155 research outputs found

    Indoor localization using place and motion signatures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from department-submitted PDF version of thesis.Includes bibliographical references (p. 141-153).Most current methods for 802.11-based indoor localization depend on either simple radio propagation models or exhaustive, costly surveys conducted by skilled technicians. These methods are not satisfactory for long-term, large-scale positioning of mobile devices in practice. This thesis describes two approaches to the indoor localization problem, which we formulate as discovering user locations using place and motion signatures. The first approach, organic indoor localization, combines the idea of crowd-sourcing, encouraging end-users to contribute place signatures (location RF fingerprints) in an organic fashion. Based on prior work on organic localization systems, we study algorithmic challenges associated with structuring such organic location systems: the design of localization algorithms suitable for organic localization systems, qualitative and quantitative control of user inputs to "grow" an organic system from the very beginning, and handling the device heterogeneity problem, in which different devices have different RF characteristics. In the second approach, motion compatibility-based indoor localization, we formulate the localization problem as trajectory matching of a user motion sequence onto a prior map. Our method estimates indoor location with respect to a prior map consisting of a set of 2D floor plans linked through horizontal and vertical adjacencies. To enable the localization system, we present a motion classification algorithm that estimates user motions from the sensors available in commodity mobile devices. We also present a route network generation method, which constructs a graph representation of all user routes from legacy floor plans. Given these inputs, our HMM-based trajectory matching algorithm recovers user trajectories. The main contribution is the notion of path compatibility, in which the sequential output of a classifier of inertial data producing low-level motion estimates (standing still, walking straight, going upstairs, turning left etc.) is examined for metric/topological/semantic agreement with the prior map. We show that, using only proprioceptive data of the quality typically available on a modern smartphone, our method can recover the user's location to within several meters in one to two minutes after a "cold start."by Jun-geun Park.Ph.D

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์ด์šฉํ•œ ๋น„์šฉ ํšจ์œจ์ ์ด๊ณ  ์‹ค์šฉ์ ์ธ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ๊ถŒํƒœ๊ฒฝ.์ง€๋‚œ ์‹ญ์ˆ˜ ๋…„ ๋™์•ˆ ํ•™๊ณ„์™€ ์‚ฐ์—… ์˜์—ญ์„ ๋ง‰๋ก ํ•˜์—ฌ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์ด ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜์–ด ์™”๋‹ค. ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•  ๋•Œ WiFi, Bluetooth, ๊ด€์„ฑ ์„ผ์„œ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์„ผ์„œ๋‚˜ ๋ฌด์„  ์ธํ„ฐํŽ˜์ด์Šค๋“ค์„ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ๊ทธ ์ค‘์—์„œ๋„ ์ง€์ž๊ธฐ ์„ผ์„œ์—์„œ ์ธก์ •ํ•œ ์ž๊ธฐ์žฅ์˜ ํŒจํ„ด์„ ์ธก์œ„์— ์‚ฌ์šฉํ•˜๋Š” ์‹œ์Šคํ…œ์€ ์ •ํ™•์„ฑ๊ณผ ์•ˆ์ •์„ฑ ์ธก๋ฉด์—์„œ ํƒ€ ์‹œ์Šคํ…œ์— ๋น„ํ•ด ํฐ ์žฅ์ ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋‹ค. ์ฒ ๊ณจ ๊ตฌ์กฐ์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๊ฑด์ถ•๋œ ํ˜„๋Œ€ ๊ฑด์ถ•๋ฌผ๋“ค์˜ ์‹ค๋‚ด ๊ณต๊ฐ„์—๋Š” ์ง€์ž๊ธฐ์žฅ์˜ ์™œ๊ณก์ด ๋ฐœ์ƒํ•˜๋ฉฐ ์ด๋Š” ๊ณง ์‹ค๋‚ด์˜ ๊ฐœ๋ณ„ ๊ณต๊ฐ„๋“ค์— ๊ณ ์œ ํ•˜๊ณ  ์•ˆ์ •์ ์ธ ์ง€์ž๊ธฐ ํŒจํ„ด์„ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ์ด๋ฅผ ์‹ค๋‚ด ์ธก์œ„์˜ ๋งฅ๋ฝ์—์„œ๋Š” ์ง€์ž๊ธฐ ์ง€๋ฌธ์ด๋ผ๊ณ  ์ •์˜ํ•˜๋Š”๋ฐ ์ด ์ง€์ž๊ธฐ ์ง€๋ฌธ์€ ์‚ฌ์šฉ์ž์˜ ์›€์ง์ž„, ๋ฌธ๊ณผ ์ฐฝ๋ฌธ์˜ ์—ฌ๋‹ซํž˜ ๋“ฑ๊ณผ ๊ฐ™์€ ์ผ์ƒ์ ์ธ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๊ฐ•๊ฑดํ•˜๋ฉฐ, ํŠนํžˆ WiFi ๋“ฑ ๋ฌด์„  ์‹ ํ˜ธ์™€ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ๋†’์€ ์ˆ˜์ค€์˜ ์•ˆ์ •์„ฑ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด์™€ ๊ฐ™์€ ์•ˆ์ •์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•  ๋•Œ์—๋Š” ๋ช‡๊ฐ€์ง€ ๊ณ ๋ คํ•ด์•ผํ•  ์‚ฌํ•ญ๋“ค์ด ์žˆ๋‹ค. ๋จผ์ € ์ง€์ž๊ธฐ ์ง€๋ฌธ์€ ์„ผ์„œ ๋ฐ์ดํ„ฐ์˜ ๋‚ฎ์€ ์ฐจ์› ๊ฐœ์ˆ˜๋กœ ์ธํ•˜์—ฌ AP ๊ฐœ์ˆ˜์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ์˜ ์ฐจ์›์ด ์ˆ˜์‹ญ, ์ˆ˜๋ฐฑ๊ฐœ์— ๋‹ฌํ•˜๋Š” ๋ฌด์„  ์‹ ํ˜ธ์— ๋น„ํ•˜์—ฌ ๊ตฌ๋ณ„์„ฑ์ด ๋งค์šฐ ๋‚ฎ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋งŽ์€ ์–‘์˜ ์—ฐ์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ณต์žกํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋งŽ์€ ์„ผ์„œ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋ฅผ ๊ทน๋ณตํ•˜์˜€๋‹ค. ๋˜ ๋Œ€์ƒ ๊ณต๊ฐ„์˜ ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•œ ์‚ฌ์ „ ์กฐ์‚ฌ ๋น„์šฉ๊ณผ ์ฃผ๊ธฐ์ ์ธ ์ง€์ž๊ธฐ ์ง€๋ฌธ ์žฌ์ˆ˜์ง‘์— ๋“œ๋Š” ๊ด€๋ฆฌ ๋น„์šฉ ์—ญ์‹œ ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ์‚ฌ์šฉํ•  ๋•Œ ๊ณ ๋ คํ•ด์•ผํ•  ๋ฌธ์ œ์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์€ ์ด ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ์ž‘์„ฑ๋˜์—ˆ๋‹ค. ๋จผ์ € ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท (IoT, Internet of Things) ํ™˜๊ฒฝ์—์„œ ์‹ค๋‚ด ์ธก์œ„๋ฅผ ์œ„ํ•ด ์ง€์ž๊ธฐ ์ง€๋ฌธ์„ ํ™œ์šฉํ•˜๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๊ฒฝ๋Ÿ‰ ์‹œ์Šคํ…œ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. BLE ์ธํ„ฐํŽ˜์ด์Šค์™€ ์„ผ์„œ 2๊ฐœ(์ง€์ž๊ธฐ ๋ฐ ๊ฐ€์†๋„๊ณ„)๋งŒ ํƒ‘์žฌํ•œ ์ƒˆ๋กœ์šด ํ•˜๋“œ์›จ์–ด ์„ค๊ณ„ ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ์ด ๊ธฐ๊ธฐ๋Š” ์ฝ”์ธ ํฌ๊ธฐ์˜ ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ 1๋…„ ๋™์•ˆ ๋™์ž‘ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ตœ์†Œํ•œ์˜ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋งŒ์„ ์ด์šฉํ•˜์—ฌ ๊ฐ•๊ฑดํ•œ ์‚ฌ์šฉ์ž ๋ณดํ–‰ ๋ชจ๋ธ๊ณผ ํšจ์œจ์ ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋„์ž…ํ•œ ํŒŒํ‹ฐํด ํ•„ํ„ฐ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ง์ ‘ ์„ค๊ณ„ํ•œ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท ๊ธฐ๊ธฐ์™€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, ๋ณธ ์‹œ์Šคํ…œ์€ ๋‚ฎ์€ ๊ณ„์‚ฐ ๋ณต์žก์„ฑ๊ณผ ๋†’์€ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๋ณด์—ฌ์ฃผ๋ฉด์„œ ์ผ๋ฐ˜์ ์ธ ์‚ฌ๋ฌด์‹ค ๊ณต๊ฐ„์— ๋Œ€ํ•˜์—ฌ ํ‰๊ท  1.62m์˜ ์ธก์œ„ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ๋Š” ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๋ฐฉ์‹์„ ํ™œ์šฉํ•˜๋Š” ์ง€์ž๊ธฐ ์ง€๋ฌธ ๊ธฐ๋ฐ˜์˜ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‹ค๋‚ด ์ธก์œ„์˜ ๋งฅ๋ฝ์—์„œ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ์€ ๋ช…์‹œ์ ์ธ ๋Œ€์ƒ ๊ณต๊ฐ„์˜ ์‚ฌ์ „ ์กฐ์‚ฌ ๊ณผ์ • ์—†์ด ์ง€์ž๊ธฐ ์ง€๋ฌธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ง€๋‚œ ์‹ญ์ˆ˜๋…„ ๊ฐ„ ์‹ค๋‚ด ์ธก์œ„ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•ด ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๋ฐฉ๋ฒ•๋ก ์ด ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜์–ด ์™”์œผ๋‚˜, ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ์— ๊ธฐ๋ฐ˜ํ•œ ๊ธฐ์กด ์ธก์œ„ ์‹œ์Šคํ…œ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์ „ ์กฐ์‚ฌ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ๋ณด๋‹ค ์œ„์น˜ ์ •ํ™•๋„๊ฐ€ ๋‚ฎ๊ฒŒ ์ธก์ •๋˜์–ด์™”๋‹ค. ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…์˜ ๋‚ฎ์€ ์ธก์œ„ ์„ฑ๋Šฅ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง€์ž๊ธฐ ๊ธฐ๋ฐ˜ ํฌ๋ผ์šฐ๋“œ์†Œ์‹ฑ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ ์‹ค๋‚ด ์ธก์œ„ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ช…์‹œ์ ์ธ ์ˆ˜์ง‘ ๊ณผ์ • ์—†์ด ์Šค๋งˆํŠธํฐ ์‚ฌ์šฉ์ž๊ฐ€ ์ผ์ƒ์ƒํ™œ์—์„œ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ง€์ž๊ธฐ ์ง€๋ฌธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋„๋ก HMM ๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ํ•™์Šต ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜์˜€์œผ๋ฉฐ, ์ฃผ๋กœ ๋ณต๋„ ์œ„์ฃผ๋กœ ๊ตฌ์„ฑ๋œ ์‹ค๋‚ด ๊ณต๊ฐ„์—์„œ์˜ ํ‰๊ฐ€ ๊ฒฐ๊ณผ, ์ œ์•ˆ๋œ ์‹œ์Šคํ…œ์ด 96.47\%์˜ ํ•™์Šต ์ •ํ™•๋„์™€ 0.25m์˜ ์ค‘๊ฐ„๊ฐ’ ์ธก์œ„ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.Over the decades, indoor localization system has been widely studied in the academic and also in the industrial area. Many sensors or wireless signals such as WiFi, Bluetooth, and inertial sensors are available when designing an indoor localization system, but among them, the systems using the geomagnetic field has advantages concerning accuracy and stability. Every spatial point in an indoor space has its own distinct and stable fingerprint, which arises owing to the distortion of the magnetic field induced by the surrounding steel and iron structures. The magnetic fingerprint is robust to environmental changes like pedestrian activities and door/window movements, particularly compared with radio signals such as WiFi. This phenomenon makes many indoor positioning techniques rely on the magnetic field as an essential source of localization. Despite the robustness, there are some challenges when leveraging the magnetic fingerprint to design the indoor localization system. Due to lower discernibility of the magnetic fingerprint, most of the existing studies have exploited high computational algorithms and many sensors. Also, the cost of a site survey to collect the fingerprints and periodic management of target spaces is still problematic when using magnetic fingerprints. This dissertation thus focuses on these two challenges. First, we present an energy-efficient and lightweight system that utilizes the magnetic field for indoor positioning in the Internet of Things (IoT) environments. We propose a new hardware design of an IoT device that only has a BLE interface and two sensors (magnetometer and accelerometer), with the lifetime of one year when using a coin-size battery. We further propose an augmented particle filter framework that features a robust motion model and algorithmic-efficient localization heuristics with minimal sensory data. The prototype-based evaluation shows that the proposed system achieves a median accuracy of 1.62 m for an office building while exhibiting low computational complexity and high energy efficiency. Next, we propose a magnetic fingerprint-based indoor localization system leveraging a crowdsourcing approach. In the aspect of indoor localization, crowdsourcing is a method to construct the fingerprint database without the explicit site-survey process. Over the past decade, crowdsourcing has been actively studied for indoor localization. However, the existing localization systems based on crowdsourcing usually achieve lower location accuracy than the site survey based systems. To overcome the low performance of the crowdsourcing based approaches, we design an indoor positioning system using the crowdsourced data of the magnetic field. We substantiate a novel HMM-based learning model to construct a database of magnetic field fingerprints from smartphone users. Experiments in an indoor space consisting of aisles show that the proposed system achieves the learning accuracy of 96.47\% and median positioning accuracy of 0.25m.Chapter 1 Introduction 1p - Motivation 1p - Indoor Localization Overview 2p - Magnetic Field based Systems 5p - Organization of Dissertation 7p Chapter 2 An Energy-efficient and Lightweight Indoor Localization System for Internet-of-Things (IoT) Environments 8p - Introduction 8p - Related Work 11p - Issues on Using Magnetic Field 12p - Characteristics of Magnetic Field 12p - Variation Issues 13p - Sensing Rate 17p - Design of Energy-efficient Device for Localization 18p - Hardware Design 18p - Structure of the BLE Beacon Frame 21p - Processing Sensor Data 22p - System Architecture 25p - Overview 25p - Site Survey Methodology 25p - Particle Filter Framework 26p - Evaluation 36p - Implementation 37p - Experiment Setup 38p - Localization Performance 38p - Energy and Algorithmic Efficiency 44p - Discussion 46p Chapter 3 Magnetic Field based Indoor Localization System:A Crowdsourcing Approach 51p - Introduction 51p - Characteristics of Magnetic Field 54p - Robustness 54p - Distinctness 54p - Diversity issues 55p - Design of HMM for Crowdsoucing 56p - Basic Model 56p - Issues in HMM Learning 59p - Preliminary Experiments 59p - System Architecture 63p - Enhanced Learning Model 63p - Pre-processing Crowdsourced Data 65p - Allocating Initial HMM Parameters 67p - Comparing Similarity between the Magnetic Fingerprints 70p - Evaluation 71p - Experimental Settings 71p - Learning Accuracy 71p - Positioning Accuracy 73p - Algorithmic Efficiency 75p Chapter 4 Discussion and Future Work 76p - Open Space Issue 76p Chapter 5 Conclusion 82p Bibliography 84p ์ดˆ๋ก 92pDocto

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensingโ€“analysisโ€“control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot
    • โ€ฆ
    corecore