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Abstract
Most current methods for 802.11-based indoor localization depend on either simple radio
propagation models or exhaustive, costly surveys conducted by skilled technicians. These
methods are not satisfactory for long-term, large-scale positioning of mobile devices in
practice. This thesis describes two approaches to the indoor localization problem, which we
formulate as discovering user locations using place and motion signatures.

The first approach, organic indoor localization, combines the idea of crowdsourcing,
encouraging end-users to contribute place signatures (location RF fingerprints) in an organic
fashion. Based on prior work on organic localization systems, we study algorithmic chal-
lenges associated with structuring such organic location systems: the design of localization
algorithms suitable for organic localization systems, qualitative and quantitative control of
user inputs to “grow” an organic system from the very beginning, and handling the device
heterogeneity problem, in which different devices have different RF characteristics.

In the second approach, motion compatibility–based indoor localization, we formulate
the localization problem as trajectory matching of a user motion sequence onto a prior map.
Our method estimates indoor location with respect to a prior map consisting of a set of 2D
floor plans linked through horizontal and vertical adjacencies. To enable the localization
system, we present a motion classification algorithm that estimates user motions from the
sensors available in commodity mobile devices. We also present a route network generation
method, which constructs a graph representation of all user routes from legacy floor plans.
Given these inputs, our HMM-based trajectory matching algorithm recovers user trajectories.
The main contribution is the notion of path compatibility, in which the sequential output
of a classifier of inertial data producing low-level motion estimates (standing still, walking
straight, going upstairs, turning left etc.) is examined for metric/topological/semantic
agreement with the prior map. We show that, using only proprioceptive data of the quality
typically available on a modern smartphone, our method can recover the user’s location to
within several meters in one to two minutes after a “cold start.”

Thesis Supervisor: Seth Teller
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Location information is a fundamental basis for mobile computing and its applications.
Nowadays people carry mobile devices wherever they go; the location of the device naturally
reflects its user’s context, giving valuable information to the mobile applications and services
he or she is using. For example, a recommendation “app” running in a smartphone can sug-
gest the best place for dinner, considering the user’s current location and recent movements.
Also, location reveals the user’s other contextual information; in prior work, location traces
are used for inferring the user’s transportation mode [3] or frequently visited places [4].
Sometimes, the location itself is what the user wants to know, in order to avoid getting lost.

Unfortunately, most location-aware applications to date are restricted to outdoor envi-
ronments, as they rely primarily on the GPS (Global Positioning System) infrastructure [5]
to obtain the user’s current location. Consequently, we do not observe widespread use of
location-aware mobile applications in indoor environments; GPS cannot provide timely and
accurate position estimates indoors.

To extend the capability of mobile applications, researchers have worked on alternatives
to GPS for indoor environments. Early work explored instrumenting a lab space with special-
ized beacons and mobile devices with dedicated receivers. For example, ActiveBadge [6] used
infra-red beacons; Cricket [7, 8] used a combination of RF (radio frequency) and ultrasound
signals. However, as IEEE 802.11 standards have been established as a de facto standard for
short-to-mid range communication between mobile devices, with nearly universal coverage
in most urban environments [9], indoor positioning has converged on methods that rely on
existing wireless local area network (WLAN) infrastructure.

The key idea of the WLAN infrastructure–based localization is associating location-
dependent characteristics of RF signals with physical locations. Such methods can find the
user’s location later by matching the signals, observed by the mobile device s/he is using, to
the previously constructed RF map. Prior work based on this idea can be classified into either
of two categories: radio propagation model–based methods and fingerprinting methods. The
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radio propagation model–based methods determine user location from distance estimates
to three or more known locations of nearby wireless access points (WAP) by triangulation.
The path-loss signal propagation model (§ 2.2.2), describing the relationship between RF
signal strength (received signal strength indicator, RSSI) and physical distance between
a transmitter-receiver pair of wireless devices, is used to estimate the distances. On the
other hand, fingerprinting methods create a database that associates ambient wireless signal
characteristics (e.g. signal strength or response rate) with physical locations. Such associations
are called location fingerprints (Fig. 1-1). The user’s device is then localized by finding the
fingerprint in the database that is most similar to the currently observed signal and returning
the associated location.

While prior work using these approaches has shown acceptable performance in terms
of positioning error [10–12], neither is satisfactory for long-term, large-scale positioning of
mobile devices in practice. Radio propagation model–based approaches cannot achieve high
positioning accuracy because complex propagation phenomena of RF signals — multipath
fading and shadowing due to walls, structures and furniture [13] — are not captured well
by the signal propagation model. As a result, inaccurate distance estimates may result in
incorrect location estimates [10]. On the other hand, fingerprinting methods require a
high deployment burden, because a fingerprint database must be constructed by a manual
survey process. Expert surveyors must systematically walk from room to room, gaining

0xa3b

0x6d2

0xbc4

0x5fe

0xa3b

0x6d2

0xbc4

0x5fe

Figure 1-1: Illustration of RF fingerprints. The bars in each space illustrate the signal
strength from each in-range AP.
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Chapter 1. Introduction

access to all areas of a building to create the required fingerprinting database [11]. Even for a
moderately-sized office building, this process can take several days and cost tens of thousands
of dollars [14]. Furthermore, this process must be repeated whenever there is a significant
change in the wireless environment of the target building.

Another approach that has been investigated recently is to make extensive use of sensors
equipped in modern mobile devices. Smartphones and tablets these days have a multitude of
sensors, which enrich mobile applications in a variety of ways. Since many of the mobile
sensors, such as accelerometers, gyroscopes and magnetometers, capture physical properties
that are directly or indirectly related to the user’s motion and orientation, researchers
have proposed localization methods that fuse low-level sensor measurement to estimate the
user’s current location. These methods rely on dead-reckoning, Kalman filters or particle
filters [15–17]. However, the low-cost MEMS sensors in commodity devices are not well-
calibrated and can drift quickly over time. Therefore, these methods typically require the
device to be mounted in a specific position (waist or foot) [18] or they are aided by frequent
external position fixes from a different source (e.g. WiFi) [15], having limited utility in
practice.

Moreover, these methods have failed to recognize human as a central component of the
localization model. Mobile devices per se do not represent how humans move in indoor
environments and interact with the localization system. For example, in an area where the
coverage of positioning systems is poor, a user may want to improve the system by actively
contributing WiFi data, so that s/he or others can benefit from the improved coverage next
time. Also, user paths in indoor environments can be concisely described using abstract
terms describing human motions, such as “walking”, “turning”, or “riding an elevator”, even
without precise metric values. These aspects have not been well captured in the design of
localization algorithms to date; the previous methods mainly concerned electromechanical
properties of the mobile devices only, without modeling of end-users of the localization
system. We argue that, localization algorithms, especially those for indoor environments in
which motion patterns are shaped by human perception and activity, must place users as a
central piece of their models.

In this thesis, we explore two approaches for the indoor localization problem, influenced
by this idea. Specifically, we develop algorithms and systems that utilize “user aspects” in
modeling indoor localization: organic indoor localization and motion compatibility–based
indoor localization. These methods start from recognizing the localization problem as an
inverse problem, in which we estimate user locations from observed “measurements” by
sensors commonly available in modern mobile devices, including RF, acoustic/light [19],
proximity and/or physical measurements such as acceleration and angular velocity, which
convey information about the user’s location and movements. These distinguishing sensor
measurements, which are potentially unique to each space, comprise a signature for that
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1.1. Organization

space. Unique characteristics of an indoor space, shaped primarily by its position, shape, and
walls and fixtures among others, form unique place and motion signatures for that space. As a
specific example, RF fingerprints are place signatures as they are largely determined by the
relative location of each space to nearby base stations as well as the material and the shape
of walls and obstacles around the area. In another example, inertial sensor measurements
induced by motions of the user carrying the device produce motion signatures that the spaces
impose on his/her movements.

However, modeling the association between signatures and locations, and collecting
required to capture these associations data present challenges to be addressed before a
localization system can be used in practice. Assuming a localization system must deliver
room granularity, the number of “examples” required for associating signatures (e.g. RF
fingerprints) to locations (i.e. “training” a localization model) can be enormous if the target
corpus is large. Also, user motions, which are better described in abstract terms than in
raw metric sensor measurements, are not sufficiently utilized in previous research. The
two threads of work that we present in this thesis attempt to improve the state-of-the-art of
indoor localization methods by addressing these aspects.

1.1 Organization

In describing organic indoor localization (Part I), we address challenges associated with
building and maintaining a crowdsourcing-based indoor localization system. Prior work on
RF fingerprint–based indoor localization requires complete fingerprints to be collected in
advance. This survey process is burdensome and costly, preventing RF fingerprinting–based
methods from being widely used in practice. However, some later work [14,20,21] recognized
that a localization system can incorporate users in its survey–use cycle, combining the idea of
crowdsourcing with the fingerprinting method. In particular, the Organic Indoor Location
(OIL) system [14] had individual end-users contribute WiFi location fingerprints, which
were rapidly shared across end-users, improving coverage and quality of the localization
service. While this approach can effectively reduce the burden of location surveying, it
introduces its own set of challenges. On top of the basic OIL architecture, we address the
challenges for effective and accurate positioning of users in an organic location system.

In the second part of the thesis, motion compatibility–based indoor localization (Part II),
we explicitly model the way humans describe indoor routes within typical indoor environ-
ments. Because of metric, topological, or semantic constraints imposed by indoor maps,
indoor navigation by humans is highly structured and can be described well with a small
“vocabulary” of motions. This vocabulary, or a set of natural descriptions of human motions,
describes a path of the user on the move. When a sequence of such user motions and a prior
map are given, we show how to recover the originating user path on the map. To further
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Chapter 1. Introduction

increase the utility of the method, we describe how user motions and the matching represen-
tation of the prior map, route networks, can be generated automatically from smartphone
sensor data and legacy CAD drawings, repectively.

1.2 Contributions

The following list summarizes the contributions made by this thesis:

1. Algorithms for organic indoor location systems:

• Challenges in designing sustainable organic location systems

• Design of a localization algorithm for organic location systems

• Method for efficient collection of user inputs

• Method for identifying and filtering erroneous user inputs

• Analysis of, and a solution to the device heterogeneity problem

2. Motion compatibility–based indoor localization:

• Automatic construction of route networks for indoor spaces

• Notion of path compatibility between user motions and indoor paths

• Accurate motion classification using mobile sensor data

• Trajectory matching algorithm based on motion compatibility

• Demonstration of the method with real user data using a handheld device
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Part I

Algorithms for Organic Indoor Location
Systems
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Part I of the thesis presents algorithmic solutions to the problems arising in organic
indoor location systems. We address issues that emerge when building a working organic
localization system: collecting place signatures from end-users of the system efficiently and
correctly, and using place signatures gathered from diverse mobile devices with heterogeneous
RF characteristics.

We start by explaining the background that has motivated our work in Chapter 2. As
our work builds on previous work on OIL systems, we give a brief overview of the OIL
architecture. We also review related work here.

In Chapter 3, we describe algorithms to build an organic location system efficiently from
scratch, when only a small amount or no data required for accurate localization are available.
To build a working system quickly under this circumstance, it is important to guide users to
contribute data for poorly covered locations to improve coverage, as well as to selectively
employ user fingerprint contributions that are correctly associated with the right location.
We present two approaches that deal with these problems.

Chapter 4 covers another important problem for organic indoor localization: device
diversity. Because mobile devices can exhibit dissimilar RF characteristics due to differences
in hardware and software, organic systems that take input from any end-users must account
for such discrepancies. We analyze different localization models and present guidelines for
designing a localization algorithm to work organically.
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Chapter 2

Organic Indoor Location System:
Background

In this chapter, we start by giving a motivation for our work. Then, we review prior work
on RF-based localization algorithms for mobile devices. Next, we introduce organic indoor
location (OIL), a crowdsourcing-based localization system that removes the initial survey
burden required for traditional RF-based systems, and the associated challenges, for which
solutions are presented in the following chapters.

2.1 Introduction

Incorporation of information about a user’s location can enhance a variety of applications,
including calendars, reminders, navigation assistants, and communication tools. For example,
the Locale application automatically adjusts mobile phone behavior based on location [22].
However, most current location-aware applications are restricted to outdoor operation; they
depend upon GPS, which requires clear sky visibility and may need minutes to provide an
accurate location estimate.

Much of the research into alternatives to GPS has converged on methods that rely
on existing wireless and cellular infrastructure (e.g., [10, 11, 23]). These methods share
underlying elements: first, create a database that associates ambient wireless or cellular
signals, or fingerprints, with physical locations; next, to localize, find the most similar
fingerprint in the database to what one’s device currently observes, and report the associated
location. While such methods can localize indoors to within a few meters in regions with
high infrastructure coverage [11], they have a high deployment burden. Surveyors must
methodically walk from room to room, gaining access to all areas of a building to create
the required fingerprint database [24]. For a moderately-sized office building, this process
can take several days and cost tens of thousands of dollars, and must be repeated when the
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2.2. Related Work

wireless infrastructure or building layout changes.
Because this deployment cost is prohibitive for all but the most managed environments

(e.g., airports), researchers have developed systems in which users perform the required
surveying activity [14, 20, 25, 26]. While these organic location systems reduce deployment
and management burden significantly, they also introduce a new set of challenges. For
example, if the fingerprint database is initially empty and grows in a piecemeal fashion, thus
providing location estimates of spatially-varying quality, how can the system meaningfully
convey to users both the need for more data, and the relative accuracy of its current
location estimate? How can the system determine when to prompt user-surveyors for input?
Insufficient prompting will not produce enough fingerprint data for a useful system, while
too much prompting will annoy users. Additionally, user-surveyors will provide data of
varying quality; how can the system sift through users’ contributions to retain accurate
contributions while discarding stale, erroneous or even malicious data? We study these
questions in Chapter 3.

Another key problem for organic indoor localization is that device diversity, differing in
RF characteristics between different types of mobile devices, introduces a new, complicating
variable. Where expert surveys may use an expensive RF-scanner whose properties, e.g.
dynamic range, have been rigorously calibrated, this level of standardization and equipment
cannot be expected in organic surveying with typical consumer-grade laptops and cellphones.
The “device heterogeneity” problem occurs when a user/surveyor’s and a standard user’s
devices are different, which is the common case in organic location systems. Chapter 4
addresses the device heterogeneity problem, significantly expanding the potential of organic
localization systems for real-world deployment.

2.2 Related Work

In this section, we review existing RF-based indoor positioning algorithms and systems for
mobile devices and sensor networks, including prior work on reducing the survey burden of
localization systems.

2.2.1 Positioning Systems with Dedicated Infrastructure

Early indoor positioning systems use dedicated hardware for locating people in indoor
environments. A signal is transmitted either from the client hardware or from beacons
installed in the area where positioning is required. The ActiveBadge [6] system by Want et al.
tracks people and objects in an environment by attaching a badge, which periodically emits
infrared signals. The Cricket location support system [7] uses a combination of RF and
ultrasonic signals in order for the mobile client to infer the closest beacon unambiguously.
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Chapter 2. Organic Indoor Location System: Background

The Cricket system was later extended to provide the orientation of a mobile device [8]. The
SpotOn system [27] used a custom RF transceiver with which the final location is computed
by trilateration using RF signal strength measurements. While these systems demonstrated
feasibility of mobile indoor positioning with reasonable accuracy, the need for instrumenting
an area and for a client with dedicated hardware may be considered impractical in many
settings.

2.2.2 RF Propagation Model–Based Methods

RF-based indoor positioning methods can be classified into two categories: radio propagation
model–based methods and fingerprint methods. The radio propagation model methods
first estimate the distance to the base station (802.11 wireless access point) from a measured
received signal strength (RSS) using a path loss model. The positions of the base stations
are assumed to be known and fixed. A most widely used path-loss signal propagation model
(log-distance path-loss model, Fig. 2-1) is given by

Pi = P0− 10γ log10

di

d0

+ ε (2.1)

where Pi is the RSS for the base station i , P0 is the received signal strength at a reference
distance d0, di is the distance to the base station i , γ is the path-loss exponent, and ε is a
random variable modeling signal fading. The final position of the mobile is computed by
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Figure 2-1: RF propagation model (path-loss model) with a base station located at origin
(Equation 2.1).
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triangulation or by setting an over-determined system of equations [10, 28]. Lim et al. [29]
proposed an automatic calibration of model parameters in the signal propagation model by
measuring RSS between the base stations.

A major drawback of the radio propagation model–based methods is that the path-loss
model in Equation (2.1) cannot capture complex propagation phenomena of RF signal in
indoor environments. The existence of walls, structures, and furniture in typical residential
and office buildings makes the distance estimate from RSS inaccurate.

2.2.3 RF Fingerprint–Based Methods

Fingerprinting methods do not rely on the unreliable path-loss model, but rather construct
an empirical database of RF signals at each location. They exploit the spatial variation in
available radio frequency (RF) signals, such as 802.11 and cellular broadcasts, compiling this
information into a map (“fingerprint”) [10, 23]. Due to walls, distance, and other factors,
the signals observed within a particular space differ substantially from those observed in
other spaces, even those that are directly adjacent. The location of a mobile device can then
be estimated by identifying the space within the map whose fingerprint best matches the
fingerprint recently observed by the device.

RADAR [10] is one of the first fingerprinting-based RF localization systems. It used
k-nearest-neighbors (k-NN) on training signal data captured at each location in the area in
order to find the best matching location among the surveyed locations. It also compared the
fingerprinting methods with a radio propagation model–based method, demonstrating that
the former (k-NN with training points) performed better at the expense of survey efforts.
The RADAR system was later extended to consider temporal continuity in user motion [30].

Researchers have investigated the use of various supervised learning algorithms on the
RF-based indoor positioning problem, such as neural networks [31] or support vector ma-
chines [32]. In particular, Bayesian localization methods, which have been used mainly for
robot localization [33], have been adopted to the mobile indoor positioning problem. Hae-
berlen et al. [11] modeled the signal strength distribution as the Gaussian density function
and used a Bayesian classifier for localization. The Horus system [12, 34] also estimated the
location of the mobile using a Bayesian classifier with a signal strength distribution at each
location. The system was further extended to handle signal correlation across successive
samples and small-scale variations in WiFi signals [12, 35].

When applied to continuous tracking problem using 802.11 WLAN signals, sampling-
based approaches such as particle filters, have been used in order to represent the state space
(physical coordinates) in continuous coordinates. For instance, Berna et al. [36] proposed
a Monte Carlo Localization, a particle filter applied to the Bayesian localization problem,
that uses wireless signal strength for updating the importance weight of particles. Biswas and
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Chapter 2. Organic Indoor Location System: Background

Veloso [37] pursued a similar approach for localizing autonomous indoor robots.
More sophisticated Bayesian statistical approaches have been adopted for indoor posi-

tioning problem. For example, Madigan et al. [38] proposed hierarchical Bayesian graphical
models for WiFi-based indoor location estimation problem. Bayesian networks were con-
structed upon the path-loss model and the positions of the access points were assumed to be
known. While the system is able to incorporate domain-dependent prior knowledge because
of the flexibility of the hierarchical Bayesian models, it is not adequate for the real-time
positioning because it uses Monte Carlo Markov Chain simulation for inference. Letchner et
al. [39] developed a similar hierarchical Bayesian model for WiFi signal distributions.

2.2.4 Localization in Sensor Networks

The localization problem has also been studied in the context of sensor networks. Lo-
calization for sensor networks and RF-based mobile positioning share many common
characteristics; they both assume a small mobile sensing platform which has a communi-
cation capability based on radio frequency or an equivalent technology. However, they
are different in many of their basic assumptions. For example, mobile localization usually
involves positioning of individual mobile computers, whereas localization in sensor networks
tackles positioning of a group of sensors; mobiles in mobile localization communicates with
base stations, whereas sensors in sensor networks usually communicates with each other
from which proximity or distance measurements are obtained. In the review below, we refer
to anchor nodes, or anchors, as the sensors with positions known from other means, i.e.,
fixed at known coordinates or equipped with GPS.

Many simple yet effective localization algorithms are based on proximity information.
Proximity information is used for bounding the maximum distance within which a pair
of sensors can be located from each other. In order to provide global position estimates,
proximity-based approaches often assume existence of large number of anchors in the region
so that each node can approximate its location from single-hop proximity information. Ex-
amples of proximity-based methods include work by Bulusu et al. [40], APIT (Approximate
Point In Triangulation) [41], and bounding box–based algorithms [42, 43]. Proximity-based
approaches are simple and cost-effective because they do not require accurate ranging capa-
bility, and thus can operate on simple low-cost devices. However, the localization error is
relatively large and they can require high anchor density.

Lateration-based algorithms refer to localization algorithms based on lateration, which is
a class of geometric methods to locate an object given distance measurements from multiple
reference positions [44]. The simplest case is when a position of a node in a two dimensional
space can be uniquely determined from three non-collinear node positions and distances,
which is called trilateration. If only a small number of anchor nodes are available in the
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network, direct distances to anchor nodes are unavailable for sensor nodes; therefore they
are often approximated [45, 46]. Another approach is to build a network localization graph
incrementally [47–50], while incorporating error-control mechanisms in order to prevent
error accumulation during the incremental reconstruction process. Several previous works
extended the basic lateration method to mobile sensor networks [51, 52].

Another approach to the sensor network localization problem is to formulate it as a
global optimization problem, for example, by a second-order cone programming given
the known anchor coordinates [53], or as semi-definite programming [54]. Although this
global optimization formulation is mathematically elegant, it has two major problems: it
is unavoidably centralized, and it becomes computationally intractable as the size of the
networks grows. Researchers have used the Cramér-Rao bound, a statistical lower bound on
the covariance of an unbiased estimator, to characterize error behavior [55, 56]. The sensor
network localization problem has also been formulated as an instance of learning methods.
Multidimensional scaling can be naturally applied to the sensor network localization as
pairwise distances between sensor nodes are given [57–59].

Finally, Bayesian inference techniques have been applied to the sensor network localiza-
tion problem. Bayesian inference methods provide a disciplined mechanism to incorporate
measurement uncertainty into the positioning estimates. Ihler et al. [60] model sensor
networks as Markov random fields and apply nonparametric belief propagation which is
a sample-based variant of the belief propagation method. For mobile sensor networks,
sequential Bayesian estimation methods have been applied by considering the limited sensing
capability of individual sensor nodes [61, 62].

2.2.5 Mobile Positioning with Minimal Survey Effort

Researchers have studied positioning methods that require only minimal or no survey effort.
Krumm and Platt [63] formulated the positioning problem as a kernel regression problem,
interpolating a signal strength vector into a location that is not surveyed. Their work
demonstrated that the indoor positioning with reduced survey effort was feasible where only
40% of the locations were surveyed and the positioning error increased only about 20% in
their deployment.

Some previous work approached the problem as a graph reconstruction problem where
the locations of only a small fraction of nodes are known a priori. It is often formulated as
an optimization problem that minimizes a certain kind of error function, which models
mismatch between the measured sensor data such as RSS and the predicted sensor measure-
ments given the configuration of nodes. The path-loss model or its equivalent is used in
order to predict an RF signal measurement given a distance. As described in Section 2.2.4,
this approach is conceptually very similar to the localization algorithms in sensor networks
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Chapter 2. Organic Indoor Location System: Background

where pairwise distances are given.
LaMarca et al. [64] introduced an iterative algorithm that constructs a graph from a small

number of known anchor locations. Pan et al. [65] presented a “co-localization” method, in
which mobile positions and AP positions are computed simultaneously. It is formulated as a
semi-supervised learning problem using a graph Laplacian, which is an approximation of the
data manifold in the signal space.

There also exist wireless positioning algorithms that avoid pre-deployment survey effort
altogether. As in the graph reconstruction approaches presented above, they seek to find a
relative configuration of measurement locations that is consistent with the associated WiFi
signal measurements. The resulting configuration can be followed by an anchoring step if the
absolute locations for some measurements are known by other means, e.g. GPS. Chintalapudi
et al. [66] formulated it as an optimization problem for finding AP and mobile locations.
Huang et al. [67] adopted GraphSLAM [68], a simultaneous localization and mapping
paradigm for robotics applications, for the WiFi-based positioning problem. GraphSLAM
can also be understood as a graph reconstruction method. On the other hand, Ferris et
al. [69] applied Gaussian process latent variable models [70], a dimensionality reduction
method based on latent variable modeling with Gaussian processes. This work approached
the problem from the perspective of dimensionality reduction of a high-dimensional WiFi
signal data. While these methods have demonstrated that it is feasible to compute the relative
locations of WiFi measurements on users’ mobile device, they did not provide a satisfying
solution to how to ground the relative configuration on a physical representation of the
world, such as location names or floor plans.

2.2.6 Crowdsourcing-Based Positioning Methods

RF-fingerprinting–based methods (§ 2.2.3) have been the most popular approach to indoor
localization using mobile devices because of their ability to capture unique RF characteristics
per location without having to relying on existing infrastructure (§ 2.2.1) or inaccurate
propagation models (§ 2.2.2). However, they require expert surveying to collect fingerprints
necessary for localization. Methods based on expert surveying have practical, cultural and
technical downsides preventing them from achieving widespread use. On the practical
side, such methods have a high fixed cost, as they require an initial site survey to build
and populate the signal strength map. This deployment burden typically requires a few
person-days of careful and spatially comprehensive survey effort by skilled technicians. This
approach faces a cultural barrier as well, as members of a community may feel reluctant
to allow strangers into certain areas such as private offices. A technical challenge is that
site survey data may become outdated over time, e.g. through access point reconfiguration,
re-positioning or replacement, each of which may degrade or invalidate subsequent location

25



2.3. Organic Indoor Localization: Overview

estimates.
These factors led to the development of user-generated, or organic localization systems,

where the initial, comprehensive site survey is replaced with ad hoc, incremental collection
of data by individual users [14, 20, 25, 26]. Organic localization merges the “survey” and
“use” phases that were distinct in earlier work [10, 11] into a single phase, where the users of
the system are also prompted to construct the signal strength map. After a handful of early
users populate the map for a building environment, a typical user will enjoy high-quality
location discovery with minimal individual effort.

Outdoors, GPS coordinates can be used to annotate user input and build the fingerprint-
to-place mapping. This process, called war-driving [23], generates fingerprints that can later
be used for location determination by devices that lack GPS but have WiFi [71]. War-driving
can be considered a form of organic data collection, but its dependence on GPS limits it to
outdoor use.

User input has also been employed in indoor positioning systems. ActiveCampus [21,25]
uses a prediction-correction mechanism: first, the system builds a coarse-grained fingerprint,
and then users can correct a location estimate by providing a “virtual AP”. Bolliger [20]
developed the RedPin localization system which uses WiFi, GSM, and Bluetooth as sensing
devices. Like OIL system presented in this work, RedPin does not require an expensive
training phase and generates location fingerprints from user input. Krumm and Hinckley’s
NearMe infers proximity of users by comparing user-generated WiFi signatures [72]. Barry et
al. [26] conducted a year-long study of a user-trained localization system and showed its
utility. None of these systems addressed challenges associated with organic input, such as
spatial uncertainty, labeling errors, and device diversity.

In the next section, we present our implementation of the crowdsourcing-based local-
ization, the Organic Indoor Location (OIL) system [1, 14], which aims to provide scalable
localization services for context-aware mobile applications.

2.3 Organic Indoor Localization: Overview

We have developed the Organic Indoor Location (OIL) system for user-supported localization
system [1, 14]. The key idea of the OIL system is to combine the power of a community
of users with an indoor positioning system, by encouraging individual users to contribute
location fingerprints with location labels in an organic fashion (Fig. 2-2). Once a user selects
the current location on a graphical user interface, OIL automatically associates the location
with RF signal scans collected around the same time, forming a bind. Location fingerprints
collected in this manner constitute a shared fingerprint, which is used for training the
positioning algorithm at a shared server. This trained model can be shared by all users,
contributors and non-contributing users alike, who use the shared model for later positioning.
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Chapter 2. Organic Indoor Location System: Background

Figure 2-2: In an “organic” indoor location system, a small fraction of users contribute
RF signatures for each space, while most users’ devices simply use the resulting database for
positioning. For example, users A and B could be contributors to the office environment
shown, whereas C and D are non-contributing users. The bars next to A and C represent
the set of signal strengths (the fingerprint) seen by their devices when they are in room 235.
If A and C have different devices, the fingerprints observed may differ, even if they are in the
same room at the same time.

The idea is that as more and more contributions populate the system, the normal users will
also benefit from them with higher quality and less interface burden. The architecture and
the user interface of the client software of the OIL system are shown in Figures 2-3 and 2-4,
respectively.

The client software was implemented using Python on Nokia N810 Internet Tablets.
Users are presented with a clickable map (Fig. 2-4), where polygonal space contours and
space names have been automatically extracted from AutoCAD files [73].

Given this outline of our organic localization system, we now describe the system design
and user interface related issues that were handled in prior work [14] in Section 2.3.1, for
completeness. Next, we describe the Bayesian localization algorithm, which estimates the
location of a user device by identifying the space whose fingerprint best matches WiFi
signal strength observed by the device (§ 2.3.2). Then, we explain challenges of the organic
localization (§ 2.4), for which we present algorithmic solutions (Chs. 3 & 4) to make the
system practical in real environments.

2.3.1 Design and User Interface

The main thrust of the OIL system is seamless integration of data collection into the use
phase of the location service. On the other hand, the organic data collection process should
not overburden users, i.e., the system architecture should provide a fluent user experience so
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Figure 2-3: OIL system architecture. OIL client software on the user’s mobile device collects
signal strengths from nearby APs. When the user indicates the mobile’s current location, the
OIL client associates the location with RF scans collected around the same time and send
the bind to OIL server. The server aggregates it with other binds from the same location,
forming a WiFi fingerprint for that location. The WiFi fingerprints are transferred to the
user clients and used for real-time positioning on the client.

Figure 2-4: OIL user interface. The user interface of OIL system displays the current
location estimate to the user on a graphical map, and provides an interface to collect user
binds in an efficient way. Users can select the currently-occupied space on a floor plan and
contribute the location fingerprint to the system.
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that the user only needs to invest minimal effort in the process. The OIL system satisfies
these considerations from various perspectives — from the user interface to the architectural
level. Below, we summarize the key aspects of the OIL system from this viewpoint.

Data Collection and User Prompting
User-collected fingerprint data are essential in realizing organic location systems. The
OIL system takes user binds, an association between a RF fingerprint and a location
label, either from user-initiated contribution or by user prompting. Users can upload
fingerprint data for the current location anytime they want to do so. The system
also prompts for user input when it deems appropriate for improving localization
performance (§ 3.1.2).

Interval Binds
As opposed to snapshot-based data collection methods [11], which take the present
location of the mobile as input, the OIL system solicits user’s past and future duration
in that space. This interval bind mechanism has several advantages. First, the system
can collect far more training examples for the input of the localization model, as users
often spend a long time in each given location. Second, the system can suppress other
UI notifications for user prompting during this period, reducing user burden.

Fingerprint Caching and Pre-Fetching
The central goal of the OIL system is to provide location estimates to the user in a
timely manner. That is, the client must be able to produce location estimates without
necessarily connecting to the fingerprint server. To support this seamless location
service, OIL implemented fingerprint pre-fetching and local-caching scheme on the
client device. The OIL client maintains a set of fingerprints adaptively, by receiving
new fingerprints from the server based on similarity to the fingerprint at the current
location, and by removing stale cached entries. Another advantage of this adaptive
scheme is that it effectively reduces the computation of the localization algorithm.

2.3.2 Localization Algorithm

In principle, any ad-hoc or principled supervised learning algorithm can be used for WiFi-
based localization. However, a localization algorithm for practical organic location systems
must be efficient in two ways. First, the localization model computed from organic location
fingerprints must be able to be updated frequently, because the location fingerprints will
be updated frequently in a piecemeal fashion as users contribute a small amount of WiFi
data to the system. Second, since the system computes user position at the client side in
order to preserve user privacy, the location inference must be simple enough to run on
consumer-grade mobile devices without hampering other user applications.
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Based on these considerations, the OIL system uses a naïve Bayes classifier, which has a
number of properties that make it suitable for user-contribution–based localization systems
for mobile devices: low overhead of model update, simple computation on the client, and
good performance despite its simplicity.

Given a set of fingerprinted locations (the training data) and a WiFi scan observation
(the test data), the Bayesian localization method infers the most likely location l̂ of the
mobile device using Bayes’ rule. Let L and O denote the random variables for location and
observation respectively. Given a WiFi scan observation o ∈O, the posterior probability of
being in location l ∈ L is given by Bayes’ rule as:

pL|O(l |o) =
pO|L(o|l ) pL(l )

pO(o)
. (2.2)

Note that the observation likelihood pO(o) is fixed and can be ignored in what follows.
If we assume that the prior probability, pL(l ), is uniform, the maximum a posteriori (MAP)
estimate, with which the posterior probability is maximized, is given as follows:

l̂ = lM AP = argmax
l∈L

�

pO|L(o|l )
�

. (2.3)

Our basic localization model uses WiFi signal strength measurements as observations.
In the signal strength–based localization, each observation consists of a vector of signal
strengths O = (S1, S2, . . . , Sk) for k access points. Suppose, at the positioning phase, only
m ≤ k access points are observed, each with a signal strength value. Let M denote the indices
of the observed access points. Then the decision rule of the naïve Bayes classifier for the
most likely location l̂ , with a uniform prior, becomes:

l̂ = argmax
l∈L





∏

i∈M

pSi |L(si |l )


 . (2.4)

The training stage for the localization algorithm in Equation (2.4) is to estimate the
class-conditional probability pSi |L(·|·) for each location from user-contributed signal strength
data. We model it as a histogram, or a Parzen window estimator (§ 4.2.1). The model
update is very simple and efficient, as it requires only updating the histograms associated
with a specific location and access points, given a user input. The computed class-conditional
probability table is shared among end-users of the system. Client software running on each
mobile device computes the most-likely location with Equation (2.4).

We apply m-estimate smoothing to avoid the zero-probability problem in Bayesian
classification as well as to provide a regularization effect [74]. Given a discretized probability
mass function p̂X (x) computed from either a histogram or a kernel estimator, our final
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probability estimate pX (x) using the m-estimator is:

pX (x) =
N p̂X (x)+Φ p̄X (x)

N +Φ
(2.5)

where N is the weight of the observed histogram, p̄X (x) is a “prior” probability, and
Φ determines how much weight we attribute to the prior p̄X (x). This regularization is
particularly essential for organic location systems where the number of training inputs for
many locations is very small and uneven because of the organic nature of the system. Our
implementation set pk(si ) to a uniform distribution for simplicity, and m to the number of
effective histogram bins (we used m = 70 since signal strength typically ranges from -94 to
-25 dBm).

2.4 Challenges for OIL

While this approach can effectively mitigate the burden of an exhaustive site survey, it
introduces its own new set of challenges, ranging from design and user interface to algorithmic
challenges. In particular, there are algorithmic challenges associated with the efficient and
accurate operation of localization algorithms in organic location systems.

The first challenge stems from the fact that the signal strength map, constructed from
user-provided information, may be incomplete and may include erroneous data. Therefore,
the system must be able to control the quantity and quality of user inputs for the localization
system to bootstrap properly from scratch. Also, organic localization systems are expected
to encounter some level of noisy user contributions. In particular, users will not always
indicate the right room when they are prompted to make a bind. These erroneous user
inputs may pollute the organic fingerprint database with scans acquired in the wrong spaces.
Therefore, identifying erroneous contributions is a key problem in organic localization. In
Chapter 3, we propose algorithmic solutions to tackle these challenges: a mechanism for
evaluating spatial confidence when inferring a specific location, and prompting for additional
binds to improve coverage; and a method to identify erroneous binds in order to improve
localization accuracy.

The second complication is that users of the organic localization system carry different
types of mobile devices. Unlike conventional RF-fingerprinting methods for which signal
characteristics of the survey device are known and calibrated, varying RF characteristics due
to various factors, such as different size, operating system, driver or calibration, can make
the localization algorithm vulnerable to even small differences across devices, potentially
limiting interoperability between different fingerprint producers and consumers. Hence, the
localization algorithm must be robust against the diversity of user devices in organic location
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systems. Chapter 4 presents an analysis of, and design considerations for a localization
system in this scenario.
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Chapter 3

Growing an Organic Indoor Location
System

To “grow” an organic indoor location system from scratch efficiently, the system must
incorporate user input for locations without sufficient binds. Also, for the system to be
“healthy”, it should be able to figure out which inputs arise from faulty contributions, and
must not incorporate those erroneous inputs into the fingerprints. This chapter proposes
algorithmic solutions for these problems. Section 3.1 proposes a Voronoi diagram–based
spatial uncertainty metric and a corresponding policy to prompt a new user input. Section 3.2
presents a clustering-based algorithm to handle erroneous user input. Evaluations from
simulation and live deployments are described in Section 3.3.

3.1 Voronoi-based User Prompting

In survey-based positioning, the survey provides a snapshot of ambient RF for all spaces
where client positioning is desired. Based on the obtained signal strength map, a standard
localizer can then find the space that matches the fingerprint observed by a client device with
the highest probability. Organic positioning, however, begins with an empty database which
is gradually populated with user-provided fingerprints. If the fingerprint database is empty
or if the database does not include any of the RF sources that a client sees, then the organic
localizer outputs an “unknown location” response. However, when the database is only
partially populated, the localizer’s use of incomplete information may bias its predictions.
For example, consider the extreme case where only a single bind has been made; if a database
of known fingerprints contains a single location, the localizer will output that space as its
prediction, even if the wireless scan observed by the device overlaps only slightly with the
fingerprint associated with that location. We therefore require a method for estimating and
conveying the localizer’s spatial confidence in its output prediction. This confidence measure
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can be displayed along with the location estimate in a way that is intuitive to contributors
and non-contributors alike. We can also use the confidence measure as the basis of a policy
for requesting user input. For organic systems, in order to increase coverage, it is useful to
occasionally prompt users for their location. However, there is a trade-off between providing
imprecise estimates due to lack of coverage, and irritating users with too many bind requests,
especially when the fingerprint database is only partially populated. When should a user
be prompted with an explicit location request? Our system prompts whenever localizer
confidence falls below a threshold.

During the development of OIL, we considered several prompting policies and their
implications for coverage. The simplest policy is to prompt all users at regular intervals,
regardless of their location or estimate confidence. However, this method was intrusive and
conflicted with our goal of having knowledgeable “locals” being the primary data generators.
An alternative policy was to prompt with frequency inversely proportional to coverage:
as more spaces in a building are associated with fingerprints, user prompting decreases.
However, we found via simulation that this approach resulted in a high false prompting
rate, i.e., users were too often prompted in spaces that did not require it. A third policy –
inserting interpolated, artificial fingerprints for unbound spaces – requires good coverage
of nearby spaces to produce meaningful results. We therefore arrived at a user prompting
policy based on spatial uncertainty.

In the next section we outline our approach for evaluating spatial uncertainty. A corre-
sponding policy for user prompting is described in Section 3.1.2.

3.1.1 Spatial Uncertainty

In an organic localization system, if a user is in an unbound space, the most likely space to
be selected by the localizer is the nearest bound space. This is because the RF fingerprint of
the unbound space is likely to be similar to those of physically nearby spaces (Fig. 3-1). If
the localizer determines the user to be in a space with unbound neighbors, the user’s true
location may be one of the surrounding spaces and not the bound space. To convey this
spatial uncertainty, we can display to the user the set of possible spaces, including unbound
ones. We can also prompt the user to bind in one of the unbound neighbors, as s/he is likely
to be nearby.

In order to estimate uncertainty, we employ discrete Voronoi diagrams. In a standard,
continuous two-dimensional Voronoi diagram [75], a set of point sites exists on a plane. Each
site is associated with a Voronoi cell containing all points closer to that site than to any other
site.

In our solution, bound spaces are sites, and unbound spaces become members of the cell
associated with the nearest bound space (Fig. 3-2). As a space shifts from being unbound

34



Chapter 3. Growing an Organic Indoor Location System

0 50 100 150 200 250 300
0

5

10

15

20

Physical Distance (ft)

S
ig

n
a

l 
D

is
ta

n
c
e

 (
d

B
)

 

 

Figure 3-1: Signal distance vs. physical distance. As users add binds from more physically
distant spaces, signal distance (Eq. 3.2) between binds increases.

to bound, it becomes a site and adds nearby unbound spaces to its newly-formed cell. The
underlying intuition is that if a user is in an unbound space, the space most likely to be
selected by the localizer will be the nearest bound space – the Voronoi “site” associated with
the user’s true location. Therefore, the size of the bound space’s Voronoi cell naturally
captures the spatial uncertainty associated with prediction of the bound space.

More formally, let L denote the set of all locations in a given floor, and B be the set of
bound locations. Let Lc and Bc be sets of centroid coordinates of L and B , respectively. The
Voronoi diagram for Bc is a planar subdivision of R2 in which every point x in the plane is
assigned to p ∈ Bc if d (x, p)≤ d (x, p ′) ∀p ′ ∈ Bc , p ′ 6= p. The set of points that are assigned
to p is denoted as V (p), the Voronoi cell of p.

For every bound location b ∈ B with centroid p, we define a spatial uncertainty region
U (b ) to be a subset of L, as follows: every location l ∈ L is assigned to one of the uncertainty
regions, U (b ), if the Euclidean distance from its centroid lc is smaller to p than to any
other p ′ ∈ Bc ; equivalently, lc belongs to the Voronoi region of p, lc ∈V (p). In essence, we
maintain a generalized Voronoi diagram as a collection of mutually disjoint regions.

For each region U (b ) for a bound space b and its centroid p, we define two spatial
uncertainty metrics: the number of unbound locations, n(b ), and the maximum uncertainty
radius r (b ) defined as:

r (b ) = max
lc∈V (p)

d (lc , p) (3.1)

which is the maximum distance from the Voronoi site to the farthest unbound location
in U (b ). The number of unbound locations is used for the user prompting algorithm
(Algorithm 1), giving the spatial uncertainty metric. The maximum uncertainty radius
r (b ), used when drawing a circle centered on the corresponding bound space b , conveys
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3.1. Voronoi-based User Prompting

Figure 3-2: Spatial uncertainty. The user sees the currently selected bound space (green)
as the Voronoi site, along with spaces belonging to its Voronoi cell (stippled). This helps
contributing users know which binds would improve coverage and/or accuracy, and helps
non-contributing users understand localization precision

uncertainty to the user.
As noted above, when a space changes from being unbound to bound, the floor’s Voronoi

diagram must be updated. The update operation is efficient; it is linear in the number of
spaces held by any cells adjacent to the newly bound space. This update is performed on the
server, then propagated to all clients.

3.1.2 User Prompting Algorithm

OIL requests user input in order to improve either coverage or accuracy. To this end,
each client monitors a pair of hypotheses in determining whether further user input will
improve the fingerprint database. Specifically, each time a location estimate is produced, the
device evaluates the following questions:

1. If the user binds a nearby location, will the system’s coverage increase?

2. If the user binds his/her current location, will the system’s accuracy increase for this
location?

The first question is answered by considering the spatial uncertainty of the current
location estimate n(b ). High spatial uncertainty means that many nearby locations remain
unbound; thus adding user input for nearby spaces will enhance the overall coverage of
the fingerprint database. If the spatial uncertainty metric exceeds a threshold, the user is
prompted for input.
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Algorithm 1 User prompting algorithm. C max
s and C max

i are thresholds to determine
(in)stability, and n∗ is a predefined spatial uncertainty threshold. Note that prompting based
on high spatial uncertainty occurs only when the location estimate is stable.

1: Input: location estimate l , uncertainty regionU (l )
2: Output: prompt = { true, false }
3: States: stability counter Cs , instability counter Ci , previous location estimate lp

4: Initialization: Cs ← 0, Ci ← 0, lp ← Nil
5:
6: if lp = Nil then
7: lp ← l , prompt← false, return
8: else
9: if lp = l then

10: Cs ←Cs + 1, Ci ←max{Ci − 1,0}
11: else
12: Ci ←Ci + 1, Cs ←max{Cs − 1,0}
13: end if
14: if Cs >C max

s and n(l )> n∗ then
15: prompt← true, Cs ← 0, Ci ← 0
16: else if Ci >C max

i then
17: prompt← true, Cs ← 0, Ci ← 0
18: else
19: prompt← false, lp ← l
20: end if
21: end if
22: return

The second question, concerning accuracy, is answered by checking whether recent
location estimates for the user’s current location have been stable. Because the duration of
each user contribution can be short and wireless signal strength can vary rapidly, a user in a
space with a sparse fingerprint might experience unstable and inaccurate localization results.
The user is also prompted in this case.

Algorithm 1 shows the method used in OIL to answer these two questions. If the decision
is to prompt the user, the user can see local coverage rates on the UI (Fig. 3-2), and (a) decide
whether to bind in the current space, (b) bind in an adjacent space, or (c) request not to
be bothered again for a short or long duration (5 minutes and 4 hours respectively in our
current implementation).
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3.2. Filtering Erroneous User Input

3.2 Filtering Erroneous User Input

An organic localization system is expected to encounter some level of noisy user contribu-
tions. In particular, users will not always indicate the correct room when they are prompted
to make a “bind.” Early tests of our system showed that both ordinary and skilled users did
indeed make mistakes.

Across organic location systems, mistaken contributions fall roughly into three categories:
(1) when selecting the location from a map – as in OIL – the user may select the wrong
room or floor; (2) when entering a user-defined space name – as in RedPin [20], for example
– the user may type an incorrect or atypical name; and (3) while making a long interval
bind, a user may move, polluting a bind with scans acquired in distinct spaces (see § 2.3).
Identifying erroneous contributions is a key problem in organic localization because, without
high-quality binds, database and positioning accuracy will suffer.

While we focus on the first type of error in our algorithm description and evaluation,
variations on our method would also identify the other two types of errors. While we believe
our method would also filter out uncoordinated malicious input, combating a pervasive
attack – with many spoofed APs [76], for example – is beyond the scope of this thesis.

Since location fingerprints are generated organically, there is no a priori model available
for use in identifying correct binds. Error detection should therefore be managed in an
unsupervised fashion. Our approach for handling erroneous user inputs hinges on outlier
detection in signal space – the observed RF signal strengths for each access point (Fig. 3-3).
We rely on the fact that independent correct binds made at the same location are similar, and
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Figure 3-3: Correct binds made in the same physical space tend to cluster in signal space. By
observing outliers in the signal space, we can detect and eliminate erroneous binds. Correct
binds are denoted as e.g. ao; incorrect binds are denoted as e.g. ax .
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tend to cluster. We apply a clustering algorithm to detect outlier binds, which are suspected
to be erroneous.

When a new user bind is received, it is processed in two steps. First, a clustering algorithm
identifies, for the annotated location, a group of binds that are similar in signal space. Then,
our proposed erroneous bind detection method tags the new bind as correct or erroneous.
Later, localization incorporates only those binds tagged as correct. The fingerprint for each
location, however, maintains all binds assigned to it (regardless of correctness), so that all
data can be used to periodically reclassify clusters and outliers for that location. Sections
3.2.1 and 3.2.2 describe our approach in detail.

While we focus on erroneous bind detection in this section, we anticipate using a similar
approach to address other problems in organic localization, such as detecting AP addition,
deletion, and movement or replacement. Currently, we consider a collection of binds from
a limited time window, to detect outliers within that window. The same approach can be
employed across time windows of different granularity to detect true changes in the RF
environment, such as AP movement. If clusters of correct binds formed in consecutive
windows for the same location vary substantially, this is indicative of a change in the
environment. In this case, localization accuracy may be increased by discarding old binds.
We leave exploration of this issue to future work.

3.2.1 Erroneous Bind Detection

We represent a bind as a signal-strength vector in a k-dimensional signal space, with k the
number of observed APs. Given multiple scans per bind, the bind’s i -th dimension is
populated with the mean RSSI per APi . APs for which no signal is observed in the input
scans (due to range or channel collision) are assigned a fixed value of -100 dBm.

Given multiple binds made at location l , our goal is to arrange these binds into meaningful
clusters. We apply agglomerative hierarchical clustering [77] to group binds by similarity.
In this approach, clusters are successively merged in a bottom-up fashion, based on a
similarity metric, until no clusters are similar enough to be merged. We define the distance
(dissimilarity) metric between two bind vectors bs = (b s

1 , ..., b s
k
) and bt = (b t

1 , ..., b t
k
) as the

normalized signal-space Euclidean distance:

ds (b
s,bt) =





1

M

k
∑

i=1

(b s
i − b t

i )
2





1/2

(3.2)

where M ≤ k is the number of APs for which a signal has been detected in either bind bs or
bt. The normalization term yields proper “per-AP” distances because, in any real setting,
each bind will involve only a small subset of the observed APs.
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Figure 3-4: Filtering erroneous user input. User binds in Room A are first grouped into
two clusters by hierarchical clustering. The correct group of binds is found by comparing
both clusters with those in nearby locations.

Further, the distance between two clusters Cs and Ct , referred to as the linkage function,
is defined as the average distance between inter-cluster bind pairs as follows:

DS(Cs ,Ct ) =
1

|Cs ||Ct |

∑

(bs,bt)∈
(Cs ,Ct )

ds (b
s,bt) (3.3)

Clustering continues until the linkage function between all pairs of clusters falls below a
pre-defined cut-off distance d ∗. We use independent labeled data to obtain a priori knowledge
about intra- and inter-location signal distance to set d ∗. This procedure is described in detail
in Section 3.2.2.

Once binds are grouped into clusters, the system must identify which cluster includes
the correct binds (the rest of the clusters are assumed to contain erroneous binds). If we
assume that most users make correct binds, it is natural to take the largest cluster as the
correct one. However, in a previous deployment we found that more than 75% of the spaces
had three or fewer associated binds [14]. When the organic system has not yet obtained good
coverage, majority voting is not feasible. Instead, we use the observation that signal distance
between two locations is positively correlated with physical distance between them (Fig. 3-4).
Therefore, we identify the correct cluster of binds C ∗l given a set of bind clusters at location
l , Cl , according to the following criterion:

C ∗l = argmin
C∈Cl

∑

m∈N (l )
Ds (C ,C ∗m) (3.4)
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Algorithm 2 Erroneous bind detection method.
1: Input: new bind b N to location l ; setBl of all binds for location l ; neighbor locations
Nl

2: Output: set of correct binds C ∗l
3:
4: Add b N toBl .
5: if |Bl |= 1 orNl = ; then
6: C ∗l ←Bl {No information for detection is available.}
7: return
8: else
9: Cl ← Hierarchical clustering ofBl (Eq. 3.2 and Eq. 3.3).

10: if |Cl |> 1 then
11: C ∗l ← Identification of the correct cluster (Eq. 3.4).
12: else
13: C ∗l ←Cl
14: end if
15: end if

whereN (l ) is the set of locations neighboring location l , and C ∗m is the cluster of correct
binds at the neighboring location m at the time of computation. Algorithm 2 outlines our
approach.

3.2.2 Clustering Threshold Tuning

The quality of the clusters formed dictates the performance of erroneous bind detection.
This section describes how the linkage function threshold d ∗ is determined.

During clustering, cluster pairs for which the value of the linkage function is larger
than d ∗ are kept distinct. Thus, an optimal threshold is one that is effective at separating
binds associated with different locations. If comprehensive labeled data is available, then the
cut-off threshold can be set empirically, e.g. by cross-validation, to maximize the localizer
performance. In practice, it is hard to obtain such large labeled datasets (indeed, this is the
primary reason for pursuing organic localization). Instead, we assume that a handful of scans
are available from each of a variety of locations. This data can be collected by the system
designers or extracted from early user input. Using this data, we can cast the threshold
tuning problem as a Bayesian decision problem, testing whether or not two binds originate
from the same location.
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Formally, suppose there are two binds b s and b t . We wish to evaluate the hypotheses:

H0 : b s and b t originate from the same location.
H1 : b s and b t originate at different locations.

(3.5)

Let d denote the distance defined in Equation 3.2. In clustering, d < d ∗ implies thatH0

holds; otherwise it is estimated thatH0 is false (i.e., thatH1 is true). We assume the cost of
false positives is the same as false negatives. Then, according to the Bayesian decision rule,
H0 is accepted if

P (H0|d )> P (H1|d )⇐⇒
P (d |H0)P (H0)

P (d |H1)P (H1)
> 1. (3.6)

That is, we will selectH0 and judge that b s and b t are from the same location if the ratio
P (H0|d )/P (H1|d ) > 1 (Fig. 3-5). A system designer can use the small amount of bind
data to estimate the distributions P (d |H0) and P (d |H1). The optimal threshold, d ∗, is the
point at which the two posterior probability distributions cross. To estimate the posterior
distribution, one must estimate the prior probabilities P (H0) and P (H1) (Eq. 3.6).

We tested two different ways of modeling the hypothesis prior. One possibility is to
consider the hypotheses equally likely; this leads to a Neyman-Pearson-type likelihood-ratio
test, P (d |H0)/P (d |H1)> 1. Alternatively, one can model the assumption that most binds
associated with any location l are correct; in other words, hypothesis H0 is more likely
in an operative system. For example, if we assume that 90% of binds are correct and that
the erroneous binds are not mutually correlated, then P (H0)≈ 0.92 and P (H1)≈ 1− 0.92.
When we tested our data with each of these two assumptions, we obtained d ∗ = 12 dB
and d ∗ = 15 dB, respectively. Each of these values was used as a stopping criterion in the
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Figure 3-5: Determination of the clustering cut-off threshold. To achieve minimum proba-
bility of error, we chooseH0 if d < d ∗ andH1 otherwise.

42



Chapter 3. Growing an Organic Indoor Location System

hierarchical clustering algorithm (§ 3.2.1). The first value closely matches Bhasker et al.’s
empirical closeness threshold [25].

3.3 Evaluation

In this section, we examine both algorithms in detailed simulation, where we could explore
parameter changes easily, and in a live deployment, where we could gather real user input
and feedback. Section 3.3.2 examines our claims that Voronoi diagram–based prompting
improves coverage rates and helps explain localization precision. Section 3.3.3 evaluates our
erroneous bind detector with organic user input.

3.3.1 Test Deployment

We launched a test deployment of OIL, inviting building residents to participate. Nineteen
people participated, including two administrators, three people from a non-technical de-
partment, and four members of our group. We gave each participant a mobile tablet with
the OIL client and building map installed and showed them how to make interval binds
and operate the client in general. We asked users to respond to the tablet’s prompts when
they were able to do so, but not to go out of their way to provide coverage. Users were
encouraged to take the tablets with them, including out of the building if they wished.

At the start of the deployment, we also installed fourteen stationary “spot check” tablets
in different rooms in the building. We did not make any binds on these tablets, but left them
to run and report their location estimates back to the server.

Table 3.1 summarizes the users’ contributions as of the end of the study.

Map Spaces 1,373
Contributing Users 19
Bind Intervals (from users) 604
Scans (from devices) 1,142,812
Bound Scans 108,418 (9.4%)
Spaces with Bound Scans 116 (8.4%)

Table 3.1: Statistics for our 9-day test deployment.

3.3.2 Voronoi-based User Prompting

During initial planning for our deployment, we had several ideas for improving coverage rates.
We evaluated them via simulation (§ 3.3.2), selected the most promising for deployment,
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then interviewed participants for feedback (§ 3.3.2).

Improving Coverage Rates

Our basic proposals for requesting user input included periodic prompting, where users are
prompted at regular intervals, and inverse coverage, where prompting rates decline as more
spaces on a floor are bound. These methods are simple, but do not direct users to where
user input is actually needed. Instead, the dynamic Voronoi diagram approach captures the
fact that a user is likely to be located in, or near, a space that requires more coverage. Our
opinions were split on how we should expect contributors to act: were users active (willing
to move to an adjacent space), or passive (willing to provide input only where they were
when prompted)?

We compared four proposals via a simple simulation. We moved users randomly across an
artificial 100× 100 grid floor. To test the performance of prompting methods independently
of a localization algorithm, we assume perfect accuracy. We also assume that users always
bind when prompted. We let our “active” Voronoi users be willing to move to adjacent
locations with probability 1/2 per request.

We examined coverage per number of user prompts, because the purpose of efficient
user prompting is to improve coverage while minimizing user effort. Figure 3-6 shows the
results of running each method 300 times. Voronoi-based prompting outperforms the other
methods, especially if the active user model is assumed. Periodic prompting suffers from
prompting too much – irritating users – because it does not consider the current coverage or
location estimate. While the inverse coverage method adapts to increasing global coverage,
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Figure 3-6: Voronoi-based user prompting significantly increases coverage at low user effort
compared to other methods in our simulations. Active users, who are willing to move to an
adjacent unbound space to contribute a bind, provide the most benefit.
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it does not do as well as the Voronoi-based methods. Voronoi-based prompting considers
both coverage and local spatial uncertainty, reducing unnecessary user prompts. When users
provide binds in nearby locations, as assumed with the active user model, the effectiveness of
Voronoi prompting further increases. Our OIL client asked users to bind in adjacent rooms,
in effect suggesting to users that they adopt the active user model.

Conveying Spatial Uncertainty

After completing our test deployment, we interviewed participants about the Voronoi
prompting mechanism. Overall, the responses were mixed. Of the top two contributors in
the experiment (§ 3.3.1), one said the prompts were the main reason that she made so many
binds. She also found that the Voronoi regions, as in Figure 3-2, were useful for quickly
locating the room that she was in as well as assessing how well the tablet knew her current
location. The other top contributor said that the prompting mechanism had no effect on
his behavior. One less active user found the prompting irritating as he rarely left his office,
had little interest in making binds, and continued to be prompted. Although he could have
marked the unbound spaces surrounding his office as inaccessible, he did not do so – but he
did turn off prompting.

These observations suggest that while Voronoi prompting can be helpful, it could be
made more adaptive and personalized. For users who make few binds or do not bind when
prompted, the system could prompt them less, whereas the system could continue to prompt
users if it appears to be advantageous to do so.

3.3.3 Erroneous Bind Detection

We studied the performance of our erroneous bind detector. First, we examined the effect of
time on the outlier detection. Next, we evaluated the end-to-end effect on accuracy as we
varied the fraction of erroneous binds. Both evaluations were performed using simulation on
organic data from an earlier OIL deployment, which had 16 users and lasted for 20 days [14].

Effect of Time on Detection

We used a discrete event simulator to see if erroneous binds could be detected after each
space’s fingerprint contained enough binds to measure a valid signal distance to its physical
neighbors. We also varied the clustering threshold (§ 3.2.2) to observe its effect on overall
detection. At each round of simulation, a correct bind is taken from the data set. Before
being added to the fingerprint database, its location is changed to a random one with
probability pe , emulating an erroneous bind. Then, the bind is added to the fingerprint of
the potentially-erroneous space.

45



3.3. Evaluation

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n
 /
 R

e
c
a
ll

 

 

Time (round)

d
*
=12dB,precision

d
*
=12dB,recall

d
*
=15dB,precision

d
*
=15dB,recall

Figure 3-7: After each space’s fingerprint acquires a sufficient number of binds, detection
success significantly increases. In addition, conservative detection (12 dB) improved both
precision and recall in our experiments.

Figure 3-7 shows the precision and recall for conservative (12 dB) and lenient (15 dB)
thresholds, which correspond to physical separations of approximately 50 and 125 feet,
respectively. Precision is the fraction of truly erroneous binds detected over all binds. Recall
is the fraction of erroneous binds identified over all erroneous binds. We used pe = 0.1 for
this test.

The data show that the bind detection algorithm’s performance increases as the finger-
print database becomes more populated. In detecting erroneous binds for a certain location l ,
initially the algorithm just accepts binds unconditionally until there is sufficient information
to make an estimate. As fingerprints of neighboring spaces become more populated, the
algorithm more readily identifies inconsistent binds. In this sense, the fingerprint database is
self-repairing. After 300 rounds, the conservative threshold achieved a precision of 0.85 and
recall of 0.68.

Localization Accuracy

We next examined the effect that different levels of error-proneness among contributors would
have on overall accuracy. To do so, we varied the fraction of erroneous binds presented to the
system, from zero to one, and measured localization accuracy. Figure 3-8 shows localization
performance in three cases: an “oracle” (perfect) detector, our clustering detector, and no
detection. The data demonstrate why filtering out erroneous binds is essential: erroneous
user input greatly compromises accuracy. The proposed detector enhances localization
accuracy by 5–9% over a wide range of pe . Unsurprisingly, at high error rates, the algorithm
results in low accuracy because the fingerprints of neighbor locations also contain many
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Figure 3-8: Filtering Erroneous Binds. We varied the fraction pe of erroneous binds given
to the system and computed overall system accuracy.

erroneous binds.

3.4 Related Work

We review related work on Voronoi diagrams and clustering in the context of localization.

3.4.1 Voronoi Diagrams

The Voronoi diagram is one of the fundamental geometric structures in computational geom-
etry and has been used in many other different fields including computer graphics, robotics,
physics, and sensor networks [75]. In the context of indoor positioning, Swangmuang and
Krishnamurthy used closely related proximity graphs – Delaunay triangulation, Gabriel
graphs, and relative neighborhood graphs – to obtain an analytical model for the localization
error probability of a given fingerprint [78]. In contrast, we use the Voronoi diagram to
approximate the spatial uncertainty that naturally arises from organic user contributions.

3.4.2 Robustness and Clustering

As localization using RF infrastructure has become widespread, researchers recently investi-
gated its susceptibility to spoofing attacks. Chen et al. examined the robustness of several
localization algorithms against signal strength attenuation attacks [79]. Tippenhauer et
al. [76] studied various types of attacks including AP impersonation and spoofing as well as
injection and corruption of the fingerprint database. Although our focus is on user input
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errors, malicious attacks are closely related because, in both cases, incorrect wireless signals
can be entered into the fingerprint database.

Cluster analysis has been widely used for anomaly detection. For example, Portnoy et
al. use clustering to detect anomalies in network traffic [80]. Clustering has been used for
several purposes in localization systems: for example, Swangmuang and Krishnamurthy use
it to improve performance prediction [81] and Lemelson et al. use clustering as a measure for
error prediction [82]. To our knowledge, clustering has not previously been used to detect
erroneous user input to localization systems.

3.5 Conclusion

While the concept of organically constructing a localization system is simple, building
a working system in practice presents significant challenges. This chapter addresses two
issues that arise in “growing” an organic indoor location system: modeling uncertainty, and
handling erroneous user input.

We proposed a method, based on Voronoi diagrams, that suggests to active contributors
what spaces around them need coverage, and conveys to all users the level of localization
precision they can expect in their current vicinity. We also described a method that watches
for erroneous user contributions and automatically discounts them. This method, based on
outlier detection through clustering, allows an organic positioning system to maintain its
accuracy over time. We examined the proposed methods in simulation and through a test
deployment.

In the future, we plan to continue examining the role of time in organic indoor local-
ization. In addition to discerning erroneous binds, our bind clustering method appears
generalizable to other problems in organic localization. For example, we anticipate using it
to detect addition, deletion, and movement of APs. Another interesting topic would be to
investigate combining contributions from both trusted and untrusted surveyors. Building
on the ActiveCampus approach [21], less trusted, organic refinements could complement an
initial, trusted survey of mostly public spaces.
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Chapter 4

Device Diversity in Organic Indoor
Localization

Another key challenge to organic localization that we examine in this chapter is the device
diversity problem. Variations in RF characteristics between different mobile devices pose
a challenge in designing localization algorithms that can inter-operate across diverse types
of devices. In this chapter, we study this problem for two representative RF characteristics:
signal strength and AP (access point) detection rate. We design three different Bayesian
localization models — signal strength–based, AP detection–based, and hybrid feature models
— and analyze how device diversity affects localization performance under various localization
algorithm designs.

4.1 Device Heterogeneity Problem

While conventional survey/use localization relies on a degree of uniformity among users’
devices, in which surveys are conducted with one or a small set of well-understood devices,
users in organic localization systems employ diverse types of 802.11 devices for the generation
of fingerprints. This raises the “device heterogeneity” problem, which fingerprints from
different users may be incompatible.

Two basic measurements available from WiFi scanning are signal strength and access point
detection. Most WiFi-based localization methods utilize either or both features to construct a
unique fingerprint for each location. The key assumption required for RF-fingerprints to be
used in localization is that they are unique per location (i.e. different locations have different
fingerprints), and that they do not vary due to other factors, in particular, the type of the
device that measures RF signal.

In practice, however, various factors do affect RF measurements by a mobile device,
including environmental factors (fading, transient occlusion, etc.), hardware (antenna sen-
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sitivity, decoding algorithm, etc.), and software factors (device driver implementation).
Moreover, 802.11 specifications do not specify in detail how WiFi scanning must be per-
formed, leaving some freedom on the actual RF measurements (e.g. signal strength value) up
to device manufacturers.

Previous work has acknowledged the problem of sharing fingerprints between hetero-
geneous devices and suggested that it could be solved by a simple linear transformation
between received signal strength indicator (RSSI) values [11]. We demonstrate that linear
transformation of signal strengths is insufficient for cross-device localization. Instead, we
find that a wide kernel applied to the signal strength distribution provides significantly better
end-to-end accuracy than linear transformation, because the former captures the primary
difference across devices: signal strength dispersion. A second complication afflicts finger-
print sharing: the set of access points detected by each device can be different. We show
experimentally that the number and identity of APs detected by each device can vary widely
even in nearby locations. As a consequence, a common alternative to RSSI-based localization
— relying on access point presence or absence — fails when this type of fingerprint is shared
across heterogeneous device types. We show through an information-theory argument that
augmenting RSSI-based localization methods with presence/absence will actually degrade
performance.

4.2 Localization Models

In the Bayesian localization method in Equation (2.3), the MAP estimate depends on the
class-conditional probability pO|L(o|l ), which is defined in terms of features arising from
WiFi measurement characteristics. The most common feature used for WiFi localization is
signal strength, which gives the localization algorithm in Equation (2.4). However, other
features such as AP presence/absence can be used for localization as well. This section
describes alternative models for the class-conditional probability for a choice of different
features. For all models, we assume that each feature is conditionally independent of every
other feature given a location, yielding the naïve Bayes classifier.

4.2.1 Signal Strength

Section 2.3.2 presented signal strength–based Bayesian localization. The class-conditional
probability pSi |L(·|·) can be estimated from training data in different ways, by modeling it as
a categorical distribution (histogram), a Gaussian distribution (with maximum-likelihood
parameter estimates), or a kernel density estimator (Parzen window estimator). The latter
method accounts for the variance of each sample.
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The kernel density estimator p̂k
X (·) [83] estimates the probability density function pX (·)

as:

p̂k
X (x) =

1

nh

n
∑

i=1

K
� x − xi

h

�

(4.1)

where xi is an observed sample of random variable X , h is a kernel width, and K(·) is a
kernel function. A Gaussian kernel is often used for the kernel function. The kernel width
determines the degree of sample “smoothing” effected by the kernel.

The estimated probability density function is discretized and regularized using an m-
estimate as described in Section 2.3.2.

4.2.2 Access Point Detection

Another feature vector can be constructed to reflect the presence or absence of access points.
If we model the presence/absence of the signal from a certain AP as a Bernoulli process, the
observation follows a multivariate Bernoulli model in which O = (J1, J2, . . . , Jk) for k APs,
where Ji is a binary variable with value 1 indicating presence of signal from AP i , and value
0 indicating its absence. In this framework, the decision rule (Eq. 2.3) becomes:

l̂ = argmax
l∈L





∏

1≤i≤k

¦

pJi |L(1|l )
©Ji
¦

1− pJi |L(1|l )
©1−Ji



 (4.2)

where pJi |L(1|l ) is the probability that AP i is detected in a WiFi measurement at location l .
This localization algorithm requires only presence/absence information of access points,

which can be easily obtained from any WiFi device, and from which constructed fingerprints
are compact compared to those of signal strength–based localization. Because of these
merits, presence/absence information is particularly well-suited to large-scale, coarse-grained
localization.

However, this formulation explicitly considers negative evidence — absence — of a signal
from a certain access point; we show later that this becomes problematic when different
devices detect partially disjoint sets of APs.

4.2.3 Hybrid: Signal Strength and AP Detection

The detection probability pJi |L(1|l ) and the signal strength can be used together as feature
variables. In this formulation, the observation variable becomes O = ((J1, S1), (J2, S2), . . . ,
(Jk , Sk)). The signal strength variable Si is conditioned on the detection variable Ji , and must
be marginalized if it is not observed (i.e., if Ji = 0). We derive the following classification
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rule from Equation (2.3) as follows:

l̂ = argmax
l∈L





∏

1≤i≤k

¦

pJi |L(1|l ) pSi |Ji ,L
(si |1, l )

©Ji
¦

1− pJi |L(1|l )
©α(1−Ji )



 (4.3)

where α, 0≤ α≤ 1, is a discounting factor which determines how much to discount negative
evidence. This prevents localization from being dominated by negative evidence if many
access points are present but each WiFi scan captures only a small fraction of them. When
α= 1, the formula is identical to the one used in [84]; when α= 0, it is equivalent to [85].
We set α= 1 for our experiments.

4.3 Experimental Setup

In order to examine the effect of device diversity on indoor positioning, we collected WiFi
scans from six different devices at 18 locations in one building. We used two different
commodity laptops, a netbook, a mobile phone, and two tablet computers. The tablets
were the same model, illustrating the homogeneous organic localization case. Table 4.1
summarizes the devices we compared as part of the experiment.

The six devices were placed on a rolling cart, enabling simultaneous data collection, with
each device logging to local storage to avoid using their radios for data transmission while
data collection was in progress. The device radios performed no activity other than scanning.

In each location, each device recorded WiFi scans for seven minutes. Scans were taken
near each device’s peak rate, with a one-second gap between scans. Because of the variation

Device WiFi Chipset OS Kernel

Clevo D901C Intel 5300AGN Linux Linux 2.6.32
laptop (802.11a/b/g/n) Ubuntu 10.04

Asus EEE900A Atheros AR5001 Linux Linux 2.6.32
netbook (802.11b/g) Ubuntu 10.04

Lenovo Thinkpad Intel 4965AGN Linux Linux 2.6.32
X61 laptop (802.11a/b/g/n) Ubuntu 10.04

Nokia N810 Conexant CX3110X Maemo Linux 2.6.21
tablet (x2) (802.11b/g) OS2008

Nokia N95 TI OMAP2420 Symbian EKA2
cellphone (802.11b/g) S60 FP1

Table 4.1: Devices used for data collection.
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in the time each device takes to complete a scan, this resulted in a maximum of 552 and a
minimum of 61 scans collected at any location; the EEE900A laptop, for example, often took
seven seconds to complete a scan request. While this difference would affect time-to-update
performance for moving users, our analysis ignores this factor because it is not relevant
for instantaneous localization. To remove the effect of this factor from our results, in
each experiment we selected 60 scans at random per device from each seven-minute period.
(See http://rvsn.csail.mit.edu/location for the raw data, and the samples used for each
experiment.)

In the following sections, we study the effect of differing WiFi signal strength measure-
ments (§ 4.4) and access point detection patterns on WiFi localization (§ 4.5) where the
survey and use devices are different. In particular, we focus on the cross-device localization
problem, in which survey data from one device is used to localize another device. In machine
learning terminology, the “survey” device becomes the source of training data and the “use”
device is the test device. We use each set of terms interchangeably.

4.4 Heterogeneous WiFi Signal Strengths

This section shows that signal strength scans from different devices exhibit not only a
linear shift in signal strength but also a difference in dispersion. This suggests that sharing
fingerprints between different devices would be more effective with “smoothed” signal
strength values, e.g. a wide kernel function. We then show that using a relatively wide kernel
to share signatures does indeed lead to a significant improvement in accuracy of location
estimation.

4.4.1 Analysis of Pairwise Device Calibration

Previous work suggested that inter-device calibration can be achieved by applying a linear
transformation of signal strength values from one device to the other [11,86], estimated from
WiFi scan data taken from both devices at the same time and place.

We compare signal strength measurements of the six devices in our dataset, showing
pairwise scatter plots in Figure 4-1. We observe a strong correlation in the mean value of signal
strength measurements between every pair of devices. Therefore, as suggested by previous
work, we first attempted the following simple procedure for cross-device localization.
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Figure 4-1: Each point in each scatter-plot represents a pair of mean RSSI values from the
same access point, observed by a pair of devices placed in the same location for the same time
interval. For example, the scatter-plot in row 3, column 4, compares scans of the N810(1)
with scans of the Thinkpad X61. Most pairs show a strong linear correlation, but some
devices, e.g. N810s, show noisy values at low signal strength ranges. The Pearson correlation
coefficient for each dataset is given in the corresponding scatter-plot.
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1. Pairwise device calibration. For every pair of devices A and B, the coefficients for
linear transformation from device A to device B are computed as:

S̄B
i ,l =β

B
AS̄A

i ,l +α
B
A, (4.4)

where S̄A
i ,l ( S̄B

i ,l ) denotes the mean signal strength value of device A (resp., device B) for
WAP i at location l , and αB

A and βB
A denote linear coefficients for the transformation

from device A to B.

2. Positioning. If device A is used for training and B is used for positioning:

(a) Linear transformation from B to A is applied to test scans of device B.

(b) Device B is then localized using device A’s training data.

The linear transformation is computed by linear least squares, with sample pairs differing by
more than 20 dB excluded from fitting.

Figure 4-2 shows the resulting localization error in meters when WiFi measurements
from each device are tested against training data from device N810(2). Other combinations
of devices showed similar characteristics. For baseline evaluation, we used the Gaussian
distribution for class-conditional probabilities. The linear transformation with Gaussian class-
conditional probability improved localization performance significantly only for EEE900A,
but not provide significant improvement for other devices. Among every combination of
training and test device, linear transformation improved performance significantly only
when the EEE900A was used for either the training or test device. For the 10 device pairs
including EEE900A, the improvements in spot-on accuracy and error distance were 29.8%
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Figure 4-2: Localization accuracy, as mean physical distance away from the correct room,
when the N810(2) acted as the organic surveyor and the other devices act as users.
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and 5.47 meters respectively, while for the other 20 device pairs, improvements were 3.29%
and 0.418 meters, which are not significant.

This observation led us to investigate the net effect of linear transformation on actual
WiFi measurements of each device. Table 4.2 shows the dynamic range of each device.
Only the EEE900A was significantly different from other devices with respect to the signal
strength dynamic range. As a result, the linear transformations shift signal strengths only
slightly for most devices, except for the EEE900A. However, the mean deviation (regression
residual) of signal strength values, excluding outliers, from the linear transformation lines was
3.5 dB. This means that the amount of deviation of each signal strength value is comparable
to the amount of global shift by linear transformation, except for EEE900A. Thus linear
transformations are ineffective for other devices. Figures 4-3a to 4-3c illustrate the details.

4.4.2 Kernel Density Estimation

This observation implies that the major characteristics of signal strength diversity lie not
only in the linear difference between devices, but also in the different local deviation and
shape of individual signal strength distributions. While global linear transformation may be
able to adjust for large differences in dynamic range, it fails to adjust for local differences that
are specific to a certain location and AP. In order to reduce such differences in signal strength
distributions across devices, we consider kernel density estimation (Eq. 4.1) in computing
individual class-conditional probabilities.

Kernel density estimation takes the noisiness of individual samples into account. Here,
we use kernel density estimation to compensate for the difference between signal strength
distributions across different devices. We evaluated a Gaussian kernel with widths varying
from 1 dBm to 10 dBm. An example of kernel estimate with width 4 dBm is shown in
Figure 4-3d. Figure 4-2 also shows enhanced localization accuracy when kernel estimation
with the same width is used. (N810(2) acted as the training device.)

Figure 4-4 shows the effect of kernel width on cross-device localization, and compares

(dBm)
% D901C EEE900A X61 N810(1) N810(2) N95

0 -92 -106 -93 -92 -110 -90
25 -86 -98 -87 -81 -83 -81
50 -81 -90 -81 -76 -77 -75
75 -72 -79 -69 -69 -70 -68
100 -25 -41 -29 -35 -39 -35

Table 4.2: Dynamic range of each test device (in percentiles).
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(b) Signal strength histograms after linear trans-
formation
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(c) Gaussian estimation
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(d) Kernel estimation

Figure 4-3: Kernel density estimation vs. Gaussian estimation. The raw data in (a) show
the histogram of RSSI values from a single AP that three devices observed in the same
room during the same seven-minute window. The signal strengths for the EEE900A are
considerably different, while the difference between N810(1) and N95 is smaller. In (b),
the linear transformation is effective for EEE900A, while its effect is minimal for N95. Even
after transformation, the dispersion and shape of signal strength values for each device
differ significantly. The Gaussian probability estimates (and histogram) for these devices
differ significantly (c). This difference adversely affects localization. For example, a signal
strength of -64 dBm is observed often for N95, but has near-zero probability if Gaussian-fitted
training data for N810(1) is used. Transformation with a wide kernel significantly reduces
the difference between different devices (d).
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Figure 4-4: Use of kernels significantly improves cross-device localization. Localization
performance with varying kernel widths for the same type of devices (N810) and for the
heterogeneous pairs of devices (all excluding N810 pairs) are shown. The results with
Gaussian density estimation are also provided for comparison. As the kernel compensates
for the difference between signal strength distributions across devices, localization accuracy
improves significantly. Improvement is greater for different device types than for homoge-
neous devices. However, if too wide of a kernel is used, localization performance starts to
degrade as RSS differences arising from true changes in location are masked.

kernel estimation to the histogram method and Gaussian density estimation. We show
localization error between the same type of device (i.e. between N810(1) and N810(2))
and, separately, the error between different types of devices. A kernel width of 3 dBm
provided the best localization performance with our dataset. Not surprisingly, the effect of
kernel estimation is more significant for different device types, as their deviation was greater.
Neither raw histogram estimation (kernel width→ 0 dBm) nor Gaussian density estimation
perform well, particularly for localization across different device types.

The standard deviation computed from the signal strength samples taken from one device
for two minutes was approximately 2 dBm. Compared to this value, the best kernel width of
3 – 4 dBm for cross-device localization is somewhat higher than the smaller-scale variation
of a specific device type. The reason is that, as each device shows a different dispersion and
shape of its signal strength distribution, a strategy of doing more “smoothing” than that
required for single device localization is more effective.
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4.5 Feature Design of Localization Algorithms for Organic
Indoor Localization

This section first analyzes another characteristic of the wireless scan signal: visibility, or
detection of access points by diverse devices. The detection feature has been used exclusively,
or augmented with the signal strength feature in various contexts of RF-based localization [84,
85, 87, 88]. We compare its use to the signal strength feature, and discuss feature design of
localization algorithms for heterogeneous devices.

4.5.1 Analysis of Detection Rate for Diverse Devices

In any practical, large-scale localization system based on wireless networks, a mobile device
captures only a subset of all access points “visible” at a given location because some access
points are only intermittently detected by the mobile device. Factors may be both envi-
ronmental, such as multipath fading, and transient, such as occlusion by humans or other
objects. In addition, the OS or driver may allow only a limited time for collecting scan
information, so APs may be missed if the beacon and driver are off-cycle.

A localization algorithm can use the probability of observing an individual access point,
or detection rate, to give a different weight for the features it uses, i.e. signal strength likeli-
hood. The rationale behind using AP presence/absence is that more frequently observed
access points may be more informative for distinguishing locations. Alternatively, pres-
ence/absence can be used as the exclusive factor, providing coarser precision at a lower
information cost, as no RSSI values are used; this may be beneficial when the (binary) signal
maps for physically large areas are stored on low-memory mobile devices.

However, different devices not only detect WiFi signal strengths differently, as we saw
in Section 4.4, but also differ in the sets of APs that they observe. One device may detect a
nearby AP consistently, while another may not detect it at all (Figs. 4-5 & 4-6). This occurs
because of differences in frequency band (2.4 GHz and/or 5 GHz), radio/antenna sensitivity,
firmware/driver implementations, and other factors.

Consequently, localization performance can degrade if the detection probability for each
access point is used as a feature for localization. To illustrate this problem, we consider
three different types of Bayesian localization algorithms according to the degree of detection
information used in the localization process (§ 2.3.2): the localization rule in Equation (2.4)
is least dependent on the presence/absence information, while Equation (4.2) uses the
detection rate exclusively.

We compare the performance of each Bayesian localization feature choice in Figure 4-
7. The algorithm that is exclusively detection-based exhibits the worst performance; the
gap between the same type of device (N810) and the different types of devices is also the

59



4.5. Feature Design of Localization Algorithms for Organic Indoor Localization

1 2 3 4 5 6 7 8 9 101112131415161718
0

20

40

60

80

Location Index

N
u

m
b

e
r 

o
f 

A
P

 M
A

C
 A

d
d

re
s
s
e

s
 p

e
r 

S
c
a

n

 

 

D901C

EEE900A

X61

N810(1)

N810(2)

N95

Figure 4-5: Number of distinct AP MAC addresses observed per WiFi scan for each device.
The number of APs differs by more than a factor of two. In general, devices with larger form
factors (laptops) observe more APs than smaller devices (tablets and cellphones).
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Figure 4-6: Presence/absence pattern across different devices. While the primary difference
is due to frequency (i.e. , D901C and X61 operate at both 2.4 GHz and 5 GHz bands while
others use only the 2.4 GHz band), there is still considerable difference across same-band
devices. This difference reduces the efficacy of localizers that rely on AP presence/absence as
a feature.
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Figure 4-7: Comparison of localization error using three feature types: AP Detection, Signal
Strength, and Both. Because different devices observe partially disjoint sets of APs, it is better
not to include AP presence/absence in cross-device localization. Degradation in localization
error due to use of the detection rate feature is most prominent between different device
types.

largest. The signal strength–based algorithm performs best among the three, as it does not
rely explicitly on presence/absence information. The localization algorithm that uses both
signal strength and presence/absence information shows comparable localization accuracy
for same-type-of-device localization, but significantly degraded accuracy for cross-device
localization.

4.5.2 Effect of Dissimilarity in AP Detection on Localization

In order to better understand the effect of AP detection on the performance of each local-
ization algorithm, we consider Kullback-Leibler divergence (KLD) [89], an information-
theoretic measure that captures the asymmetric dissimilarity between two probability dis-
tributions. As in Section 4.2.2, we model the presence/absence of each access point as a
Bernoulli process. For access point i , 1 ≤ i ≤ k, let J S

i and J T
i denote the binary random

variables associated with the Bernoulli processes for test device S and training device T
respectively. Then, given location l , the Kullback-Leibler divergence of J S

i over J T
i for access

point i is given by:

DKL(J
S
i ||J

T
i ; l ) =

∑

x∈{0,1}
pS

Ji |L
(x|l ) log

pS
Ji |L
(x|l )

pT
Ji |L
(x|l )

. (4.5)
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where pS
Ji |L
(x|l ) (or pT

Ji |L
(x|l )) is the probability that access point i is detected by device S

(resp., T ) in location l for each WiFi measurement.

To compute the overall divergence of device S w.r.t. device T , Equation (4.5) is summed
over all k access points and all locations in the data:

DKL(S ||T ) =
∑

l∈L

∑

1≤i≤k

∑

x∈{0,1}
pS

Ji |L
(x|l ) log

pS
Ji |L
(x|l )

pT
Ji |L
(x|l )

. (4.6)

The Kullback-Leibler divergence of S over T can be considered a measure of how much
extra information is required to encode the detection process for device S when using the
detection process for device T . Thus, it naturally captures the “divergence” of testing device
S when training data from device T is used.

We compared KLD from each training-test pair of devices with the location error between
them. Figure 4-8 shows the correlation between KLD and the localization error for each
localization algorithm. The effect of device difference captured by KLD is more correlated
with detection-based and hybrid localization errors, than with errors observed using a signal
strength–based localization algorithm.
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Figure 4-8: Relation between KLD and localization error for three localization algorithms.
Each point represents detection dissimilarity captured by KLD and localization error between
a pair of devices. When two devices differ more in WAP detection, localization based on
detection degrades more significantly. Cross-device localization using devices of the same
type (N810 pair) does not show such degradation.
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4.5.3 Feature Design of Localization Algorithms for Heterogeneous
Devices

The previous two sections (§ 4.5.1, § 4.5.2)) showed that AP visibility varies considerably
across heterogeneous devices, and that dissimilarity in AP detection adversely affects cross-
localization. In general, we found that using only the signal strength feature, without
incorporating negative evidence, showed the best localization performance for heterogeneous
devices.

As shown in Figure 4-7, the detection rate feature augmented in Equation (4.3) does not
give much extra information for distinguishing locations over signal strength, even between
same-type devices (the N810s). Similarly, the localization algorithm based solely on the
signal strength feature is also affected by dissimilarity of AP detection (§ 4.5.2). This is
because the use of m-estimate smoothing applied to the class-conditional probability (§ 2.3.2)
for each AP implicitly encodes the detection information of that AP. For example, if there
is no observation in the training data for a certain AP in a certain location, but the AP is
detected during localization, the corresponding class-conditional probability is initialized as
a uniform distribution, which encodes the least amount of information possible from that
new observation. Consequently, the signal strength–based localization algorithm will assign
a minimal score to that location according to Equation (2.5), in which N = 0. However,
as more readings are observed, the probability distribution will converge to the empirical
maximum-likelihood estimate.

Therefore, the localization algorithm using only signal strengths as features is also weakly
affected by dissimilarity in AP detection. Given location l , if the test device observes a
new access point i which was not observed by the training device in the same location,
Equation 2.4 assigns a minimal score determined from the m-estimator for class-conditional
probability to location l for feature i . If the same access point i is present in another location
l ′ instead, this may bias the localization decision to l ′ over l .

However, the effect of dissimilarity in AP detection is less significant than with algorithms
that explicitly use detection rate, because negative evidence — failure to observe access point
i — will not be directly incorporated into the localization score in Equation (2.4). In this
sense, incorporation of evidence is asymmetric, and the effect of a mismatch in AP detection
is less severe than in algorithms that incorporate AP absence information directly (Eqs. 4.2
& 4.3).

Even for algorithms that do not explicitly use detection rate, we expect that the presence
or absence of a certain access point will implicitly affect localization results. For example,
many instance-based classification algorithms, such as k-nearest-neighbor or support vector
machines, require choosing a value for each missing entry in each instance. A typical value
used for WiFi localization is -100 dBm, encoding prior information that non-detected APs
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are expected to be far away, and that if they were detected it would be with low signal
strength. However, this effect is symmetric in contrast to the signal strength–based Bayesian
algorithm presented in this chapter.

4.6 Related Work

Relatively few researchers have addressed the problem of using heterogeneous devices for
localization. For GSM localization, Chen et al. tested cross-device localization using three
different devices, showing that the heterogeneity of training and test devices considerably
degrades the accuracy of their fingerprinting method [90]. Kaemarungsi compared RSSI
values from different devices, but did not evaluate their effect on localization [91].

Researchers have proposed several methods for compensating for differences in signal
strengths or RSSI values. Linear transformation from one device to another has been
computed either manually or on-line using an expectation-maximization algorithm [11,86,92].
Dong et al. suggested using the difference between signal strengths across access points, rather
than the absolute signal strength vector, as a localization feature [93]. While the difference
between signal strength values is a major factor in localization using heterogeneous devices,
we showed that the algorithm must be designed to compensate for the different shape and
dispersion of signal strength values among devices.

Detection rate, or response rate, of access points has also been used for RF localization.
Bargh and Groote used the inquiry response rate of Bluetooth devices for indoor localiza-
tion, as signal strength for Bluetooth devices is not readily available without connection
establishment [87]. In contrast, 802.11 devices can scan access points without establishing
connections. For WiFi localization, Cheng et al. considered response rate as an alternative set
of features for localization and showed that its performance is comparable to that of signal
strength–based localization [88]. Our results show that while it is possible to use response
rate as a feature, doing so will not increase the accuracy of cross-device localization.

4.7 Conclusion

This chapter analyzed device diversity and its effect on localization. We reported simul-
taneous collection of data from six 802.11 devices in 18 indoor locations. While there is
a clear linear correlation of signal strengths across devices, linear transformation alone is
not enough for cross-localization: we find that local variations occur on the same order of
magnitude as the compensation provided by linear transformation. Instead, wide smoothing
can accommodate the different shapes of signal strength distributions across devices, and
proves effective for cross-localization. We also found that access point detection rates vary
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widely across client devices. As a result, incorporating access point presence and absence,
in particular, relying solely on this factor to reduce storage costs and simplify positioning,
provides poor localization performance when fingerprints are shared across different devices.
To better understand this issue, we used Kullback-Leibler divergence to capture device differ-
ences with respect to AP detection, and showed that a correlation exists between detection
similarity and localization accuracy.
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Part II

Motion Compatibility–Based Indoor
Localization
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Part II presents an indoor localization method that estimates indoor location by matching
a user’s motion sequence with respect to a prior map. Our localization method is based
on the notion of path compatibility: metric, topological, and semantic agreement of a user
motion sequence with the prior map in indoor environments.

We outline the overall architecture of the motion compatibility–based localization system
in Chapter 5. Our localization system consists of three parts: a motion classifier, which takes
low-level sensor measurements as input to produce fine-grained motion estimates; a route
network generator, which parses legacy floor plans to create “route networks”; and a trajectory
matching algorithm, which finds the most likely path of a sequence of motion estimates on
the route network.

In Chapter 6, we present a CRF-based classification algorithm. The classification algo-
rithm produces accurate motion estimates at fine granularity from uncalibrated data capture
by mobile sensors.

Chapter 7 explains how to create route networks, graph representations of indoor paths,
from legacy floor plans. From space contours, horizontal and vertical adjacency, and space
semantics coded in the floor plans, we create annotated route networks that is used for
matching user motions during map matching.

This part concludes by describing a matching algorithm that takes the motion estimates
and route networks as input to recover user paths. In Chapter 8, we encode path com-
patibility in an HMM-based matching model, from which the method recovers the user’s
location trajectory from the low-level motion estimates. We also show empirical results,
demonstrating that our method can recover an accurate trajectory for a user using only
proprioceptive sensor data of the quality typically available on modern smartphones.
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Chapter 5

Motion Compatibility–Based Indoor
Localization: Overview

We begin with motivations behind the motion compatibility–based localization method
(§ 5.1). Then we present a brief overview of the overall architecture of the system (§ 5.2).
The testing platform and sensors with which the method was deployed are explained next
(§ 5.3). We conclude this chapter by reviewing related work that influenced the design of
our method (§ 5.4).

5.1 Introduction

Most 802.11-based indoor localization methods require surveying the deployment area to
construct RF-fingerprints [10–12]. To mitigate the mapping burden, researchers have pro-
posed localization systems that either use contributions from end-users by crowdsourcing [1],
or algorithms that infer the RF fingerprint map from fewer or no location labels [17, 94].
Although these improvements can reduce the initial deployment burden, RF-based methods
have other restrictions: they typically construct a fingerprint map only over a short time
interval, which will have limited utility at other times due to the time-varying nature of
RF signals; and the high-frequency RF scanning required for location updates (especially
continuous updates) can be energetically costly.

Recently, localization algorithms which use sensors found in off-the-shelf mobile devices
have been proposed [16, 18]. Such methods extract distance and heading measurement from
MEMS IMUs, and estimate user position and attitude through dead reckoning. Since MEMS
IMUs tend to drift quickly over time, these methods require sensors to be placed in specific
positions (e.g. on the feet), or rely on frequent external position fixes from another source
(e.g. WiFi-based localization systems). Others use Kalman filters or particle filters to account
for measurement uncertainty [15–17]. However, these still depend directly on low-level
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sensor measurements. Also, these forward-filtering–based methods are often formulated
to update only the latest location given new measurements; they do not recover the user’s
recent path history.

In contrast, our work attempts to recover the entire user trajectory from a sequence of
discrete motion descriptions. This approach is inspired from the way that humans describe
indoor routes in abstract terms, including motion descriptions (e.g. “walk” or “turn left” )
and motion-related actions (e.g. “open the door” ) rather than precise distance and angle
specifications. (Human motion descriptions can include absolute directions (e.g. “north” ) or
durations (e.g. “for 5 seconds” ), but these are typically interpreted qualitatively as detailed
annotations of more abstract navigation guidance.)

Humans can also perform the inverse process — inferring a route given a motion sequence
and an indoor map. Given a sufficiently long motion sequence, we can narrow our idea of
the route taken using various kinds of motion-related information: implied walking lengths
and turn angles (geometric constraints); spatial layout and path continuity (topological
constraints); and agreement of the space type and motion type (semantic constraints). In
other words, one can view location estimation as a decoding process in which the originating
route is inferred from an observed sequence of motions, combined with spatial constraints
imposed by the prior map.

Part II of the thesis describes an indoor localization method that codifies this intuition.
In the next section, we outline the overall design of the localization method.

5.2 Overview

In the map-matching of a sequence of navigational descriptions on a prior map, we use
the notion of “path compatibility”, an agreement between user motions and trajectory
hypotheses.

Figure 5-1 illustrates this idea for a walking user carrying a mobile device. The originating
path consisting of two straight-line segments in Figure 5-1a gives rise to a series of three-
motion segments: two straight-line walks and a right turn between them. Using the sensors
equipped in the mobile device, the user’s recent motions can be recognized, along with some
physical properties associated with the motions (e.g. duration, walking speed, etc.). Given a
prior map and the motion sequence estimates, we can attempt to recover the user path by
matching the motions on the plausible paths in the map. During this process, we use various
constraints that naturally arise from human movements in indoor environments: e.g., a path
must be contiguous, walking motions match straight-line segments, or turn motions match
intersections.

However, a path with only a few motion segments, as in Figure 5-1a, especially when we
do not have access to accurately measured physical properties (e.g. walking speed or turn
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(a)

(b)

Figure 5-1: Path compatibility. Red paths show true user paths; blue paths correspond to
(some) compatible paths. (a) After only three motions (Walking – Right Turn – Walking),
there exist many compatible paths; (b) with additional motions, the seven-motion path
(Walking – Right Turn – Walking – Left Turn – Walking – Left Turn – Going Down Stairs) can be
embedded in this map in only one way.
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degrees), could be matched to many candidate paths in the floor plan. However, as the user
continues to move (Fig. 5-1b), it can be embedded on the map only in an increasingly limited
number of ways. In particular, certain motions, such as walking on stairs, provide strong
constraints on the user path, as the number of locations in which those motions can occur is
typically small in a usual building.

The example above illustrates the elements required for the motion compatibility–based
localization to be implemented as an automatic process. First, we need a motion labeling
method that classifies user motion accurately from noisy sensor data formed by the low-
cost sensors typically available in consumer-grade mobile devices. Second, we require a
proper representation of all possible user paths, which encodes metric/topological/semantic
information on possible user motions in the environment. Last, a matching algorithm
that can handle uncertainty in the motion estimates as well as in the map representation is
required. Figure 5-2 depicts the whole process of map matching from the raw sensor inputs
to yield matched trajectories. We give a brief overview for each component in the following
sections.

Summarizing, our motion compatibility–based localization method in this thesis consists
of several components. The core map matching algorithm uses a hidden Markov model
(HMM) to find the most likely path given a motion sequence (Ch. 8). The method takes as
input a sequence of motion labels, automatically generated by a CRF-based low-level motion
labeling algorithm that takes raw sensor measurements from a hand-held mobile device
(Ch. 6). It uses a “route map” extracted automatically from legacy floor plan data (Ch. 7).
The matching model (§ 8.2) defines a compatibility measure between the input motion and
candidate paths, among which the best path is found by HMM algorithms (§ 8.3).

5.2.1 Automatic Motion Sequence Labeling (Chapter 6)

Our labeling algorithm takes time-stamped sensor data as input, and outputs user motion
states. The sensor measurements come from consumer-grade sensors, including accelerom-
eter, gyroscope, barometer and magnetometer (see § 5.3). The labeling algorithm uses a

Sensor Data
  (Accelerometer,
   Gyroscope,
   Barometer,
   Magnetometer)

Floorplan
  XML
  Documents

Motion Classifer 
  (Ch. 6)

Route Network 
  Generator
  (Ch. 7)

Route Networks

Discrete Motion
  Sequences

Trajectory Matching
  (Ch. 8)

User Trajectories

Figure 5-2: Overview of motion compatibility–based indoor localization
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conditional random field (CRF), a class of probabilistic models used for structured predic-
tions [95], allowing use of long-range and/or overlapping features.

From raw IMU sensor data, the method extracts features including median, variance, and
peak frequency of acceleration magnitude, average yaw rate (from the gyroscope), azimuth
change (from the compass), the frequency of deviations, and the frequency of pre-defined
characteristic patterns. The CRF model learns optimal association weights between each of
these features and the annotated motion labels. We annotated user motion data with motion
labels using simultaneously recorded video, and used them to train the algorithm.

5.2.2 Route Networks (Chapter 7)

Our motion-based matcher requires a route network: a graph representation of all possible
user paths within the environment. We implemented an automatic graph construction
algorithm that analyzes and interprets floor plan data to generate a route network created
from generalized Voronoi graphs. A Voronoi-based route network representation has
been used in prior work for robot or human navigation and map matching in indoor
environments [73, 96, 97].

Our route network generation process builds upon prior work by Whiting et al. [73],
which uses a constrained Delaunay triangulation to approximate the medial axis of each
space. A route graph is generated for each space using the Delaunay triangulation of each
space, then it is combined with other graphs for spaces abutting via horizontal and vertical
“portals” to create a complete route network for the entire corpus. Figure 5-3 shows a route
network for one floor of the deployment building.

We use an automated process to generate route networks from floor plans. However,

Figure 5-3: Route network (red, blue) of the third floor of the MIT Stata Center, extracted
from a legacy floor plan.
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manual authoring would also be feasible in many settings. Since for most buildings only a
portion is occupied by end-users (e.g. in malls, hospitals and airports), and interior structure
tends to change slowly over time, the maintenance burden to author and keep current the
building’s route network should be tolerable.

5.2.3 Trajectory Matching (Chapter 8)

The trajectory matching algorithm is based on a hidden Markov model (HMM). Given the
inputs from the motion classifier and a route network, we define “path compatibility”, the
agreement between the conceived path from motion estimates and a path hypothesis in the
route network. To find the path that maximizes the compatibility, we formulate the problem
as a sequence labeling problem, in which each motion is labeled one of elements in the route
graph.

By defining proper transition and emission models, we can use HMM algorithms to infer
the most likely trajectory of a user given an observed sequence of his/her motions. The
HMM framework also allows us to find a good set of model parameters without the need of
annotated data.

5.3 Platforms and Sensors

We design our method to operate with consumer mobile devices that people use in everyday
life, such as smartphones and tablets. Recent mobile devices have a variety of sensors in
them, including accelerometers, gyroscopes, magnetometers, proximity sensors, light and
acoustic sensors, and barometers. Even though indoor localization methods, in principle,
can benefit from any of these sensors by modeling an association from the signals to the
physical locations, we chose to use the sensors available in the Nokia Sensorbox (Fig. 5-4a)
in this work.

We use a Nokia N900 smartphone with a Nokia Sensorbox to demonstrate that our
method can be applied to commodity mobile devices. The Nokia Sensorbox is a sensing
device developed for research and containing five sensing modalities in compact 4× 4× 1 cm
package: consumer-grade tri-axial accelerometer, tri-axial gyroscope, tri-axial magnetometer,
thermometer, and barometer. Currently, many smartphones include a similar or the identical
set of sensors. Accordingly, we expect that the method presented in this thesis can be applied
to commodity devices without modification. Table 5.1 shows the specifications of the sensors
in the Nokia Sensorbox.

The Nokia Sensorbox was connected to a host computer, a Nokia N900 mobile phone,
via Bluetooth. We wrote a data logging program (Fig. 5-4b), written in C++ and Qt toolkit,
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(a) (b)

Figure 5-4: Nokia Sensorbox and data logging program

that records time-stamped sensor data transferred via Bluetooth. Ground-truth annotations
were made by capturing simultaneous video and later annotating it.

5.3.1 Sensor Characteristics

We conducted a series of analyses on sensor data from the Nokia Sensorbox. Our summary
of findings are that:

1. Low-cost sensors used in the Sensorbox, and mobile devices in general, at their factory
default states are not precisely calibrated. They show significant bias and drift, which
would make dead-reckoning–based approaches for indoor navigation inappropriate.

2. In indoor environments, earth magnetic field measurements by magnetometers vary
significantly depending on the location of the device, irrespective of the heading, due
to varying magnetic disturbance. As a result, magnetometer headings do not provide
reliable orientation estimates.

3. There are intrinsic limits to the degree to which the sensors can be calibrated. For in-

Sensor Measurement range Sampling freq. (Hz) Std. dev. at rest

3-axis accelerometer 2/4/8 G 100 0.06 m/s2

3-axis gyroscope 600 deg/s 200 0.4 deg/s
Barometer 30 - 120 kPa 2 1.7 Pa
Thermometer - 2 0.043 ◦C
Magnetometer 710 µT 20 1.2 µT

Table 5.1: Nokia Sensorbox Specifications
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stance, the drift characteristics of gyroscopes are difficult to calibrate precisely without
a turntable. Moreover, even after calibration, physical quantities that are computable
by integration from raw sensor measurements, such as distance or orientation, are
highly inaccurate, when integrated over long periods.

These findings imply that naïve methods that simply integrate raw measurements over
time would not work reliably in practice. They also indicate that the motion classification
and map matching methods must be designed in a way that they are robust against such
undependable characteristics of low-cost sensors. These considerations provided some bases
for the design of methods we present in the following chapters.

5.4 Related Work

We review prior work on indoor localization and relevant areas, including robot localization,
activity recognition and language grounding for robotic platforms.

5.4.1 RF-Fingerprint Localization

Some localization methods associate ambient RF fingerprints with physical locations, en-
abling devices to estimate location by finding the stored fingerprint most similar to the
current RF observation [10–12]. These methods exploit ubiquitous WiFi infrastructure,
unlike approaches which required dedicated localization infrastructure [6, 8]. Since con-
structing the RF map is an expensive process that requires intensive human labor, there have
been a number of attempts to reduce or even remove the burden of manual location labeling,
by spatial regression [63], joint mapping of the RF map and access point locations [66],
crowdsourcing [1], or by incorporating other types of sensor data [17, 94].

5.4.2 Indoor Pedestrian Navigation and Robot SLAM Algorithms

Recent advances in small, lightweight MEMS sensors have made indoor pedestrian navigation
with hand-held devices practical. In particular, low-cost strap-down IMU sensors equipped
in recent smartphones draw increasing interest for indoor inertial navigation.

However, the low-cost inertial sensors in mobile devices are usually inaccurate, having
high bias and drift characteristics and preventing naïve dead-reckoning from working in
practice. The error grows cubically in time, so a double-integration system can diverge more
than a few tens of meters in only a minute [16].

To circumvent this problem, prior work has relied on foot-mounting of sensors to
re-calibrate IMU at every gait cycle. This “zero-velocity-update” scheme has been com-
monly used for inertial pedestrian navigation systems [16, 18, 98, 99]. The compensated

76



Chapter 5. Motion Compatibility–Based Indoor Localization: Overview

measurements are usually combined with state-space filters such as Kalman filters or par-
ticle filters [15, 16, 100]. Woodman [101] studied drift and bias characteristics of MEMS
inertial sensors, suggesting that error in orientation estimate due to gyroscopic error is a
main source that limits overall accuracy. Other methods used position fixes from external
measurements [15].

The use of filtering algorithms for state-space models has been widely explored in the
robot localization and mapping community. The robotics community has been developing
methods for robots to explore an unknown environment and build a map representation of
landmarks automatically from sensor data. Recent work on simultaneous localization and
mapping (SLAM) [33] uses diverse sources of metric/semantic information from a rich set
of sensors, including IMUs, LIDARs, and depth-enabled cameras, equipped on a robot or as
a wearable device [102, 103]. Also robot platforms have explicit measurements of control
signals, which cannot be well measured for humans. Since such active, exteroceptive sensors
are unlikely to be incorporated into smartphones in the near future, our work addresses the
challenges of accurate location discovery from the cheaper sensors available today. Prototypi-
cal SLAM implementations include EKF-SLAM, GraphSLAM, and FastSLAM, differing in
what kind of estimation algorithms they are based on. Among these, GraphSLAM [68] is a
nonlinear optimization formulation over graphs, and similar to the graph reconstruction
approaches presented in Sections 2.2.4 and 2.2.5.

5.4.3 Activity Recognition

Another key component of the system involves recognizing the physical activities of the user.
Researchers have proposed different types of wearable computers that recognize user activity
from multi-modal sensor inputs. Exploiting recent advances in low-cost, small sensors, they
attach sensors that read motion from various parts of the body, and infer user activities from
sensor measurements.

In particular, acceleration data are often used for recognizing physical activities [104].
Acceleration data are particularly useful for recognizing cyclic activities, such as ambulation,
by extracting frequency domain features using FFT. Ravi et al. studied a variety of classifiers,
including meta-classifiers such as bagging and boosting, using acceleration data from a single
triaxial accelerometer [105]. Several prior work attempted to incorporate temporal dynamics;
Lester et al. [106] combined boosting with an HMM to capture temporal smoothness of
human activity. Krause et al. [107] proposed unsupervised identification of user activities
using k-means clustering and self-organizing maps.

Researchers have also proposed methods to recognize higher-level activities other than
primitive motions. Inferring higher-level activities often involves hierarchical models, such
as topic models [108], as each high-level activity is typically composed of several low-level
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activities.

5.4.4 Route Networks

Route networks, metric-topological representations of routes, have been widely studied in
the context of localization and path planning for vehicles, humans, and robots.

Outdoors, road networks unambiguously define route networks for vehicles. Map
matching on a road network is usually formulated as a trajectory matching problem, to
exploit known vehicle dynamics and handle inaccurate GPS observations [109, 110]. Sensor
measurements from users’ mobile devices are often combined to enhance matching accu-
racy [111, 112]. Just as the state model for outdoor map matching is naturally given by a
road network, we derive an analogous “route network” from a legacy floor plan. We do not
assume any external position infrastructure (e.g. Loran, GPS).

However, creating a route network for an indoor environment poses its own challenges
due to intrinsic ambiguity of the definition of “routes” in indoor spaces. A widely adopted
scheme is to generate a graph so that edges (which represent routes) follow the shapes of
the spaces. To recognize a shape of a space computationally and derive a graph from it,
the medial axis representation [113] and its approximations, such as generalized Voronoi
graphs [114], have been used. In particular, generalized Voronoi graphs, or equivalently,
constrained Delaunay triangulations, have been used in the context of robot localization in
indoor environments [96, 97].

5.4.5 Human Navigation in Indoor Environments

Our use of low-level motions to recover high-level trajectories is motivated by human
perception of indoor route navigation. Studies suggest that humans rely on geometric
cues (i.e. space layout) as well as non-geometric cues (e.g. landmarks) when learning and
navigating spaces [115]. Based on this idea, Brush et al. [116] performed a user experience
study for activity-based navigation systems that present a trail of activities to the destination.
Also, there have been recent attempts to make an automated agent “ground” spoken natural
language to support navigation and mobile manipulation [117–119].
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Chapter 6

Accurate Classification of Navigational
Motions using Mobile Devices

In this chapter, we present a classification method that estimates fine-grained user motions
from low-cost MEMS sensors in mobile devices. We first define a factorized representation
of motions based on typical navigation activities in indoor environments (§ 6.1). The
classification algorithm is based on a conditional random field (CRF) model parameterized
with “feature templates,” which associate sensor data with motions with varying window
widths (§ 6.3–6.4). The performance of the method is evaluated with a test dataset (§ 6.5).

6.1 User Motion Models for Indoor Navigation

The motion classification method in this chapter aims to produce fine-grained user motion
estimates that are representative of the navigation activities of users carrying a mobile device
in indoor environments. Consequently, our modeling of user motions is directly inspired by
how humans describe indoor routes.

We model user motion traces as a series of discrete actions parameterized by properties
associated with each motion. A property can be either a discrete or a continuous value,
representing the characteristics of the associated motion (e.g. duration, velocity or direction).
In indoor navigation scenarios, most walking paths can be well-modeled by the following set
of actions:

Rest Periods of little or no net motion, for example, while seated in an office, classroom,
cafe, library, etc. Detection of user resting can be used to favor certain place types over
others when estimating location.

Sitting Down and Rising These motions separate Rest from non-Rest activities in time.
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Standing Standing with little horizontal or vertical motion, after arising or between other
motions.

Straight Walk The user walks approximately along a straight line. Total traveled distance
can be estimated either directly from the acceleration trace, by counting user strides,
or from duration (assuming constant walking speed).

Turn Change of walking or standing direction over a brief period. We quantize turns on an
eight-point (body-centric) compass rose.

Walking Ascent and Descent Walking on ramps and stairs (on spiral or multi-stage stair-
wells, often accompanied by successive turns.

Elevator Periods of vertical ascent or descent in an elevator. Elevator motions typically do
not involve Walk or Turn motions.

Access Auxiliary actions required to move within typical indoor environments, including
opening doors and pressing elevator buttons.

These motion descriptors convey both local and global information about the user’s
motion and location. Locally, they describe the current status of user’s “egocentric” motion,
i.e., how the user is moving, or changing the motion state. Globally, they convey navigational
cues that constrain the user’s current location given a metric-topological-semantic indoor
map. For example, detection of an elevator ride motion unambiguously narrows down
the user’s current location to one of the elevators in the map. The matching algorithm in
Chapter 8 is formulated to use both kinds of information.

The complementary set of sensors available in the Sensorbox (§ 5.3) — accelerometer,
gyroscope, magnetometer and barometer — provides sufficient sensing data required for
estimation of the motions described above with high accuracy, as they produce signals arising
from user motions along different axes, capturing linear, rotational, horizontal, and vertical
motions, respectively.

6.1.1 Classification Labels: Factorized Representation of Motions

The design of classification labels reflects the motion models described in Section 6.1. How-
ever, for the purpose of classification, we do not use the motion descriptor terms as they are,
but use a factorized representation of motions instead.

The major parts of the motion descriptors in Section 6.1 are egocentric descriptions
of navigational activities. A navigational motion in a typical 2.5-dimensional indoor space
consists of three components: Principal mode of motion (e.g. sitting or walking), Lateral
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component (e.g. left/right turn), and Vertical component (e.g. stair or elevator ascent/des-
cent). Hence, a basic motion “clause” describing a navigation action can be represented as a
Cartesian product of three orthogonal motion components:

Principal×Lateral×Vertical

where the non-null symbols in each components are:

Principal= { Sitting, SittingDown, StandingUp, Standing, Walking, Running }
Lateral= { Straight, LeftTurn, RightTurn, LeftUTurn, RightUTurn }

Vertical= { Flat, StairUp, StairDown, ElvatorUp, ElevatorDown }.

Most basic navigation actions can be described as a product of these three motion components.
For example,

Walking straight on a flat surface⇒ (Walking, Straight, Flat)

Turning right while climbing stairs up⇒ (Walking, RightTurn, StairUp)

Riding an elevator down⇒ (Standing, Straight, ElevatorDown).

This decomposition eases analysis and design of the method in many ways. For example,
some sensors measure physical values associated with only a specific motion component, e.g.,
barometric measurements are related only to the vertical component, i.e., Flat, Up or Down.
This reduces unnecessary modeling effort for many combinations of motions and sensors.

Still, there exist other instances in which the user motion can be better explained by
introducing some non-primitive, special descriptors into our vocabulary of motions. In
particular, certain types of motions are bound to occur only (or at least with high probability)
at certain types of places. To take advantage of such prior knowledge, we introduce the
fourth component, the Auxiliary axis, to explain auxiliary actions required to move within
indoor environments. In this work, we define two additional actions that occur frequently
when moving within a typical building:

Auxiliary= { DoorOpen, ButtonPress }.

This component is exclusive of the basic motion component. That is, when these actions
occur, we do not set values for the first three components.

Summarizing, a classification label is a product of the three basic motion components,
augmented with an auxiliary set of actions:

Principal×Lateral×Vertical+Auxiliary.
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When representing a classified label for a motion, we use a shorthand representation in which
we use either only the first three components or the last component e.g., (Walking, Straight,
Flat) or ButtonPress.

6.2 Segmentation

The input data, consisting of multiple data streams from four sensors running at different
rates (Table 5.1), must be segmented before being labeled. Each segment, or frame, is tagged
with one of the motion labels that we define in Section 6.1.1. As we aim to provide fine-
grained motion estimates useful for trajectory matching, determining a good segmentation
scheme is crucial for achieving high performance of the localization system.

In general, pre-classification segmentation methods can be categorized into two schemes:
variable-length and fixed-length segmentation. Variable-length segmentation methods attempt
to find “good” segmentation boundaries by analyzing signal characteristics based on some
prior knowledge, for example, by placing a boundary where the change in the magnitude of
the signal exceeds a threshold. In this scheme, each frame can have a distinct length, and two
adjacent frames are more likely to have different labels than in the fixed-length segmentation.
On the other hand, in fixed-length segmentation, input signals are sliced into fixed-length
frames. If a segmentation interval used is small, the same label may repeat over multiple
frames to represent a long motion; those successive frames may be concatenated later to yield
a single frame with a longer duration. (In this case, segmentation boundaries are implicitly
determined by the labeling method.)

In this work, we use a fixed-length segmentation scheme in which the labeling algorithm
assigns a motion label at 333 ms intervals (3 Hz). We use the fixed-length segmentation,
because the variable-length segmentation scheme may have the following disadvantages: 1)
an ill-designed variable-length segmentation algorithm may fail to partition critical motion
segments, such as short-term turn motions; and 2) the features, computed for each segment,
must be carefully normalized so that they are independent of the duration of individual
segments. On the other hand, the fixed-length segmentation scheme does not suffer from
such issues.

We chose the frame interval as 333 ms (3 Hz), which is shorter than the duration of
most motions. The major challenge in finding a right segmentation interval is that different
motions can have very different durations. While short-term motions, such as turns or
door-open actions, last no more than one or two seconds, longer actions such as walking or
riding an elevator can last for as long as a few tens of seconds or more. If a large value (e.g.
3 seconds) is used, it may cause the signals from the short-lived motions to be “buried” in
feature computation. On the other hand, a smaller interval makes it possible to represent a
motion as a series of small frames. When concatenated, the small frames can determine the
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boundaries (the start and end) of each unit motion, giving a precise duration estimate.
However, such a small frame size may not be optimal for longer motions or slower

sensors. For example, the barometer in the Sensorbox measures atmospheric pressure every
0.5 seconds; with 3 Hz frames, each frame will have at most one pressure value, making it
unable to compute the gradient of the atmospheric pressure, which is an essential feature
in detecting vertical motions. Also, even for high-rate sensors, features may not contain
faithful characteristics of a longer motion; the 333 ms window does not contain a full single
walking cycle occurring at around 1 Hz. Therefore, the computed features may be very
noisy (i.e., computed statistics have a high sample variance) if computed for a small interval.
On the other hand, if we use longer, overlapping windows, the features become dependent
and may violate the independence assumptions required for certain sequence models (e.g.
HMMs), making the model double-count the same features. To overcome this problem, we
use conditional random fields (CRFs), which allow the use of long-range and/or overlapping
features, while segmenting input data with the short interval of 3 Hz. The feature functions
we use are designed to adapt for different lengths of motions by using overlapping windows
(§ 6.4.1). The CRF-based motion labeling method is described in the next section.

6.3 Conditional Random Fields

With the motion descriptors described in Section 6.1, our task is to infer the most probable
sequence of motion labels given time-series sensor data from the user device. To this end,
we use conditional random fields (CRFs) [95], a class of probabilistic models for structured
predictions. In particular, we use a linear-chain CRF, in which the output (motion) variables
are arranged linearly over time.

In the discussion below, let x be the latent variable we infer and y be the observation
variable. In the motion labeling problem, x represents a sequence of motion states and y
denotes time-series sensor data, segmented as we described in Section 6.2. x j and y j denote
j -th frame of the label and the observation sequence, respectively. A CRF is a discriminative
probabilistic model that learns a conditional probability, p(x|y), directly from the training
data.

A linear-chain CRF, a discriminative model for sequences, can be written as [120]:

pλ(x|y) =
1

Zλ(y)
exp







∑

j

∑

i

λi fi (x j−1, x j ,y, j )






(6.1)

where fi (·) is the i -th feature function representing compatibility, or the desired configuration,
between two successive states x j−1, x j and y, and λi is the feature weight for fi . In linear-chain
CRFs, feature functions are restricted to represent interaction between the observation y
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and, at most the previous state and the current state only, instead of allowing arbitrary
interactions between y and x. This makes the model to have a chain structure, allowing the
use of efficient dynamic programming–based algorithms for inference [120].

CRFs do not suffer from the restrictive independence assumption between observations.
On the other hand, in HMMs, the observation at frame i , yi , is assumed to be dependent only
on xi . This assumption is restrictive for the motion labeling problem in which long-range
dependencies between observations are apparent. For example, an elevator motion is almost
always accompanied with a pair of upward and downward accelerations at its start and end;
while a user is walking, the measured acceleration signals exhibit the same oscillation pattern
for a long period of time. HMMs cannot be used to model these long-range, overlapping
features; otherwise it will accrue the same evidence multiple times in the inference.

6.4 Features

We compute features using low-level sensor measurements from four sources of propriocep-
tive sensors available in the Sensorbox: a tri-axial accelerometer, gyroscope, magnetometer
and a barometer. Before extracting features, sensor measurements are smoothed by low-pass
filtering. Gyroscope and magnetometer measurements are aligned to match the vertical axis
(gravity direction) and the horizontal plane (the orthogonal plane to the gravity direction)
using a tilt angle estimate from accelerometers. In this way, lateral features can be extracted
regardless of the device orientation.

In Section 6.4.1, we describe how we utilize the strengths of the CRF-based models —
their ability to incorporate overlapping features — in the motion labeling problem by the
use of sets of the same feature functions computed on varying window widths, or feature
templates. Then, we explain how sensor data are preprocessed and feature functions are
extracted from them.

6.4.1 Feature Templates

A feature function is any real-valued function that defines compatibility between labels, x,
and observations, y. A typical example is a statistic derived from physical measurements, e.g.,
the median of the acceleration magnitude; a certain range of median values may indicate that
certain types of motions are more likely. However, a feature function does not have to be
limited to such real-valued statistics. For example, it could be a boolean function indicating
whether or not a certain predicate is satisfied or not (1 or 0), i.e., whether a specific pattern
is found in the current observation window.

From sensor data, we compute various types of feature functions, each of which uses a
different combination of sensors. Some examples include: the variance of the acceleration, the
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location of the peak frequency in the acceleration spectrum, the gradient of the atmospheric
pressure, or the number of up-down patterns in the signal. In labeling x j for a certain time
frame j , CRF models allow using evidences drawn from any frames, not only the observation
within the j -th frame. That is, in computing feature functions, we can use observed signals
from either a single frame ({y j }), adjacent frames (e.g. {y j−3, ..., y j+3}), or even distant frames
that do not include j (e.g. {y j−5, ..., y j−3}).

However, complications arise when deciding how large a feature window should be used
for each feature. That is, we often do not have a precise prior knowledge on the range of
interactions between sensor signals and motions. We might guess that, for example, turn
motions must be associated with a short window size as they are short-lived, whereas the
detection of rest motions can benefit from having a large-sized window, because transient dis-
turbance can be ignored in the large windows. However, window widths that are incorrectly
set without a supporting evidence may degrade the performance of the motion labeling
method.

Rather, our approach is to learn the range of associations for each feature from data. To
this end, we define multiple feature functions for every feature statistic with exponentially
growing window sizes, allowing the model to learn an individual weight for each combination
of different window sizes and features. For example, we compute the variances of the
acceleration magnitude with five different window sizes — 1, 2, 4, 8 or 16 frames. For most
features, we use five window sizes (1, 2, 4, 8, or 16 frames, 1 frame = w = 333 ms) centered
at the segment to be labeled. (i.e. feature windows are symmetric.) Therefore, to inter a label
at frame j of which the timestamp at the center is t j , we draw evidence from five observation
windows, [t j − 0.5w, t j + 0.5w] to [t j − 8w, t j + 8w] (Fig. 6-1). Exceptions are: 1) slow
sensors, e.g. barometer, whose operating frequency is low; and 2) certain types of features
whose values are not well-defined for small windows. For these cases, only wider windows
(from [t j − 2w, t j + 2w] to [t j − 8w, t j + 8w]) are used.

j

w

......

1

2
4

8
16

Frames

Sensor
Measurement

Feature windows
(for frame j)

Figure 6-1: Feature windows. For every feature for frame j , multiple feature windows are
defined. The feature windows are arranged symmetrically, being centered at the frame j .
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The log-linear parameterization of Equation (6.1) brings another design consideration
for feature functions: the feature functions must be monotonic in terms of the compatibility
strength. That is, the higher (or lower) the value is, the more likely the configuration
between input x and y should be. However, this does not necessarily hold for every statistic.
For example, while a moderately high variance of acceleration indicates a high probability
of Walking, a very high or low variance may imply Running or Standing, and decrease the
likelihood of Walking. To handle this, all real-valued features are quantized into k discrete
bins, from which k Boolean feature functions are derived. A Boolean function is “activated”
(having the value of 1) only when the corresponding statistic falls within the range of the
associated bin.

With these considerations, we define feature templates such that each function derived
from of a certain feature type c is evaluated to one if and only if it is assigned a specific
pair of labels (for previous and current labels) and it has a specific quantized feature value
computed from the observation window τ (which is one of the three or five windows):

f (x j−1, x j ,y, j ) = f τc (x j−1 = x ′, x j = x ′′, yτc = y ′τc , j )

= δτc (x j−1, x ′, j ) δτc (x j , x ′′, j ) δτc (y
τ
c , y ′τc , j ) (6.2)

where x ′ and x ′′ are label values at j − 1 and j respectively, y ′τc is a quantized feature value
for feature c with window τ, and δτc (z, z ′, j ) is a delta function evaluated to one if z = z ′ at
time j .

In this work, except for “state transition” features, δ(x j−1, x ′, j ) δ(x j , x ′′, j ) (analogue of
transition probabilities that are independent of observations), we do not utilize the previous
labels in feature functions. That is, δτc (x j−1, x ′, j ) = 1, except state transition features.
Because we have 152 possible labels (6 principal × 5 lateral × 5 vertical + 2 auxiliary) and a
maximum of five different window sizes, each feature statistic yields, 152 × 6 = 912 Boolean
features via the use of templates.

6.4.2 Preprocessing

Before computing feature values, sensor measurements are pre-processed by low-pass filters to
remove noisy components and/or to capture nearly stationary components of the motions.
We use 3rd-order Butterworth filters to remove noisy high-frequency components while
retaining salient low-frequency signals that are directly related to human motions. The cut-off
frequency of the filter, which determines smoothness of the filtered signal, is determined
empirically, considering the individual characteristics of each sensor and the feature functions
using it. In general, the signals from the sensors operating at a high frequency, such as the
accelerometer operating at 100 Hz and the gyroscope at 200 Hz, are passed through two
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different low-pass filters, to obtain different degrees of attenuation: one with a relatively
high cut-off frequency (3 Hz at -3 dB cutoff) to remove noise only; the other with a very
low cut-off frequency (0.2 Hz at -3 dB cutoff) to capture the slowly-varying trend of the
signals. The latter is particularly useful for computing properties that are stationary for a
long duration, for example, the tilt angle of the device.

To compute rotational properties around the “yaw” axis, gyroscope and magnetometer
measurements must be transformed to be aligned with the gravity vector. To do so, we
estimate the device tilt angle, or equivalently, the directional cosines with respect to the
gravity axis, from the heavily attenuated acceleration measurements. The directional cosines
are used for computing a yaw rate from gyroscope measurements, and an azimuth angle
(from the magnetic north pole) from magnetometer measurements.

Magnetometer measurements must be adjusted to compensate for the iron offset caused
by external magnetic disturbances. There exist many sources of magnetic disturbances in
indoor environments, such as electronic devices and metal furniture. The distortion in
magnetic signals caused by these disturbances often has the same order of magnitude as the
earth’s magnetic field, disrupting accurate estimation of azimuth angle. We compensate
the iron interference using the least squares method, assuming that the geomagnetic field
magnitude is constant during the operation period and any remaining variation is due to the
disturbances [121].

6.4.3 Feature Extraction

From pre-processed sensor measurements, we extract a total of 19 features from the prepro-
cessed sensor measurements (Table 6.1).

State and Transition Bias

The first two features, the state bias and transition bias capture the prior and transition
probabilities of the motions, independently of observations. More precisely, the state bias
features represent potential energy of state configurations, independently from each other;
the transition bias determine potential energy of pairwise configurations of two adjacent
states (adjacent in time). The weights for these features are largely determined by how
frequently specific configurations of states occur in the training data.

Discretization Methods

As described in Section 6.4.1, all the continuous features are discretized into seven discrete
bins. If a feature function is, by definition, symmetric around a certain value corresponding to
a reference state, such as zero for the yaw rate in the absence of any turn, we use a symmetric
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Feature Sensorsa Processingb Windowsc

(frame)
Binningd

State biase

Transition biasf

Range of accel. magnitude Acc. LPF 1-16 Equal
Variance of accel. magnitude Acc. LPF 1-16 Equal
Frequency of over-threshold deviations
of accel. magnitudeg

Acc. LPF 1-16 Equal

Median accel. magnitude Acc. LPF-H 1-16 Equal
Number of up-down patterns in accel.
magnitude

Acc. LPF-H 4-16 –

Number of down-up patterns in accel.
magnitude

Acc. LPF-H 4-16 –

High-low-high magnitude patternh Acc. LPF 1-16 –
Peak frequency of accel. spectrum Acc. 128-FFT 1-16 –
Peak magnitude of accel. spectrum Acc. 128-FFT 1-16 Equal
Average yaw rate Gyr., Acc. LPF-H 1-16 Symmetric
Maximum positive yaw ratei Gyr., Acc. LPF-H 1-16 Equal
Minimum negative yaw ratei Gyr., Acc. LPF-H 1-16 Equal
Net change in yaw ratej Gyr., Acc. LPF-H 1-16 Symmetric
Frequency of over-threshold deviations
of angular velocity magnitudek

Gyr. LPF 1-16 Equal

Difference of half-window averages of
compass azimuthk

Mag., Acc. LPF-H 1-16 Symmetric

Net change in atmospheric pressurek Bar. LPF 4-16 Symmetric
Difference of half-window averages of
atmospheric pressurel

Bar. LPF 4-16 Symmetric

aAcc.: accelerometer, Gyr.: gyroscope, Bar.: barometer, Mag.: magnetometer.
bLPF: low-pass filtering; LPF-H: low-pass filtering with high attenuation; 128-FFT: 128-point FFT.
c1–16: 1, 2, 4, 8 and 16 frames; 4–16: 4, 8, and 16 frames; –: feature values are discrete.
dSeven bins. Equal: equal-sized; Symmetric: symmetrically arranged, centered at zero (equal-sized).
eEquivalent to prior probability of the state.
fEquivalent to transition probability between the states.
gOver 0.1 m/s2.
h1 if the predefined pattern of high-low-high acceleration range is detected, 0 otherwise.
iExcluding negative or positive yaw rate values.
jBetween the start to the end of the window.

kOver 10deg/s. The magnitude is defined as L-1 norm of the angular velocity vector measure by the
gyroscope.

lBetween the first and the second half.

Table 6.1: List of features extracted for motion classification.
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discretization scheme: we place seven equal-sized bins that are arranged symmetrically
around the reference point. Otherwise, we partition the data into seven equal-sized bins.
To handle measurement outliers, we used values between the 5th and 95th percentile range,
excluding outliers.

Acceleration Magnitude–Based Features

Nine features are extracted from the magnitude of the acceleration. The magnitude of
the acceleration captures the overall energy of user motion. It is hence directly related to
the classification of the principal component of user motions (Standing, Sitting, Walking,
StairUp/Down, Running). Among the acceleration magnitude–based features, the range and
the variance of the acceleration magnitude, in particular, reflects the overall strength of
motion. On the other hand, the frequency of acceleration measurements over a threshold
measures the consistency of the activity with high acceleration is during the period of each
window.

Some features overlap with each other, showing non-negligible correlation. For example,
the range and the variance of acceleration magnitude are strongly correlated and carry similar
information in many cases. CRF models, however, can still benefit from having both features,
as the models do not pose restrictions on overlapping features. We design the features so that
they constitute a complementary set of information sources.

Also, we include some transient patterns in the acceleration magnitude as they may
indicate abrupt vertical movements, such as StandingUp, SittingDown, ElevatorUp/Down. For
example, a higher (or lower) median value of the acceleration magnitude during a short
period of time can indicate that the user is undergoing a transient vertical acceleration in a
downward (or upward) direction. Also, when a user stands up or sits down, a pair of abrupt
changes, a quick increase in acceleration magnitude followed by a rapid decrease (or vice
versa) over a brief period is observed.

When examining these features, we filter the acceleration signals with a heavy-attenuating
low-pass filter, using the filtering frequency below the typical gait frequency. It is because
that it makes the transient, non-stationary patterns easily distinguishable from the oscillation
corresponding to normal gaits.

Acceleration Spectrum–Based Features

We capture the frequency-domain characteristics of user motions from the 128-point fast
Fourier transform of the acceleration magnitude. In particular, when a person is walking, the
peak frequency of the acceleration spectrum corresponds to his/her half-gait cycle, enabling
the classifier to distinguish walking motions easily from other non-repeating motions. At the
sampling rate of 100 Hz, at which the accelerometer in the Sensorbox operates, the frequency
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resolution is 100 Hz/128 points≈ 0.78 Hz, which provides sufficient frequency resolution
for the typical walking frequency at approximately 2 Hz (half-gait). We also extract the
corresponding spectral magnitude of acceleration at the peak frequency. This characterizes
walking motions in different strengths (i.e. walking on flat surfaces vs. walking on staircases)
differently.

Turn Features

The features relevant to turn motions are extracted from the gyroscope and magnetometer.
Because the sensors in a mobile device can be positioned arbitrarily, angular velocity and
magnetic field measurements must be transformed to be aligned with the local vertical axis.
To this end, we use three-dimensional acceleration vectors, which are low-pass filtered with
high attenuation and averaged over a sufficiently long period of time, to compute the tilt
angle of the device reliably (see § 6.4.2).

We characterize the angular velocity captured by instantaneous yaw rates in multiple
ways. Other than the average yaw rate, we use the net change from the start to the end of
the feature window. When the length of a feature window is longer than the turning motion,
the net change of the yaw rate can become near zero even when a turn is present, whereas
the average yaw rate has a non-zero value. Therefore, it helps to distinguish longer turns,
such as U-turns, from shorter and/or sharp turns.

Some asymmetric quantities are measured as well. In the right-handed coordinate system
with the vertical axis upward, a positive yaw value indicates a left-turn and a negative value
represents a right turn. Therefore, computing a one-sided maximum (from only either
positive values or negative values) adds more clarity in distinguishing subtle left and right
turns from each other.

On the other hand, magnetic field measurements themselves are inaccurate particularly
in typical indoor environments, where there exist many sources of magnetic disturbances.
Hence, we use magnetic measurements only as a supplementary source of information
in addition to gyroscope measurements. To obtain robust turn estimates from inaccurate
magnetometer measurements, the difference between the average of the first half and that of
the second half of the feature window is taken.

Barometer-Based Features

A ceiling height of a typical building ranges from 7 to 15 feet. This brings a difference in
atmospheric pressure of about 50 Pa per floor. A barometer, which begins to be equipped in
the current generation smartphones, can measure this difference precisely. We compute the
net change and the averaged difference of atmospheric pressure within each feature window.
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These features provide useful information when classifying vertical motions, such as walking
on stairs and riding an elevator.

6.5 Evaluation

We evaluated the performance of our motion classification method with real user data.

6.5.1 Methodology

To test the performance of the motion classification method, we collected 37 motion
sequences from a test user. The dataset was captured in the MIT Stata Center, where
the user traversed in a single or multiple floors of the building. The user made occasional
transits through elevators and stairs. The total length of the dataset is 68 minutes.

The user held the device (a N900 smartphone with Sensorbox attached) loosely in front
while recording first-person video. The recorded videos were used for obtaining the ground-
truth motion labels. We developed a motion annotation tool (Fig. 6-2) to support annotation
of the recorded user motion data at 100 ms, a finer resolution than the segmentation interval
of the classifier (333 ms).

The logged sensor data were offloaded to a desktop computer for offline analysis. The
digital sensor values were converted to physical units without any further calibration other
than use of the factory default conversion scales and offsets. (We could do this because our
motion classifier performs well without such calibration, as it does not rely on any precise
physical values in computing feature functions.) Furthermore, the feature functions are
discretized, reducing the necessity for keeping precise physical values.

For CRF implementation, we use Wapiti [122], discriminative sequence labeling software
developed for NLP tasks. For the evaluation, we perform cross-validation tests, in which one
sequence was held out for test and the model was trained using the remaining 36 sequences
(leave-one-sequence-out test). The performance metrics were computed from the aggregate
results from the cross-validation tests.

The primary metrics for the evaluation are precision and recall. For each class, the
precision is the fraction of the correct predictions over all predictions classified to that class.
The recall is the fraction of the correct predictions over all examples of that class. That is:

precision=
true positive

true positives+ false positives
(6.3)

recall=
true positive

true positives+ false negatives
. (6.4)
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The F-measure combines precision and recall by the harmonic mean, denoting an overall
performance of the classifier for each class:

F-measure=
2 · precision · recall
precision+ recall

. (6.5)

The classification results were evaluated in per-frame basis. In computing precision and
recall, we compute “misalignment-compensated” metrics by allowing misalignments up to
two frames. That is, a prediction results for a frame is regarded as being correct if a true label
with the same class can be found within two frames from it. performance of

6.5.2 Classification Performance

Figures 6-3 and 6-4 show the aggregate classification performance computed from the cross-
validation tests. The overall per-frame precision and recall (after misalignment compensation)
were 95.2% and 93.8%, respectively (88.7% and 88.8% without compensation).

Most user motions except a few combinations were classified accurately. However, rare
motions (motions that are rarely found in the dataset) have relatively high classification error

Figure 6-2: Motion annotation software with supporting GUI to aid ground-truth anno-
tation of user motions. The true motion matching an instantaneous video frame can be
annotated at fine resolution (100 ms) using the timeline at the bottom of the interface. Sensor
measurements are displayed on the left. The program can also be used for visual inspection
of the classification results with the graphical icons shown on the top.
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6.5. Evaluation
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Figure 6-4: Classification performance. (Compensated) F-measures are shown for each
motion label. The motion labels are shown along with the corresponding number of frames
(1 frame = 333ms) in the dataset.

94



Chapter 6. Accurate Classification of Navigational Motions using Mobile Devices

(bottom of Fig. 6-4). For instance, our dataset contained only 23 frames (7.67 seconds) of
(Standing,LeftTurn,Flat) instances (“Turning left while standing on a flat surface” ), for which the
F-measure was only about 41%. It is because, in the learning phase, the model weights are
adjusted to decrease the overall classification error in the parameter estimation, which puts
less importance on rare motions that do not contribute much to the aggregate error.

The classification performance is low for pairs of motions that are very similar to each
other. In our dataset, two cases are found (Fig. 6-3): DoorOpen vs. ButtonPress, and Standing
vs. Sitting (i.e. (Standing, Straight, Flat)) vs. (Sitting, Straight, Flat)). Indeed, these pairs are
often nearly indistinguishable; both DoorOpen and ButtonPress involve a short, transient
lateral movement, in which a person stretch out his/her hand to manipulate a door or a
button.

Also, both standing and sitting are stationary motions with no net movement. They are
sometimes distinguishable by the classifier because they often accompany different sorts
of motions (i.e. ButtonPress is followed by atmospheric pressure change due to elevator
movement, DoorOpen is usually continued to walking, Sitting and Standing accompany
StandingUp or SittingDown before or after the motion.), but the observation of such clues by
the classifier is not always guaranteed.

6.5.3 Feature Windows

We evaluated the effectiveness of long-range, overlapping features by training and testing the
classifier with different subsets of feature windows.

We compared our choice of feature windows (all 1, 2, 4, 8 and 16 frames) to the case in
which either only the shortest possible windows (1 or 4 frames, depending on the feature)
or only the longest windows (16 frames) are used (Fig. 6-5). The overall compensated
F-measures for partial windows were 89.0% (90.2% precision, 88.5% recall) and 81.4%
(86.9% precision and 79.9% recall) respectively. These are significantly lower than that of
all-windows classifier (94.5% F-measure).

Each choice of feature windows degrades performance for certain classes of motions.
When only short windows were used, classification error was higher for long motions: U-
turns were confused with right turns; vertical motions, especially stair motions (StairUp and
StairDown) were misclassified because the short windows did not contain enough number of
samples to compute barometric pressure gradient, an essential feature for vertical motions. In
contrast, when only long windows were used, there was remarkable performance degradation
for transient motions, in particular, turns. The classification accuracy for access motions
(DoorOpen and ButtonPress) degraded as well. The result demonstrates that having various
feature window sizes is essential to achieve high accuracy in fine-grained motion classification
tasks.
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Figure 6-5: Effect of feature window size. (Compensated) F-measures are shown per motion
label, when only shortest windows (“Short only”), only longest ones (“Long only”), or all
(“All”) are used in classification.
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6.6 Related Work

6.6.1 Conditional Random Fields

Conditional random fields [95] are a discriminative probabilistic framework for segmenting
and labeling sequential data. CRFs achieve tractable inference while avoiding unwarranted
independence assumptions over the observation sequence, by modeling a conditional proba-
bility of a label sequence given an observation sequence. This is in contrast to generative prob-
abilistic models which model a joint probability between a label and an observation, which
is often not necessarily required for classification tasks. CRFs have been used for sequence
labeling tasks in many areas, including natural language processing [123], robotics [124, 125],
ubiquitous computing [126] and computational biology [127].

6.7 Conclusion

In this chapter, we presented a classification method that infers low-level user motion type
from proprioceptive sensor measurements of a quality available in commodity mobile
devices. We define a factorized representation of user motions, in which a typical navigation
activity is decomposed into four components — principal, lateral, vertical and auxiliary. The
CRF-based motion classifier is formulated with the feature templates of varying window
sizes, and show high accuracy for a test motion dataset.

As future work, to capture the hierarchical nature of human motions, the motion model
can be potentially expanded to a rich, hierarchical structure. This, in turn, would require
a parsing algorithm for non-flat, hierarchical structures. Accordingly, the map matching
algorithm can be reformulated to match such rich motion models.
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Chapter 7

Route Network Generation

As outlined in Chapter 5, finding the trajectory of a user based on his/her motions and
the observation of navigational cues requires a matching spatial representation of indoor
spaces, namely route networks. A route network is a graph representation of all possible
routes within an indoor environment. This chapter begins by presenting an overview on
how the map source data, MIT Floor plan XML, is structured (§ 7.1). Then we describe our
route network generation algorithm, which analyzes the floor plan data to construct a graph
representation of user paths in indoor environments (§ 7.2). Also, we explain how spaces in
MIT floor plans can be categorized according to the degree of motion (§ 7.3).

7.1 The MIT Floor Plan XML

Automatic construction of the route graphs for our test bed, the MIT Stata Center, builds on
previous work of MIT Building Model Generation group, which has built a comprehensive
model of the MIT campus from CAD drawings of the building floor plans [73, 128–131].
Whiting and Battat [73, 130, 131] created an exhaustive representation of indoor spaces of
the MIT campus, extracting geometric and topological information from the source floor
plan data represented in AutoCAD DXF format. The generated floor plan representation,
which we call MIT floor plan XML, is formatted as XML documents. These XML documents
contain geometrical (centroid coordinates and contours) and topological data (adjacency and
hierarchical layout) of floors and spaces of MIT buildings. Since our route graph generation
process is based on the MIT floor plan XML representation, we describe its structure in
some detail in this section.

The floor plan data corpus is organized to follow the natural hierarchy of a typical
campus or a building space: it is embodied in a tree structure whose root is the base name of
the entire corpus (“MIT”). The tree model of XML data format is a natural encoding for such
a structure. Each node in the tree has child nodes for the spaces that it physically contains.
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7.1. The MIT Floor Plan XML

For example, MIT Building 32 (the Stata Center) contains its nine floors as its children
nodes, each of which, in turn, contains spaces that belong to it (e.g. offices, corridors and
conference rooms) as its children in the tree.

7.1.1 Spaces

The basic unit of the floor plan representation is a space, a physical area within an extended
indoor environment. Figure 7-1 shows a typical XML element for a space in the corpus.
Each space element is attributed with a space name (e.g. “32-300S13”) and a space type
(e.g. “STAIR”), and has three child elements that are pertinent to its metric-topological
properties: <contour> element describing its geometry, <portal> element describing its
adjacency relationship to nearby spaces (see 7.1.2, and <triangle> element describing its
triangulation structure (see 7.1.3).

The <contour> element describes the geometry of a space. Each space is represented
as a simple polygon parameterized by its centroid coordinates (<centroid>) and the list
of contour point coordinates that defines the sides of the polygon (<point>). If a space
contains a round contour, it is approximated as a polyline. The bounding box surrounding
the contour of the space is also given (<extent>).

Spaces are separated by either physical walls or wall-like structures, or by implicit

<space type="STAIR" name="32-300S13">
<contour>
<centroid x="710448.767146" y="496440.149751"/>
<extent maxy="496449.009485" miny="496431.111303"

maxx="710455.963341" minx="710441.497540"/>
<point x="710441.497540" y="496446.049074"/>
<point x="710444.834064" y="496447.569616"/>
...
<point x="710441.497540" y="496446.049074"/>

</contour>
<portal type="stair" class="vertical" target="32-200S13" direction="DOWN"/>
<portal type="implicit" class="horizontal" target="32-331CA.b">
<edge maxparam="1.000000" minparam="0.000000" index="0"/>

</portal>
<triangle v1="0" v0="1" v2="2"/>
<triangle v1="0" v0="2" v2="10"/>
...

</space>

Figure 7-1: XML representation of 32-300S13
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boundaries between two spatially contiguous, yet functionally separate regions. In the latter
cases, a space such as a large lecture room or a big open office space is further divided into
multiple subspaces. The current version of the MIT floor plan XML assumes a flat hierarchical
structure between spaces, and does not define a separate lower level for these subspaces.
Therefore, a space node in the XML may correspond to either a physically isolated area
surrounded by walls and doors or a subspace that is implicitly separated. In either case, the
space node representation given in this section is universal, and each space node has its own
geometric and topological information.

The basic semantic information of a space is encoded in the space type (type attribute
in XML representation), which is defined by MIT Department of Facilities. This type
classification provides useful information for finding user trajectories based on his/her
activities, because certain classes of motion activities are strongly tied to specific subsets of
space types. Section 7.3 further describes how this space type information can be grouped
and used in activity-based trajectory matching.

Figure 7-2 shows a graphical presentation of 32-300S13 and surrounding area.

7.1.2 Portals

The adjacency relationship between two spaces is expressed by the use of portals. A portal
connects two adjacent spaces, having a source and a “target” (destination) space. In the XML
representation, a portal element is subsumed within the XML element of the source space,
and has a target attribute specifying the destination space (see Fig. 7-1). Every portal is
considered directional; if the corresponding connection is traversable from either direction,
like most doors, it is expected to have a pair of portals, one for each source space, in the
corpus.

Canonical examples of portals include: doors, implicit connection between two subspaces,
and vertical transitions such as elevators and stairs. According to the characteristics of the
transition, portals are classified into two classes: horizontal and vertical portals

A horizontal portal involves a connection between a pair of spaces that are at the same
floor level, such as intra-floor transitions or inter-building transitions through a path on the
same height. If a physical barrier (e.g. a door) exists on the connection, the corresponding
portal is typed explicit; otherwise it is implicit. The latter case arises when a big open space
is subdivided into smaller pieces because each smaller division (subspace) has a different
function, or the original space is too large or complex-shaped to be kept as a single simple
space.

This classification of horizontal portals implies certain characteristics about user motions.
For example, detection of a door opening action implies that the user is located at an explicit
portal, but the same is not true for implicit portals. Also, user movement is more restricted
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7.1. The MIT Floor Plan XML

through explicit portals than implicit portals because passing an explicit portal means going
through a doorway, which in general is a narrow passage way.

In the XML representation, every horizontal portal is parameterized by an index of the
contour edge of the source location and position parameters describing the exact position of
the portal on that edge (see Fig. 7-1). For explicit portals, the position parameter (param
attribute) is a single dimensionless number in [0,1] describing the center position of the
corresponding door. On the other than, implicit portals are parameterized by a (min,max)
pair of dimensionless numbers (minparam and maxparam attributes), which represents the
position and fraction of traversable segment along the corresponding contour line. Knowing
the exact positions of portals is important for generating route graphs because they define
the actual portion on a space contour that humans traverse when moving between adjacent
places.

Inter-floor connections via stairs and elevators are classified as vertical portals. Other
than a target space, every vertical portal is attributed with two properties that define the type

Figure 7-2: Graphical representation of the area around 32-300S13. Each space is given
a name and a type, such as CONF (conference room), STAIR (stairs) or P_CIRC (“private
circulation”, or corridors), and color-coded by its category (see § 7.3). A circular corridor
at the center is divided into four smaller sections, each of which has its own element in the
XML document. Portals representing connection between adjacent spaces are shown in
different colors; explicit portals (doors) are shown as a pair of thick dark-green markers (e.g.
between 32-397 and 32-397CA); implicit portals (e.g. virtual boundary between 32-397CA
and 32-331CA.b) are marked with light grey-green on the traversable portion of space
contours; vertical portal representing stair transition from 32-300S13 toward the second
floor is shown as a blue arrow.
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(“STAIR”/“ELEV”) and the direction (“UP”/“DOWN”) of the associated transition respectively.
These properties are crucial for recovering user trajectory for multi-floor traversals as
they provide highly informative constraints about user motion at the moment of vertical
transitions.

7.1.3 Triangulation

Our route network generation process is based on prior work by Whiting et al. [73], which
created walking routes through each space based on its triangulation. Specifically, it used a
constrained Delaunay triangulation to approximate the medial axis of a space, by connecting
adjacent midpoints of interior edges (edges of the triangles that are not a part of the space
contour) [132]. This method was shown to work well for navigation in complex indoor
environments such as the MIT Stata Center. In creating a route network (§ 7.2), we start
with this scheme to create a raw route graph for every space in the map.

To support this process, a constrained Delaunay triangulation was computed for every
space in the map. A set of triangles consisting the triangulation of the space was created for
every space node in the floor plan XML (see Fig. 7-1). These triangles cover the entire space
domain without overlapping.

A few triangulation examples are shown in Figure 7-3. For usual convex/non-convex
polygonal spaces, the Delaunay triangulation captures the “shape” of the space well, providing
the basis for route graph generation (Fig. 7-3a). On the other hand, if the space is round-
shaped (Fig. 7-3b), or contains subtle, non-smooth segments, which are often artifacts

(a) (b) (c)

Figure 7-3: Triangulation examples. Constrained Delaunay triangles cover the space domain
and provide the basis for route graph generation including non-convex-shaped spaces such
as 32-331CA.b (a). However, if a space contour includes (b) round edges or (c) subtle,
non-smooth lines (yellow, dashed circles), the resulting triangulation may be unnecessarily
complex.
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resulted from imperfect processing of CAD drawings (Fig. 7-3c), the computed triangulation
that is constrained to contain domain edges, can be unnecessarily complex. For motion-based
matching, however, it is important to have a graph representation that can concisely describe
actual human motions described in simple, abstract terms, such as “walks” and “turns”. If we
were to connect the interior edges from the raw triangulation, the resulting route network
would not be a proper representation of user paths in indoor environments, because human
movement in indoor spaces is affected by the overall shape of the space that he/she is in
(which the triangulation attempts to capture), not by the small details of the contour. A
route network generation process must accommodate such intricacies.

7.2 Route Network Generation

Creating a route network from the MIT floor plan XML consists of a series of operations.
The entire process is outlined below:

1. Source XML validation and correction

2. Per-space graph creation (§ 7.2.1)

3. Intra-floor graph merge and refinement (§ 7.2.2)

4. Inter-floor graph merge (§ 7.2.3)

First, the source XML documents, generated by Whiting and Battat [73, 130, 131],
are automatically validated and corrected against common errors to ensure that general
assumptions required for route network generation are met. Although the source XML
documents are already high quality in general, checking the source file through the validation
routine improves the correctness of a resulting route network. The validation steps include:
removing any duplicate contour points, portals and triangles; checking location parameters
of portals to ensure that they are logically correct; matching position, size and type of pairs
of matching portals; and other minor corrections to improve the overall correctness of the
source floor plan representation.

The validated XML floor plans may still leave places for further improvements and
corrections. Spaces evolve over time either by renovation or placement of movable furniture.
Further, the partitioning of open spaces using semi-permanent fixtures is not generally
reflected in the floor plan. However, these partitions, made by room partitions or large
fixtures, serve as “permanent” walls in practice and constrain human to walk around them.
We made occasional manual corrections on the source XML documents to take these semi-
permanent divisions into account as well as to deal with uncaught errors.
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Using the validated XML floor plans, a route network is created in a bottom-up manner,
from individual spaces to the entire corpus. The route graph generation algorithm takes the
source XML documents and proceeds by creating a per-space route graph for every space.
These per-space graphs are later assembled into a larger graph for each floor, which is then
combined into a route graph for the entire building (the MIT Stata Center in the present
work), which includes vertical transitions linking different floors. If a route network needs
to be created across multiple buildings, these per-building graphs can be further combined in
the same manner. The following sections describe this process in detail.

7.2.1 Per-Space Graph Creation

The following outlines the subgraph generation procedure for each space:

1. Triangulation: Compute the constrained Delaunay triangulation of the space domain.

2. Medial Axis Approximation: Connect midpoints of the interior edges along adjacent
triangles to approximate medial axis.

3. Simplification: Simplify the generated raw graph:

(a) Remove nodes that are too close to any contour line within a threshold.

(b) Recursively merge two nodes that are too close within a threshold.

(c) Simplify chains using Douglas-Peucker algorithm.

4. Portal Node Generation: Add one (explicit portal) or multiple (implicit portal)
nodes per portal.

5. Linking to Portals: Make at most k connections from each portal node to the closest
interior nodes.

As explained in Section 7.1.3, Steps 1 and 2 approximate the medial axis of a space
domain. For simple shapes, this usually results in a satisfactory representation of walking
routes through the input space. Many space contours in practice, however, have complex
shapes with round edges and other subtleties. Raw graphs computed from the triangulation
of such shapes may contain unnecessary artifacts and defects that do not correspond to actual
walking behavior in indoor environments. Moreover, these unnecessary nodes in the route
network increase the complexity of the route network, degrading time and space efficiency
of map matching on the graph.

To remove these artifacts, we apply three cartographic generalization schemes on the raw
graph (Step 3). First, nodes that are too close to any space contour line within a predefined
threshold (set to 2 ft = 0.6 m for the Stata map) are removed (Step 3a). Second, interior
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nodes that are closely located with each other are recursively merged until all nodes are
separated by some threshold, because they represent approximately the same position and do
not need to be distinguished from each other for the map matching purpose (Step 3b). Third,
linear chains with many intermediate nodes, such as a path on a curved bridge or a path along
a round contour, are simplified using Douglas-Peucker algorithm [133], a well-known curve
simplification method. The nodes removed in Step 3 usually correspond to the triangulation
artifacts originating from a “skinny” triangle which has whose one edge which is a small part
of a round corner or a small dent.

It should be noted that these simplification steps must preserve the connectivity of a
target subgraph. For example, when Step 3a is applied on a narrow strip of corridor, all
the interior node of the space triangulation may be located within the threshold from any
of the contour lines. Simply applying Step 3a for this case will result in a disconnected, or
even an empty graph. The simplification steps must not proceed in such cases to ensure the
connectivity of the final graph.

Figures 7-4a and 7-4b illustrate the simplification steps. Spaces 32-331.a and 32-331.b
have non-rectangular shapes. As a result, triangulation-based route graph generation intro-
duces many redundant nodes that must be removed for efficient map matching (Fig. 7-4a).
This simplification results in a simpler graph by merging or removing redundant nodes while
ensuring connectivity (Fig. 7-4b).

(a) (b) (c)

Figure 7-4: Simplification and refinement of route network. In (a), a raw graph generated
from triangulation of the space may contain redundant nodes as a result of the complex
triangulation structure. The graph contains nodes that are too close to a contour (red dashed
box), nodes that are in close proximity with each other (green dashed box), and a chain
of nodes induced from a round edge that is approximated by a polyline (blue dashed box).
The simplification steps reduce the complexity of the graph shown in (b). In (c) further
refinements are applied to connect missing intra- or inter-space straight-line paths while
maintaining simplicity of the graph.
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The last steps of the process are to generate nodes from portals and connect them to
adjacent interior points (Steps 4 & 5). Whiting et al. [130] created one node per portal and
connected it to the interior point that shares the same triangle. The resulting path segment
around the portal often looks unnatural, because the chosen interior point is not always
the closest one, depending on the triangulation structure of the space. While this scheme is
valid for navigation purposes in [130], it is less suitable for map matching purpose, where the
route graph must represent all the possible indoor traversals up to an approximation. Instead
we opt to connect each portal node to at most k closest interior nodes, with k being set to
2 for the Stata corpus. Also, because an implicit portal often represents a wide, imaginary
boundary between two subspaces in a bigger, open space, we place multiple portal nodes on
every implicit portal, one for every fixed width (15 ft for the Stata corpus). We found that
this scheme represents natural user movements around portals reasonably well.

7.2.2 Intra-Floor Graph Merge and Refinement

The per-space graphs constructed from triangulation for each space on the same floor are
merged to form a bigger route network. The union of all spaces in the same floor is taken
as the route graph representing that floor. Two graphs with adjacent spaces are joined by
linking corresponding horizontal portal node pairs. Vertical portal links are considered in
the next step (§ 7.2.3).

Rather than using the combined graph as it is, we refine the graph further to render a
more faithful representation of indoor walking routes, by applying the following steps in
order:

1. Remove nodes that belong to “inaccessible” spaces.

2. Connect pairs of nodes between which a feasible straight-line path is missing.

The first step improves the graph for indoor map matching use. A large building such as
the Stata Center often has a small fraction of spaces that are not practically accessible to daily
users, such as electronic/janitor closets or computer rooms. Those rooms are, in general,
only accessible by specialists on specific occasions, and usually not of interest to normal
walkers. Therefore, subgraphs whose parent space is classified as one of those “inaccessible”
types (see Sec. 7.3 for the classification of spaces) are simply removed from the route network
to achieve an efficient map matching process.

The second step mainly involves creating edges between pairs of nodes from different
parent spaces. Because per-space graph generation in the previous section concerns only
individual spaces, a simple concatenation of those graphs will not contain any edges that
cross traversable space boundaries (i.e. implicit portals) and span across multiple adjacent
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spaces. This step ensures that there exists edges crossing adjacent spaces in the final route
graph (Fig. 7-4c).

7.2.3 Inter-Floor Graph Merge

The last stage of the route network generation pipeline is combining route graphs from
different floors. As in the intra-floor graph merge, each matching pair of vertical portals
is connected to form a route network representing the entire building map. In contrast to
the intra-floor merge, in which a matching pair of portal nodes is merged into a single node
entity, the inter-floor graph merge simply adds an edge between a matching pair of vertical
portals. This is because these matching pairs do not represent the same physical location
unlike horizontal portal pairs. These edges have “vertical” attribute and used exclusively for
matching with vertical user movements.

One exception to this rule is half-stairs (Fig. 7-5). Often, a building contains a mezzanine,
or has irregular floor heights for some of its floors. In other cases, an inter-building connec-
tion between two adjacent buildings having different floor heights requires a small height
adjustment using small staircases. These “half-stairs” have relatively short vertical heights and
are often included exclusively in one of the two of the floor plans of the connecting floors.
Therefore, from the viewpoint of floor plans, which is essentially a 2.5-D representation,
they are not different from routes on a flat surface except that the corresponding space is
classified as “Stair”. However, the actual transition across half-stairs involves a short vertical
movement, which can sometimes be detected using barometric and acceleration sensors.

Therefore, in creating route networks, we give a dual representation for these half-stairs.
In the graph generation, they are processed in the same manner as non-vertical spaces, in
which per-space route graphs are generated and linked by merging matching horizontal
portal nodes on the implicit boundary. Even when the matching pair of portals resides
in two different floor plans, they are merged “horizontally” (by merging nodes instead of
linking with a vertical edge.) However, interior edges for these half-stairs are set as a dual
state (“horizontal/vertical”), which allows the map matching algorithm to match both short
vertical transition observations and flat-surface walking on them.

7.3 Space Semantics

The route graph generation method described so far concerns only metric-topological aspects
of human walking. The other missing component, semantic constraints, can be derived
from the semantic information of the spaces. We augment the constructed route networks
with the most basic form of semantic information, the type, which indicates usage (hence
movement pattern therein) of the spaces.
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(a) (b)

Figure 7-5: A half-stair connecting the first and the second floor of the MIT Stata Center.
This half-stair (a) is exclusively contained in the first floor floor plan (b).

The MIT Department of Facilities defines a set of fine-grained space types for all indoor
spaces in MIT campus. Following that convention, the MIT Floor Plan XML data also
records one of 91 space type codes for each space as an attribute for the <space> element
(Whiting [130], Appendix B).

Since our work draws information from user motions and activities, knowing the usage
type of spaces and encoding the information in the route graph facilitates inferring user path
from motions. The type of a space is an important predictor about what kinds of motion
behaviors are usually expected to be exhibited within that space. Hence, this knowledge
can be incorporated into the map matching framework by writing down “compatibility
functions” between space types and observed activities (Ch. 8).

Instead of using the fine-grained types, we categorized the 91 low-level types into six
different space categories. The categorization is largely based on the “degree of movement”
that is generally expected within that space. A space with Room category is usually a small
office rooms where a person usually spends time sitting most of the time, whereas in a
Corridor space, a person is usually walking. Common category lies between Room and Corridor
categories in terms of movement patterns and is applicable for many common areas such as
lobbies.

On the other hand, there are some special types of space that are usually inaccessible
to normal persons, including electronic/janitor closets and server rooms. These spaces are
marked as Inaccessible and the associated subgraphs are removed from the final route graph,
as explained in Section 7.2.2.

Elevators and Stairs, categorized as Vertical, are of special interest because the movement
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through these spaces involves vertical motions. Because a typical building contains only
a handful of these vertical portals, they serve as salient features for the map matching
algorithm.

Every node in the route graph contains a reference to its parent space and shares the same
space type. In addition, portal nodes have another attribute describing the class (horizontal
vs. vertical) and the type (implicit vs. explicit, or elevator vs. stair) of the associated portal.
This enables a map matching algorithm to utilize space category and portal information in
map matching process.

Table 7.1 shows a list of low-level space types for each space category, from low-degree-
of-motion to higher ones. The list is not exhaustive, but contains most space types found in
the Stata Center corpus.

Category Low-level types in this category Degree of movement

Inaccessible ELEC (electronic closet), CMP SV (computer ser-
vice), CMPUTR (computer facility), U/M (utility/me-
chanical), JAN CL ( janitor closet), FOODSV (food
service), SHAFT (shaft space)

Inaccessible

Room RES LO (research lab office), OFF (office), CONF
(conference room), STUDY (study room), SECY/R
(secretary/reception), CLASS (classroom), LECT H
(lecture hall)

Mostly sitting

Common RS LAB (research lab), OFF SV (office service), CLA
SV (class service), M LAV (male lavatory), F LAV
(female lavatory), LOUNGE (lounge), LAB SP (lab
support shop), LOBBY (lobby), FOOD (food facility),
EXHIB (exhibition area), RECREA (recreation facil-
ity)

Sitting/standing/short
walking

Corridor LAB SV (lab service), P CIRC (private circulation),
CORR (corridor)

Mostly walking

Vertical ELEV (elevator), STAIR (staircase) Vertical transition

Other Other unclassified types Unknown

Table 7.1: Space categorization.
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7.4 Conclusion

This chapter explained how we generated a route network, a graph representation of all
possible user paths within an indoor environment. We gave a brief explanation of the MIT
Floor Plan XML, and described a bottom-up procedure for the route network generation.
First, small graphs were created for each space, and then, they were linked along horizontal
and vertical connections to form a complete route network for the entire building. We
also described how we classified the categories of spaces from the fine-grained space types
available in floor plans. We show the final route networks in Figure 7-6.

Even though we generated route networks from legacy floor plans in a fully automatic
manner, we anticipate that a high-quality route network can be created only with a small
amount of manual labor with the aid of appropriate user interface. A “raw” route network
can be first generated from floor plans, then a system administrator or end-users can add or
revise the route network to improve its quality. As the end-goal of the method described in
this thesis is to match user motions described in human terms on the prior map, the networks
processed in this way might capture realistic human movements in indoor environment
better than the automatically generated ones. We leave this hypothesis as future work.
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Chapter 8

Motion Compatibility–Based Trajectory
Matching for Indoor Localization

This chapter presents an indoor localization algorithm that recovers user path by matching
user motion estimates on the prior map. The HMM-based matching method draws motion
and map input generated in the previous chapters. We start by formulating the problem and
laying out assumptions (§ 8.1), then describe a matching model that defines compatibility
between motions and paths (§ 8.2). Next, we describe how the user trajectory can be recov-
ered and model parameters can be estimated by HMM algorithms (§ 8.3). The experimental
result from a test deployment demonstrates the performance of the method (§ 8.4).

8.1 Problem Statement

We formulate location discovery from motion traces as a sequence labeling problem. We
model the user’s indoor walking motion as a series of discrete motions consisting of straight-
line walking segments, stops, turns, vertical movements, and actions to gain access (such
as opening doors). Given a sequence of user motions, we compute the probabilistic path
compatibility between trajectory hypotheses on the map and the hypothesized user path that
gave rise to the input motion sequence (§ 8.1.1). Solving this problem amounts to labeling
each input motion with a map location, while maximizing compatibility: the likelihood of
the output trajectory given the input data. Given an input motion sequence, our method
finds the most likely trajectory of location labels (§ 8.2).

We assume that each user carries a sensor-instrumented mobile device in his/her hand,
held roughly level and pointed roughly forward. The device captures and time-stamps sensor
data, which is then input to a classifier which produces as output a sequence of low-level
motion types and durations.
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We described our model of user motions in Section 6.1. We also assume that user paths
have these properties:

1. Smoothness: The user maintains each motion for a certain characteristic duration,
and does not change it too frequently.

2. Continuity: Consecutive motion segments agree at their endpoints (i.e. the user
cannot “teleport” from one place to another).

3. Monotonicity: Users will tend not to travel a distance longer than necessary, or change
floors more often than necessary, to reach any goal location.

We use these assumptions to precondition imperfect input motion sequences, as well
as to formulate an efficient matching algorithm without redundancy. If a certain detection
motion does not last for its normally expected duration (e.g. an elevator ride that lasts only
two seconds), it is deemed erroneous, and either corrected or removed before matching
(smoothness). When considering transitions from a certain place, the matching algorithm
considers only nearby places for the next segment, resulting in physically plausible paths
(continuity). Finally, the method excludes inefficient motion patterns (monotonicity).

The present thesis focuses on finding the location trajectory for a single user path. We
anticipate that our method can be generalized to handle multiple paths from different users
jointly, by taking interactions between paths into account. We discuss this possibility in
Section 8.5.

8.1.1 Path Compatibility

A sequence of observed motions, as described in Section 6.1, implies a motion path (Figs. 8-1a
& 8-1b). The motion path from imperfect observations is not identical to the original

(a) (b) (c)

Figure 8-1: Path compatibility and matching: (a) path of a user moving a to e (green,
dashed) on a route network (blue); (b) implied motion path from motion observations with
imperfect length and angle estimates; (c) corresponding sequence labeling problem.
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path from which motions were generated. Since motion estimates inferred by an automatic
motion recognition algorithm are noisy, the properties attached to the motions can also be
noisy and coarse-grained.

In this setting, the trajectory matching process from a sequence of motion observations
can be thought of as finding the best (chain) subgraph in the route network whose path
compatibility is maximal to the conceived path from motions. We say that a motion path is
compatible with a subgraph if the path can be embedded into the subgraph in a way that
observes (or weakly violates) the constraints inherent in the path and subgraph. That is,
compatibility holds if each motion path segment can be assigned to some vertex or edge of
the subgraph. For example, in Figure 8-1, the subgraph a-b-d-e in Figure 8-1a is compatible
with the motion path of Figure 8-1b, because the path can be assigned to the subgraph
with tolerable geometric distortion and without violating continuity. Clearly, the more
components in the motion path, the more restricted its compatibility.

We analyze path compatibility at three levels: geometric, topological, or semantic com-
patibility. Geometric compatibility imposes metric constraints, such as length of walking
segments and turn angles. Topological compatibility concerns about correspondence be-
tween space layouts and the continuity of motions. Semantic compatibility states that a
certain class of motions can occur only in spaces with the matching type. These notions of
compatibility are encoded in our trajectory matching model in Section 8.2.

8.2 Trajectory Matching Model

This section describes our matching model formulated from the elements in the previous
section. The model encodes the notion of path compatibility (§ 8.1.1) as a form of sequence
labeling problem, in which each unit motion is assigned to some node or edge, which
represents user location and direction, of the route network (Fig. 8-1c).

8.2.1 Hidden Markov Models

We represent the stated sequence labeling problem as an instance of Hidden Markov Models
(HMMs), a well-known probabilistic sequential model [134]. Let xt ∈ X denote the state
representing the “location,” and yt ∈ Y denote the input motion observation at time t ,
1≤ t ≤ T , where T is the length (the total number of unit motions) of the input motion
sequence, with index 0 used for the (possibly unknown) initial state. Our goal is to assign
“location labels”, i.e. direction-parameterized nodes or edges in the route graph, to the state
sequence x1:T = {x1, x2, ..., xT }, while maximizing path compatibility with the input motion
sequence y1:T = {y1, y2, ..., yT }.

115



8.2. Trajectory Matching Model

The HMM provides a scoring mechanism to determine the compatibility between X and
Y by defining the following joint distribution for a sequence of T observations:

p(x0:T , y1:T ) = p(x0)
T
∏

t=1

p(xt |xt−1)p(yt |xt ) (8.1)

where the model consists of three components: transition probabilities p(xt |xt−1); emission
probabilities p(yt |xt ); and an initial distribution p(x0). With no knowledge about the initial
location, p(x0) is a uniform distribution over states.

HMMs achieve their computational efficiency by limiting interaction between X and
Y ; i.e., the current state xt depends only on the previous state xt−1 (Markovian state
evolution), and the current observation yt is conditionally independent of the other states
given the current state xt . These restrictions, as expressed in Equation (8.1), have important
implications for the HMM transition and emission models: every user motion can be
decomposed into a directional and a non-directional component, where directional properties
(e.g. heading change by a turn) relate two states in time, while non-directional information
(e.g. walk distance) defines compatibility between the associated motion and a single state.
Hence, we rewrite Equation (8.1) to represent this factorization as an input-output HMM
[135]:

y→ (c , z)

p(x0:T , y1:T ) = p(x0:T , c1:T , z1:T )

= p(x0)
T
∏

t=1

p(xt |xt−1, ct )p(zt |xt )
(8.2)

where c is the “control” component governing state transition according to the observed
direction, and z is the “measurement” component that determines single-state compatibility.
Sections 8.2.4 to 8.2.6 describe how each type of motion y defines its own transition and
emission model. The following section describes our representations of states X and input
motions Y .

8.2.2 Input Model

An input is a sequence of motion descriptors, each of which models a unit action performed
by the user while traveling indoors, as explained in Section 6.1. In this thesis, we use
the following subset of natural motion descriptors: {Rest, Standing, Walking, Turning, Stair
Walking, Elevator Ride, Door Open}. Other labels produced by the motion tagger (Ch. 6),
including Sitting, Rising, and Button Press, were removed, since they add little information to
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the descriptors above.
The motion labeler associates a direction with Turning and vertical motions: {Left, Right,

Left U-Turn, Right U-Turn} or {Up, Down} respectively. Also, every motion has a duration,
from which some important geometric quantities can be estimated: walking distance or
turning angle. We do not estimate other physical quantities from sensor measurements,
because values from the low-cost sensors in off-the-shelf mobile devices would require
careful calibration to be usable. Instead, we opt to infer physical values only from motion
durations, by assuming constant walking speed and discretizing heading to eight (egocentric)
cardinal directions. Even though the resulting estimates have limited accuracy, our matching
method is flexible enough to handle the significant uncertainty arising from estimation error.
Moreover, our framework does not exclude the use of direct measurements.

8.2.3 State Model

Our state model represents instantaneous location and heading at the completion of each
unit motion. The state model is derived from the route network (Ch. 7). Straight-line
walking or vertical transitions are matched to route network edges, while other actions are
considered to occur at point locations, so are matched to route network nodes.

Heading

To represent instantaneous heading, we generate multiple states from each edge or node, one
for each discrete heading (Fig. 8-2). For edges, because a user can walk from either direction,
we derive two directional edge-states for each. Vertical connections between different floors
are treated analogously, having two directional edge-states per connection. For nodes, because

Figure 8-2: States for route network in Fig. 8-1a. Edge b-d gives two edge-states b->d and
d->b, and node c gives 8 node-states c\0 to c\7.
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the user states after different rotation angles do not represent the same state in our problem
(suppose the user starts walking after a rotation, then the next state will be dependent on the
last heading angle), we quantize relative heading to produce eight different node-states for
each graph node.

“Express” Edges

A straight-line walk that spans more than one edge in the route graph must be matched
to a series of edges, instead of one. For example, in Figure 8-2, walking from node a to c
matches a series of two edge-states, a->b and b->c. To deal with this problem, the state
graph is augmented with express edges. An express edge is generated from a series of edges
that together form a nearly-straight path (e.g. a->c in Fig. 8-2). Express edges are computed
by performing breadth-first search from each network node, while testing if a series of edges
can be combined into a single straight path via the Douglas-Peucker criterion: tangential
deviation from the approximated line below a threshold [133]. We call the original non-
express edges local edges, an analogy adopted from subway networks. When generating
edge-states, both types of edges are treated in the same manner.

Properties

Each derived node- and edge-state inherits properties from the corresponding element in
the route network and parent space. For instance, edge-states have a length property, the
distance from one end to the other. Node-states are annotated with the type of the map
object (e.g. room, door, stair, elevator) from which they arise. These annotations are used
later during compatibility determination.

8.2.4 Matching Model: Horizontal Motions

This section describes the matching models for horizontal motions. The transition models,
depending on the quantized angle input, have an identical form for all horizontal motions.
We then give specifics for each class of horizontal motion.

Transition Model

The transition model p(xt |xt−1, ct ) determines possible current states from the previous state,
based on the directional component ct that the observed motion indicates. Since a user path
must be continuous, we allow transitions only to nearby states that can be reached in one
action. A stationary user on a node-state may change direction while staying in the same
location (e.g. standing turn), or start to walk along a connected edge in the route graph. A
walking user on an edge-state, on the other hand, must arrive at a node state; at one turn
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would be required to reach a different edge. Hence, we design the transition probability to
have non-zero mass p(xt |xt−1, ct ) 6= 0 (making the corresponding graph element “reachable” ),
only under the following conditions:

• xt−1 = a node-state on node A
⇒ xt ∈ { all node-states on A or edge-states starting from A }

• xt−1 = an edge-state from node A to node B
⇒ xt ∈ { all node-states on B }.

In the absence of directional information, every reachable next state is assigned the same
transition probability. However, the HMM formulation requires the sum of transition
probabilities from each state to be one (

∑

xt
p(xt |xt−1) = 1). Some algorithms distribute one

unit of probability over outgoing transitions [96]. However, in complex indoor environments
where the number of outgoing edges differs significantly from place to place, this formulation
inappropriately assigns high transition probabilities to low-degree connections. We overcome
this problem using the approach of VTrack [109], which assigns a global constant for each
transition probability, and uses a dummy state to keep the summed probability equal to one.

Specifically, let ζ be the maximum out-degree in the route graph. Then the base transition
probability for each state reachable from a given state is 1/ζ . We incorporate directional
information from a motion observation by discounting the base probability by a Gaussian
angle compatibility function of the difference between the observed turn angle from the
motion, ψct

, and the expected turn angle between two states, ψxt−1→xt
:

fangle(xt , xt−1, ct ) = exp

(

−
(ψct
−ψxt−1→xt

)2

σ2
a

)

∈ (0,1] (8.3)

where σa is the angle compatibility parameter controlling the extent to which the matching
algorithm allows angle mismatch (a higher value allows more matching freedom).

Summarizing, the transition probability for a motion with control component ct (having
turn angle ψct

) is defined as:

p(xt |xt−1, ct ) =











1
ζ
· fangle(xt , xt−1, ct ) xt reachable from xt−1

1− ν xt = "dead-end" state
0 otherwise

(8.4)

where ν ≤ 1 is the sum of transition probabilities to reachable next states:

ν =
∑

xt :reachable

p(xt |xt−1, ct ). (8.5)
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As in VTrack, the remaining probability mass 1− ν flows to the dead-end state, which
has no further outgoing transitions and is incompatible with any further input motion. Any
trajectory arriving at the dead-end state will have zero compatibility during decoding, and
thus no chance of selection.

Emission Probability

The emission probability p(zt |xt ) is determined indirectly by setting the posterior proba-
bility of a state given the observation, p(xt |zt ), which is more natural to consider in our
framework. For a fixed, known input motion zt , specifying the compatibility functions
between xt and zt in the posterior form p(zt |xt ) is equivalent to setting them in the original
form p(zt |xt ) under proper normalization. For convenience, we refer to the posterior form
as an “emission probability.”

Rest and Standing

Whenever a non-turning motion, such as Rest, Standing, or (straight-line) Walking is ob-
served, the turning angle observation is set to zero, ψct

= 0. This effectively penalizes
path hypotheses having a non-zero turn at that time with compatibility as determined by
Equation (8.3).

Since neither Rest nor Standing involve any transitional motions, the emission probability
(posterior probability) simply ensures that the current state must have type node-state, not
edge-state:

p(xt |zt = stationary)∝







1 xt = node-state
0 xt = edge-state

(8.6)

A more sophisticated model would distinguish ways of being stationary from context,
exhibiting a stronger preference for certain space types when Sitting (vs. Standing) is observed.

Straight-line Walking

Like stationary motions, the transition probability for Walking follows the turn angle–based
formula (Eq. 8.4) with zero observed turn angle ψct

= 0.
For emission probability, unlike stationary motions, the walking motion must be

matched on a local or express edge-state, not a node-state. We also incorporate walking
distance compatibility here. We model human walking speed as a normal distribution cen-
tered at a constant µs with variance σ2

s , i.e. asN (µs ,σ
2
s ). The distribution of a “projected”

walking distance for a straight-walk of duration ∆t is then N (µs∆t ,σ2
s∆t 2). However,

we observed that for short walking motions, duration estimates derived from the motion
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labeler’s automatic segmentation were often inaccurate, causing underestimation of true
walking duration. Thus using the estimate as is will produce an inappropriately small vari-
ance of the projected distance, leading to overly narrow regions of compatibility compared
to the granularity of the route network map. Therefore, we set a minimum variance for the
projected walking distance, σmin

d , to prevent the variance from collapsing. The distance com-
patibility function between a straight-line walk motion with duration ∆t and an edge-state
xt is then defined as:

fdist(xt , zt =walk) = exp

(

−
(lxt
−µs∆t )2

2σ2
d

)

(8.7)

σd =max(σs∆t ,σmin
d ) (8.8)

where lxt
is the length of the edge-state xt . We set σmin

d to 3 ft (≈ 0.91 m) for our corpus to
match the approximate granularity of the route network. Finally, the emission probability
for a straight-line walk is:

p(xt |zt =walk)∝







fdist(xt , zt ) xt = edge-state
0 xt = node-state.

(8.9)

Turn

We model turns as point motions in which the user changes only heading direction while
staying on one route graph node (and experiencing no net translation). Each turn observation
is quantized to a multiple of π/4 to produce a value ψct

. The transition and emission models
are identical to those for stationary motions (Eqs. 8.4 & 8.6) except that each turn involves a
non-zero heading change.

8.2.5 Matching Model: Vertical Motions

Vertical motions, including stair and elevator transitions, are associated with vertical edges
that connect different floors in the route graph.

Elevators

Elevator ride motions provide three pieces of information to be exploited during matching:
type, direction, and length. First, only vertical edges associated with an elevator can be
matched to an elevator ride motion. Second, the ride direction (up or down) determines
the direction of the edge-state to be matched in the transition model. Last, the number of
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floor transitions, which constrains the length of the vertical edge, is determined from the
ride duration. The transition model for vertical motions (including elevator ride and stair
walk) is:

p(xt |xt−1, ct ) =







1
η

xt−1→ xt is the direction matching ct

0 otherwise
(8.10)

where η is the maximum out-degree among vertical transitions in the route graph (analogous
to ζ for horizontal transitions). Essentially, the transition model determines next possible
states based on the space type (vertical) and direction.

For the emission probability, the number of floor transitions or “vertical moving dis-
tance” is probabilistically determined by a compatibility function analogous to the distance
compatibility function (Eq. 8.7). The number of floor transitions is estimated from the dura-
tion, and matched with the floor difference implied by each vertical edge, using a Gaussian
compatibility function.

Stairwells

Like elevator rides, stair ascents and descents are matched by their associated type and
properties. In principle, traversing a staircase could be treated in the same manner as level
walking, if the detailed shape of all staircases in the corpus were known. For instance, if
the precise shape of each spiral stair including the number of treads and spiral direction
were known a priori, we could match every fine-grained sub-motion of a stair walk to
an individual stair segment. However, our floor plans do not model stairwells with such
precision, representing them instead simply as rooms with type “stair.”

In light of this limitation, we instead summarize a series of fine-grained stair motions
into a single, abstract stair motion starting at one end of a stairwell and ending at the other.
Our system parameterizes stair transits by vertical direction (up / down), spiral direction
(clockwise / counter-clockwise / straight), and duration as in elevator rides. (We manually
annotated the spiral direction of each staircase in our corpus.) These properties are used
in matching similarly to elevator ride motions; vertical direction is incorporated in the
transition model, while length and spiral sense are used in the emission model. We model
half-stairs differently from full-stairs, because the shorter transition through a half-stair can
be easily missed by the motion labeler, causing a missed detection. We avoid this by allowing
half-stairs to match straight-walk motions.
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8.2.6 Matching Model: Special Cases

Door Open

We use detected door-open actions to constrain the user path when matching. Every door in
the floor plan has an associated node in the route graph, from which states are generated.
The detection of a door-open action indicates that the user is likely to be in one of these
node-states.

However, we do not treat the door-open observation as a hard constraint; as are half-stairs,
door-open actions are often confused with similar actions by the low-level motion labeler.
Instead, the matching algorithm has the flexibility to violate the door constraint if necessary.
To that end, we assign a small non-zero probability to non-door states even when a door-open
action is detected:

p(xt |zt = door open)∝











α xt = door node-state
1 xt = non-door node-state
0 xt = edge-state

(8.11)

where α >> 1 is a ratio encoding a preference for door node-states when a door-open action
is detected. Larger values of α make the matcher less likely to violate door constraints.

Long Walks

Though we introduced express edges to handle straight-line walks spanning multiple edges,
very long walks might not be handled well even with this mechanism. Suppose for example
that the user has walked for a minute, traversing a 100-meter corridor. If the path is slightly
curved, the motion classifier would fail to detect the curvature. This single straight-line
Walking observation would have to be matched to a long series of successive edges in the route
network. Automatically creating express edges for such long edges would introduce many
additional edges to the state graph, increasing the computational complexity of matching. A
simple solution to this problem is to split lengthy walks into smaller intervals, each of which
can then be matched to an express or local edge. Our method uses a threshold of 15 seconds
(about 20 meters of walking).

8.3 Algorithms

In Section 8.2, we modeled the trajectory matching problem from a user motion sequence
using the HMM formulation. In this section, we present algorithms for recovering user
trajectories and estimating model parameters from unannotated user motion data.
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8.3.1 Matching Algorithm

To decode a user trajectory in the HMM model with Equation (8.2.1), we use standard
methods: forward-filtering to compute the distribution of the most recent state xT (as in
conventional particle filters for localization), forward-backwards algorithm to compute
“smoothed” distributions of xt in the past (1≤ t ≤ T ), and the Viterbi algorithm to find the
“most likely” trajectory x1:T [134].

In this thesis, we use the Viterbi algorithm to compute the most likely continuous
trajectory. Smoothed estimates computed by the forward-backward algorithm are similar to
those from Viterbi, but are not guaranteed to be spatially continuous. Unlike conventional
particle filters that update only the last position estimate upon each new input, the most-
likely-trajectory approach updates the entire path. Also, the Viterbi algorithm can easily be
modified to yield the k-best state sequences instead of the single best, along with matching
scores. The score gap between the best sequence and the rest can be used to gauge uncertainty
in the current estimates.

In practice, the algorithm should be implemented to exploit sparsity of our state model
rooted on route networks. Because a user path without a significant rest period must be
continuous, the number of possible transitions from a specific location is physically bounded
by the maximum out-degree in the state graph. With N states and an input sequence of
length T , sparsity yields a time complexity of O(NT ) for the matching algorithm, rather
than O(N 2T ) for non-sparse models. The complexity of computing transition and emission
models is O(N ) per unit motion.

8.3.2 Parameter Learning

The matching models require specification of a few parameters. These include include
physical parameters, such as walking speed constant µs (Eq. 8.7), and other parameters that
determine association strength between motions and user paths (σa, σd , and α in Eqs. 8.3,
8.7 and 8.11, resp.). Some of these parameters have a physical interpretation, which provide a
basis for setting a value in the model. For example, from prior knowledge of average human
walking speed, we can determine µs empirically.

In this section, however, we show how to determine these parameters automatically from
unannotated data – motion sequences with unknown location labels – using a variant of the
Expectation-Maximization (EM) algorithm. This process can be used to learn individually-
tuned parameters for a dataset from a single user, or alternatively to learn good parameters
for a dataset captured from the motions of many users.

Intuitively, for a given motion dataset, some parameter settings will produce better
trajectories than others in terms of explanatory power. For instance, the best path found by
setting the walking speed to 5 km/h (average human walking speed) is more “plausible” than
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the path found by setting it to 1 km/h. Given n data sequences {y i
1:Ti
|1≤ i ≤ n}, we search

for the parameters Θ∗ and paths x i
1:Ti

∗ that maximize joint probability of the HMMs:

Θ∗, x1
1:T1

∗, ..., xn
1:Tn

∗← argmax
Θ,x1

1:T1
,...,xn

1:Tn

n
∏

i=1

p(x i
1:T , y i

1:T ;Θ). (8.12)

This optimization problem is solved by the hard-EM algorithm (also known as Viterbi
training or segmental K-means) [136]. It finds the best parameters (along with the best paths)
in coordinate ascent manner. First, the parameters Θ are fixed, and the best paths are found
using the Viterbi algorithm. Next, the estimated paths x i

1:Ti
are treated as ground truth, and

new parameters are estimated. This process is iterated until convergence:

1. Initial parameters: Θ(0).
2. Step τ = 1,2, ..., repeat until convergence (Θτ−1 ≈Θτ ):

(a) Given Θ(τ− 1), find paths x i
1:T (τ) using the Viterbi algorithm;

(b) Estimate new parametersΘ(τ) from inputs and decoded labels at τ: {x i
1:T (τ), y i

1:T |1≤
i ≤ n}.

Since the optimization problem in Equation (8.12) is not convex in general, and hard-EM
does not guarantee identification of the global optimum, care must be taken in using this
approach. For example, if the corpus does not impose strong constraints enabling easy
parameter learning (e.g., if much of the corpus consists of large open rooms and wide
corridors), the process may settle on non-optimal parameters. Therefore, it is helpful to
guide the learning process by providing a good set of initial parameters and by limiting the
range of each parameter, using common-sense knowledge of human motions.

8.4 Evaluation

8.4.1 Experimentation Methodology

We collected 30 single- and multi-floor motion sequences over seven days. Of these, 21 traces
contained at least one vertical transition (elevator or stair transit). The total length of the
dataset is 58 minutes, with an average sequence length of about 2 minutes. Our deployment
area, the MIT Stata Center, was a nine-story, 67,000 m2 office and lab complex. We used four
floors of the building, from the ground level up to the fourth floor. Coverage included most
corridors and many office and lab spaces.

We developed data logging software running on a Nokia N900 mobile phone for motion
sensing. The N900 host connects to an external sensing device, the Nokia Sensorbox, con-
taining five consumer-grade MEMS sensors in a 4×4×1 cm package: a tri-axial accelerometer,
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tri-axial gyroscope, barometer, thermometer, and tri-axial magnetometer. Our low-level mo-
tion classifier performed satisfactorily on uncalibrated sensor data (i.e. with unit conversion
factors left as factory defaults). The data logging module connected to the Sensorbox via
Bluetooth and continuously sampled time-stamped sensor data, which were then offloaded to
a desktop computer for offline analysis. Our evaluation pipeline first predicted user motions
from the sensor data in leave-one-trajectory-out manner, then matched each labeled motion
sequence to a trajectory.

We determined ground truth trajectories by annotating video of the user and background
recorded by the host smartphone. We used a custom GUI to indicate the type and duration
of each low-level motion, and its location on the map; locations and motion types were
interpolated at fine grain from these annotations.

8.4.2 Matching Examples

We illustrate the algorithm’s behavior using matching results from two test traces. In the
first example (Figs. 8-3 & 8-4), the user started from an office on the third floor, transited
to the fourth floor via elevator, walked across the fourth floor, and returned to the starting
office via a different elevator. No information was known about the user’s starting location.

Figure 8-3 shows a few snapshots of the trace over time. We compute trajectory error at
time t (Fig. 8-4) by computing pointwise error at each frame (3 Hz) until t , then taking the
median as the representative trajectory error at t . (The stair-step nature of the error plots
arises from the fact that the algorithm computes a new trajectory estimate whenever a new
unit motion becomes available.)

Initially, not enough information is available to constrain the user path; the user has
made only one significant turn, classified as Right U-Turn. Hence, there were many plau-
sible embeddings of this short motion sequence throughout the corpus (Fig. 8-3a). The
method started to find the correct path before the user took an elevator to the fourth floor
(“ELEV:3->4” in Fig. 8-4). The user next walked faster than average, resulting in a large
disparity between the true and estimated walking distance. This made the algorithm select an
incorrect, alternative path, which better matched the distance estimate while sacrificing angle
compatibility (Fig. 8-3b). The correct path was eventually recovered as the user took the ele-
vator, providing strong evidence of location. This example shows how the algorithm recovers
the correct path history from a transient failure by incorporating stronger constraints.

We show another example in which the algorithm matches the true path after 45 seconds
of walking (Fig. 8-5). Though the user walked on a single floor, the true path was sufficiently
distinctive to enable rapid convergence, yielding the true trajectory after a few turns.
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(a) t = 24 sec, 3rd floor (b) t = 240 sec, 4th floor

(c) t = 269 sec, 4th floor

Figure 8-3: Matching example (green: ground truth; red: best path found; blue: other path
candidates): (a) after only one right turn, many plausible paths; (b) before elevator transit,
matching drifted due to noisy walking distance estimate; (c) after elevator transit, matching
algorithm corrected the entire path.
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(a)
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Figure 8-4: Trajectory error for the first example trace (§ 8.4.2).
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Figure 8-5: Trajectory error for the second example.
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8.4.3 Ensemble Trajectory Error

We evaluated the matcher’s performance by computing trajectory error over all sequences
in the dataset. Figure 8-6a shows the progression of trajectory error statistics (median and
interquartile range) over time; Figure 8-6b depicts the distribution of results over different
error ranges. The x-axis includes time spent for all motions, not only for walking. The
matching algorithm is typically highly uncertain until it reaches a “tipping point” at which
enough information is available to constrain the user path with high accuracy. For more
than half of the test traces, the algorithm started to match an input motion sequence on the
correct path within about one minute, and for almost all traces within about two minutes,
similar to the results of Rai et al. [17]. Note that the exact tipping point is also a function of
the characteristics of the corpus and the underlying motion labeling algorithm, rather than
solely of the matching algorithm.
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Figure 8-6: Overall trajectory error
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8.4.4 Salient Features

Certain motion classes, when detected, provide strong constraints on the user path. Navigation-
related events such as vertical transitions or door-open actions limit the user path to a small
number of candidates, as there are only a few ways in which such motions can occur within
the provided route graph.

We confirm this intuition by measuring the trajectory error after the user experienced a
certain number of each kind of salient motion: turn, vertical transitions (elevators / stairs),
and door-open actions. For each trajectory, we computed the total number of (ground-truth)
salient motions that had been experienced in that trajectory as of each sensor frame. Note
that the low-level motion classifier sometimes fails to detect these features; missed actions
will not contribute to matching.

The results (Figs. 8-7) confirm that distinctive motions facilitate matching by providing
additional constraints on possible user paths. However, different motions contribute by
different degrees; constraints provided by vertical transitions are strongest among the motion
classes tested (Fig. 8-7b). This is because vertical motions were detected very reliably by
our classifier, and stairwells and elevators occur rarely in our building (as in most buildings)
compared to ordinary rooms. On the other hand, door-opens, which were often missed
or misclassified, were a less reliable source of information (Fig. 8-7c). Turns were weakest
among three, because the angle compatibility function (Eq. 8.3) allows relatively broad
freedom in matching, enabling many plausible paths on the map until a certain number of
distinct turns were accumulated (Fig. 8-7a).

8.4.5 Prior Information

Prior information other than motion sequences could be valuable for matching. If available,
such information could potentially make the matching process converge faster to the true
user path. Our trajectory matching formulation admits various types of prior information
to be incorporated in the model, e.g. by setting an initial state distribution or by pre-filtering
candidate locations.

We assessed the method under a hypothetical scenario in which the starting floor (but
not the precise location) is known beforehand. Floor information may be available from
a different sensor (e.g. WiFi, or barometer [102]), or by taking user attributes (e.g. office
number or calendar contents) into account. To test this scenario, we initialized the state
distribution p(x0) uniformly over the known starting floor.

Figure 8-8 compares error with and without starting floor information. With the initial
floor known, the bootstrapping time required to yield median trajectory error below 5 meters
was 51 seconds, 14 seconds faster than the 65 seconds required when the initial floor was
unknown. This improvement was due to better matching for previously ambiguous test
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Figure 8-7: Error decreases when salient motions are observed.
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Figure 8-8: Trajectory error is lower when the initial floor is specified.

paths that did not traverse multiple floors. We expect starting floor information to be
particularly salient when the user motion trajectory has no or few vertical transitions and
different floors have spatially similar layouts.

8.4.6 Computation Time

We studied the computational complexity of our matching algorithm. As explained in
Section 8.3.1, the Viterbi decoding algorithm with a sparse model has time complexity of
O(NT ) rather than O(N 2T ), for N states and T time steps. The complexity of transition
and emission matrix computation is also O(NT ), or O(N ) per unit motion. Online,
computation of the model matrices is amortized; each matrix is computed only once and
stored for reuse in later executions.

Our unoptimized Python/SciPy implementation exhibited update times linear in the
input sequence length (Fig. 8-9a). Its running time scaled linearly with the number of states
(Fig. 8-9b), which we varied by selecting subsets of the map.

8.5 Discussion

Our trajectory matching model defines a compatibility measure between descriptive motion
sequences and paths, enabling trajectory recovery to be cast as a sequence labeling and
matching problem.

Our method has several limitations. Essentially, its performance is determined by the
balance between the expressive power of the matching model and the uncertainty of the
prior map and input motions. When this uncertainty outweighs the model expressiveness,
the method may take an unreasonably long time, or even fail, to find the correct path.
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(a) Computation time as a function of input length.

(b) CPU time per unit motion increases with the number of states.

Figure 8-9: Time for Matrix and Viterbi (“Decoding”) computations.
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In our experiments, we had an instance in which no turns were detected by the motion
classification algorithm when the user walked over a gently curving bridge. The bridge did
not contain any sharp turns (which caused the motion classifier to fail to detect turns) but
the net difference in heading before and after crossing the bridge was nearly 90 degrees. In
that case, the motion over the bridge was recovered as a single, long straight-line walk, which
the map matching algorithm tried to match to long corridors rather than to the true bridge
path. Our input model of egocentric observations did not handle this case properly. We
anticipate that this problem could be alleviated with additional sensor data (such as compass
heading).

Also, as demonstrated in Section 8.4.5, ambiguous environments such as wide corridors
may cause the method to fail, especially when the input motion has short duration and no
prior information is available. In many of these instances, the amount of information that
can be extracted from the input is low compared to the high uncertainty that the ambiguous
environment implies. In our case, the ground floor of the corpus had a wide “student street”
and large, open spaces. Motion traces without strong evidence (e.g. vertical transitions) tend
to produce uncertain trajectory estimates.

In future work, we anticipate that the current model can be expanded in a variety of ways
to become more expressive while handling uncertain cases more gracefully. For example, the
matching model can exploit, or even infer, a user’s activity pattern in indoor environments.
Because people tend to traverse and use spaces in similar fashion, there exists a natural
association or “activity map” between activities and space types. While at present we use
such cues only for vertical motions, associating them with stairs or elevators, this mapping
can be generalized to handle other motion classes e.g., sitting in an office, or walking in
a corridor, by defining emission probabilities that capture the corresponding associations.
Conversely, the trajectory matching algorithm could be used to learn (unknown) associations
from user data by bootstrapping, as it can proceed given only geometric and topological
compatibilities, without requiring or using semantic information. This learned association
could then be used to facilitate later matching processes, creating a closed loop between
trajectory estimation and activity map learning.

Another way to extend the model would be through joint estimation of multiple paths
from a single user or multiple users. At a single-user level, each user tends to repeat some
paths, exhibiting a few distinctive motion patterns, or often returns to a few select locations.
At a multi-user level, each user will encounter or accompany others, having either brief
or substantial overlap with other users’ paths. We anticipate that such information can
be collected from multiple paths, with the aid of device proximity sensors (e.g. ad hoc
WiFi or Bluetooth), and can be incorporated into the model as a form of “second-order”
compatibility.
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8.6 Conclusion

We described a fine-grained indoor localization and trajectory estimation method based on
the notion of path compatibility: probabilistic agreement between user motions and a prior
map encoded as a route graph. We defined user motion traces as a sequence of navigation-
related actions, which were automatically estimated by a classification algorithm from
proprioceptive sensor data. The method assumes route networks (derived automatically)
from legacy floor plans of the deployment area. With these inputs, we defined an HMM-
based matching model that encodes the compatibility between motions and locations, and
used the model to decode the most likely trajectory given an input motion sequence. We
also showed how to learn the model parameters from unannotated data.

Testing on user data from four floors of a deployment area demonstrates that our method
can recover the user’s location trajectory to within a few meters using only proprioceptive
sensor data from a commodity mobile device. However, our method fails where the
uncertainty of the user motion and/or prior map is large. As future work, we anticipate
that the current model can be extended to handle more general classes of motions and to
incorporate more expressive semantic associations between motions and spaces.

135



8.6. Conclusion

136



Chapter 9

Conclusion

This thesis presented two approaches to the indoor localization problem. Both approaches
are based on the notion of place and motion signatures, and they model how a user moves and
interacts with localization systems to discover his/her location in an indoor environment.

In the first approach, the organic indoor location discovery, we presented representations
of and algorithmic solutions to the fundamental requirement of organic localization systems
— an ability to bootstrap fingerprint database quickly from the beginning, while excluding
faulty user inputs. We presented a Voronoi diagram–based approach to prompt new user
inputs, and a clustering-based approach to filter erroneous user binds. In addition, we
analyzed the device diversity problem, which arises in practical organic location systems
in which users use diverse devices, and proposed design guidelines for organic localization
algorithms.

In the second approach, we explicitly modeled how humans describe their movements in
indoor environments, and presented a probabilistic matching model that formalizes such
intuition. We presented a CRF-based motion classifier, which produces accurate motion
estimates from uncalibrated, low-cost MEMS sensor inputs. We also automatically generated
route networks, a graph representation of possible walking paths in an indoor space, from
our deployment building, the MIT Stata Center. We showed that our motion compatibility–
based trajectory matching algorithm recovered user trajectories from motion estimates on
the route network. We demonstrated the performance of the method using real user data.

Through our work in this thesis, we placed an emphasis on a previously uncaptured,
yet important element of the system: users. We believe that future localization methods,
especially those for complex indoor environments, must explicitly model human users as a
central part of the localization system.

Even with the attempts in this thesis, however, indoor localization is still an unsolved,
challenging problem. The scope and complexity of indoor spaces are incomparably greater
than those of outdoor spaces; indoor spaces are often irregularly shaped and rapidly changing
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over time to meet users’ needs; walls, furniture, electronic devices and human movements
often obscure faithful sensing by mobile sensors, preventing positioning methods from
recovering accurate location estimates. These problems can be solved only by expanding
our understanding of how humans, not only devices, move in and interact with indoor
environments.

9.1 Future Work

We conclude the thesis by outlining a few possible future directions extending the presented
work. In general, we anticipate that indoor localization can be significantly improved by
actively utilizing interaction between end-users. The methods presented in the thesis can be
expanded to incorporate diverse sources of such “second-order” information.

9.1.1 Rich Sensor Maps

In the first part of the thesis, we used WiFi fingerprints as place signatures of indoor spaces.
However, sensor features that can be associated with physical locations are not limited
to WiFi. We envision that place signatures can be enriched by various types of sensors,
including:

• Local magnetic disturbance

• Local inertial sensing data (e.g., from floor or ground profile)

• Barometric pressure profile

• User mobility pattern

• Frequently visited places

Place signatures enriched with various sources of fingerprints, or rich sensor maps, can be used
to find positions of different types of devices with heterogeneous sets of sensors. Moreover,
they can be voluntarily collected and shared across end-users in the same manner as we have
shown in Part I for WiFi fingerprints.

9.1.2 Encounters and Significant Places

Comparison of two or more WiFi signal measurements gives physical proximity information
between those measurements [72]. Similarly, Bluetooth scans also give proximity information
to other Bluetooth devices in the area. Such encounter information can constrain two or
more individual trajectories that would otherwise be unrelated. Thus, it can be used for a
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joint inference of multiple user paths, expanding the horizon of motion compatibility–based
indoor localization that we presented in Part II.

The notion of significant places brings important high-level information that constrains
the possible locations of the user. Most people spend a majority of their time at a few places
such as their home and in the workplace. The number of places that an ordinary person
normally visits is usually small. This implies that if a recurring pattern of sensor and WiFi
signals is found, it is likely that it matches one of the user’s significant places. Automatic
recognition of such patterns, as demonstrated in previous work [4], can reveal a great amount
of positioning information about where the user was likely to be during that specific interval
of time, especially when combined with auxiliary information such as directories or user
calendars.
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