the tolerance (5.0x10®> mm) in the high feed rate (400 mm/sec), their feed
rates are reduced so that their trajectory errors are within the tolerance. The proper
feed rates for the 2nd, 4th and 6t NURBS paths are 176, 318 and 186 mm/sec,
respectively, and the cutter trajectory error and the feed rate curves of the
piecewise NURBS tool paths are plotted in Figures 6.19 and 6.20 respectively. With
these tool paths, the existent NURBS interpolation function can easily generate high

accurate cutter trajectory with good tool kinematics.
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Figure 6.18 The piecewise NURBS tool paths with the arc length parameter.
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Figure 6.19 The cutter trajectory error curve.
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Figure 6.20 The feed rate curve of the piecewise NURBS tool paths with the
arc length parameter.

Finally, the piecewise NURBS tool paths are fed into a CNC machine tool. For
the validation of the proposed approach we machined the profile shown in Figure
6.13 using two different CL paths; (1) single arc length parameterized NURBS CL
path shown in Figure 6.15 with one feed rate 400mm/sec, and (2) piecewise arc
length parameterized NURBS CL path shown in Figure 6.18 with different feed rates
(see Figure 6.20). The required feed rate is very high for this test which needs high
spindle revolutions also. Since, the available machine for this test (OKUMA 5-axis
CNC milling center) has maximum 8000 rpm; we selected plastic board made of
Polyethylene as work piece material, and sharp pointed metallic tool to cut the
plastic along the CL path with high feed rates. This combination of plastic work
piece and sharp pointed metallic tool allows machining the profile with desired high
feed rates while using low spindle rpm. The machining results are shown in Figure

6.21.
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Figure 6.21 A 2-D profile machined using (a) single arc length parameterized
NURBS CL path with one feed rate and (b) piecewise arc length parameterized
NURBS CL path with different feed rates.

6.8 Summary

This work first proposes a new type of tool path & piecewise NURBS cutter
location paths with the arc length parameter B and an original approach to
generating this type of tool path based on a general NURBS cutter location path with
a unit-free parameter. This tool path generated prior to machining is an effective
solution to real-time NURBS machining of high trajectory accuracy and good tool
kinematics by using the existent NURBS interpolation. The significant contribution
of this work is that it eliminates two main sources of large cutter trajectory errors
for the real-time NURBS interpolation, which are general NURBS paths with a unit
free parameter and high feed rates. In the newly proposed approach, the NURBS

decomposition technique is originally applied on cutter location sampling, which
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has the following advantages. (1) Cutter locations are automatically sampled and
dependent on the input path shape, which means more samples on curved path
segments and fewer on straight segments. (2) The arc lengths of the sample cutter
locations are simply calculated with several additions without using complex
integral calculus. (3) It is very convenient to divide a NURBS tool path into several
NURBS pieces for different feed rates. This approach can be quickly implemented
into current commercial CAD/CAM software to promote NURBS machining in the

manufacturing industry.
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Chapter 7 Conclusions and Future Work

In this research, new methods have been developed for gouging free
piecewise NURBS tool path generation in pocket and 3-axis milling process and re-
parameterization of the NURBS CL path with arc length. The major contributions of

this research are summarized as follows:

¢ A new, general optimization model of gouging and interference detection
is established. In this model the geometry of the whole tooling system and
the part geometry are considered. For complex part surfaces, gouging
detection is a global optimization problem; therefore an improved hybrid,
optimization method is introduced which uses discrete PSO method in
the rough search stage and the Newton gradient method in the fine
search stage in order to take the advantages of the global and local
optimization methods. The proposed model is valid for both simple and
complex compound sculptured surface milling while using different
cutter shapes mostly used in the industry.

e An accurate approach to approximate B-spline offsets with curves in the
same form is developed, which is appropriate for CNC pocketing. The
research contribution is the upper bound function of the offset error

constructed in this work, which can be used to easily estimate the
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maximum offset error in order to globally control the offset error. The
approximate offsets in B-spline form using the proposed algorithm have
fewer control points, less function degree, and all their offset errors are
within the specified tolerance.

This work proposes a new approach to generating accurate, gouging-free,
smooth NURBS CL paths for three axis milling. The main contributions of
this work include (1) generating arc-length parameterized NURBS CL
paths with the path and parameterization errors globally bounded using
a new optimization model, (2) conducting gouging and interference
detection to eliminate invalid sample CLs before fitting a NURBS CL path
to them, which is different from the conventional method, and (3) the
close-form equations are derived to calculate the true arc-length for
points on the theoretical CL paths.

A new strategy is proposed to generate piecewise NURBS cutter location
paths with the arc length parameter if the NURBS CL path has already
been generated with unit free parameter. To estimate the arc length
parameter accurately within the tolerance, the technique of NURBS
decomposition into Bezier segments is used. The parameterization and
path errors are kept within the tolerances. To control the cutter
trajectory errors and for smooth feed rate profiles during high speed
machining, a new method is introduced to segment the NURBS CL path

into pieces with different feed rates.
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Computer implementation an experimental tests show the effectiveness of
the developed methodologies. The techniques presented in this dissertation can be

used to generate NURBS CL paths for the CNC milling process.

For future research, following topics are suggested to expand the present

research work:

e Conducting experimental verifications of 3-axis milling using round end
mill cutter;

e Extending the upper bound function of the offset error to flat and round
end mill cutters in 3-axis milling ;

¢ Generating NURBS tool-paths for 5-axis surface milling

e Developing a small CAM module based on the proposed algorithms for

NURBS machining.
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