78 research outputs found

    RF channel characterization for cognitive radio using support vector machines

    Get PDF
    Cognitive Radio promises to revolutionize the ways in which a user interfaces with a communications device. In addition to connecting a user with the rest of the world, a Cognitive Radio will know how the user wants to connect to the rest of the world as well as how to best take advantage of unused spectrum, commonly called white space\u27. Through the concept of Dynamic Spectrum Acccess a Cognitive Radio will be able to take advantage of the white space in the spectrum by first identifying where the white space is located and designing a transmit plan for a particular white space. In general a Cognitive Radio melds the capabilities of a Software Defined Radio and a Cognition Engine. The Cognition Engine is responsible for learning how the user interfaces with the device and how to use the available radio resources while the SDR is the interface to the RF world. At the heart of a Cognition Engine are Machine Learning Algorithms that decide how best to use the available radio resources and can learn how the user interfaces to the CR. To decide how best to use the available radio resources, we can group Machine Learning Algorithms into three general categories which are, in order of computational cost: 1.) Linear Least Squares Type Algorithms, e.g. Discrete Fourier Transform (DFT) and their kernel versions, 2.) Linear Support Vector Machines (SVMs) and their kernel versions, and 3.) Neural Networks and/or Genetic Algorithms. Before deciding on what to transmit, a Cognitive Radio must decide where the white space is located. This research is focused on the task of identifying where the white space resides in the spectrum, herein called RF Channel Characterization. Since previous research into the use of Machine Learning Algorithms for this task has focused on Neural Networks and Genetic Algorithms, this research will focus on the use of Machine Learning Algorithms that follow the Support Vector optimization criterion for this task. These Machine Learning Algorithms are commonly called Support Vector Machines. Results obtained using Support Vector Machines for this task are compared with results obtained from using Least Squares Algorithms, most notably, implementations of the Fast Fourier Transform. After a thorough theoretical investigation of the ability of Support Vector Machines to perform the RF Channel Characterization task, we present results of using Support Vector Machines for this task on experimental data collected at the University of New Mexico.\u2

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Automatic Speech Emotion Recognition- Feature Space Dimensionality and Classification Challenges

    Get PDF
    In the last decade, research in Speech Emotion Recognition (SER) has become a major endeavour in Human Computer Interaction (HCI), and speech processing. Accurate SER is essential for many applications, like assessing customer satisfaction with quality of services, and detecting/assessing emotional state of children in care. The large number of studies published on SER reflects the demand for its use. The main concern of this thesis is the investigation of SER from a pattern recognition and machine learning points of view. In particular, we aim to identify appropriate mathematical models of SER and examine the process of designing automatic emotion recognition schemes. There are major challenges to automatic SER including ambiguity about the list/definition of emotions, the lack of agreement on a manageable set of uncorrelated speech-based emotion relevant features, and the difficulty of collected emotion-related datasets under natural circumstances. We shall initiate our work by dealing with the identification of appropriate sets of emotion related features/attributes extractible from speech signals as considered from psychological and computational points of views. We shall investigate the use of pattern-recognition approaches to remove redundancies and achieve compactification of digital representation of the extracted data with minimal loss of information. The thesis will include the design of new or complement existing SER schemes and conduct large sets of experiments to empirically test their performances on different databases, identify advantages, and shortcomings of using speech alone for emotion recognition. Existing SER studies seem to deal with the ambiguity/dis-agreement on a “limited” number of emotion-related features by expanding the list from the same speech signal source/sites and apply various feature selection procedures as a mean of reducing redundancies. Attempts are made to discover more relevant features to emotion from speech. One of our investigations focuses on proposing a newly sets of features for SER, extracted from Linear Predictive (LP)-residual speech. We shall demonstrate the usefulness of the proposed relatively small set of features by testing the performance of an SER scheme that is based on fusing our set of features with the existing set of thousands of features using common machine learning schemes of Support Vector Machine (SVM) and Artificial Neural Network (ANN). The challenge of growing dimensionality of SER feature space and its impact on increased model complexity is another major focus of our research project. By studying the pros and cons of the commonly used feature selection approaches, we argued in favour of meta-feature selection and developed various methods in this direction, not only to reduce dimension, but also to adapt and de-correlate emotional feature spaces for improved SER model recognition accuracy. We used rincipal Component Analysis (PCA) and proposed Data Independent PCA (DIPCA) by training on independent emotional and non-emotional datasets. The DIPCA projections, especially when extracted from speech data coloured with different emotions or from Neutral speech data, had comparable capability to the PCA in terms of SER performance. Another adopted approach in this thesis for dimension reduction is the Random Projection (RP) matrices, independent of training data. We have shown that some versions of RP with SVM classifier can offer an adaptation space for Speaker Independent SER that avoid over-fitting and hence improves recognition accuracy. Using PCA trained on a set of data, while testing on emotional data features, has significant implication for machine learning in general. The thesis other major contribution focuses on the classification aspects of SER. We investigate the drawbacks of the well-known SVM classifier when applied to a preprocessed data by PCA and RP. We shall demonstrate the advantages of using the Linear Discriminant Classifier (LDC) instead especially for PCA de-correlated metafeatures. We initiated a variety of LDC-based ensembles classification, to test performance of scheme using a new form of bagging different subsets of metafeature subsets extracted by PCA with encouraging results. The experiments conducted were applied on two benchmark datasets (Emo-Berlin and FAU-Aibo), and an in-house dataset in the Kurdish language. Recognition accuracy achieved by are significantly higher than the state of art results on all datasets. The results, however, revealed a difficult challenge in the form of persisting wide gap in accuracy over different datasets, which cannot be explained entirely by the differences between the natures of the datasets. We conducted various pilot studies that were based on various visualizations of the confusion matrices for the “difficult” databases to build multi-level SER schemes. These studies provide initial evidences to the presence of more than one “emotion” in the same portion of speech. A possible solution may be through presenting recognition accuracy in a score-based measurement like the spider chart. Such an approach may also reveal the presence of Doddington zoo phenomena in SER

    Inverse Dynamics Problems

    Get PDF
    The inverse dynamics problem was developed in order to provide researchers with the state of the art in inverse problems for dynamic and vibrational systems. Contrasted with a forward problem, which solves for the system output in a straightforward manner, an inverse problem searches for the system input through a procedure contaminated with errors and uncertainties. An inverse problem, with a focus on structural dynamics, determines the changes made to the system and estimates the inputs, including forces and moments, to the system, utilizing measurements of structural vibration responses only. With its complex mathematical structure and need for more reliable input estimations, the inverse problem is still a fundamental subject of research among mathematicians and engineering scientists. This book contains 11 articles that touch upon various aspects of inverse dynamic problems

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    AI for time-resolved imaging: from fluorescence lifetime to single-pixel time of flight

    Get PDF
    Time-resolved imaging is a field of optics which measures the arrival time of light on the camera. This thesis looks at two time-resolved imaging modalities: fluorescence lifetime imaging and time-of-flight measurement for depth imaging and ranging. Both of these applications require temporal accuracy on the order of pico- or nanosecond (10−12 − 10−9s) scales. This demands special camera technology and optics that can sample light-intensity extremely quickly, much faster than an ordinary video camera. However, such detectors can be very expensive compared to regular cameras while offering lower image quality. Further, information of interest is often hidden (encoded) in the raw temporal data. Therefore, computational imaging algorithms are used to enhance, analyse and extract information from time-resolved images. "A picture is worth a thousand words". This describes a fundamental blessing and curse of image analysis: images contain extreme amounts of data. Consequently, it is very difficult to design algorithms that encompass all the possible pixel permutations and combinations that can encode this information. Fortunately, the rise of AI and machine learning (ML) allow us to instead create algorithms in a data-driven way. This thesis demonstrates the application of ML to time-resolved imaging tasks, ranging from parameter estimation in noisy data and decoding of overlapping information, through super-resolution, to inferring 3D information from 1D (temporal) data
    corecore