1,531 research outputs found

    A parallel repetition theorem for all entangled games

    Get PDF
    The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Raz's classical parallel repetition theorem have been proved for many special classes of games. However, for general entangled games no parallel repetition theorem was known. We prove that the entangled value of a two-player game GG repeated nn times in parallel is at most cGn−1/4log⁡nc_G n^{-1/4} \log n for a constant cGc_G depending on GG, provided that the entangled value of GG is less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated game must converge to 0 for all games whose entangled value is less than 1. Central to our proof is a combination of both classical and quantum correlated sampling.Comment: To appear in the 43rd International Colloquium on Automata, Languages, and Programming (ICALP

    Parallel repetition for entangled k-player games via fast quantum search

    Get PDF
    We present two parallel repetition theorems for the entangled value of multi-player, one-round free games (games where the inputs come from a product distribution). Our first theorem shows that for a kk-player free game GG with entangled value val∗(G)=1−ϔ\mathrm{val}^*(G) = 1 - \epsilon, the nn-fold repetition of GG has entangled value val∗(G⊗n)\mathrm{val}^*(G^{\otimes n}) at most (1−ϔ3/2)Ω(n/sk4)(1 - \epsilon^{3/2})^{\Omega(n/sk^4)}, where ss is the answer length of any player. In contrast, the best known parallel repetition theorem for the classical value of two-player free games is val(G⊗n)≀(1−ϔ2)Ω(n/s)\mathrm{val}(G^{\otimes n}) \leq (1 - \epsilon^2)^{\Omega(n/s)}, due to Barak, et al. (RANDOM 2009). This suggests the possibility of a separation between the behavior of entangled and classical free games under parallel repetition. Our second theorem handles the broader class of free games GG where the players can output (possibly entangled) quantum states. For such games, the repeated entangled value is upper bounded by (1−ϔ2)Ω(n/sk2)(1 - \epsilon^2)^{\Omega(n/sk^2)}. We also show that the dependence of the exponent on kk is necessary: we exhibit a kk-player free game GG and n≄1n \geq 1 such that val∗(G⊗n)≄val∗(G)n/k\mathrm{val}^*(G^{\otimes n}) \geq \mathrm{val}^*(G)^{n/k}. Our analysis exploits the novel connection between communication protocols and quantum parallel repetition, first explored by Chailloux and Scarpa (ICALP 2014). We demonstrate that better communication protocols yield better parallel repetition theorems: our first theorem crucially uses a quantum search protocol by Aaronson and Ambainis, which gives a quadratic speed-up for distributed search problems. Finally, our results apply to a broader class of games than were previously considered before; in particular, we obtain the first parallel repetition theorem for entangled games involving more than two players, and for games involving quantum outputs.Comment: This paper is a significantly revised version of arXiv:1411.1397, which erroneously claimed strong parallel repetition for free entangled games. Fixed author order to alphabetica

    Parallel Repetition of Entangled Games with Exponential Decay via the Superposed Information Cost

    Get PDF
    In a two-player game, two cooperating but non communicating players, Alice and Bob, receive inputs taken from a probability distribution. Each of them produces an output and they win the game if they satisfy some predicate on their inputs/outputs. The entangled value ω∗(G)\omega^*(G) of a game GG is the maximum probability that Alice and Bob can win the game if they are allowed to share an entangled state prior to receiving their inputs. The nn-fold parallel repetition GnG^n of GG consists of nn instances of GG where the players receive all the inputs at the same time and produce all the outputs at the same time. They win GnG^n if they win each instance of GG. In this paper we show that for any game GG such that ω∗(G)=1−Δ<1\omega^*(G) = 1 - \varepsilon < 1, ω∗(Gn)\omega^*(G^n) decreases exponentially in nn. First, for any game GG on the uniform distribution, we show that ω∗(Gn)=(1−Δ2)Ω(nlog⁥(∣I∣∣O∣)−∣log⁥(Δ)∣)\omega^*(G^n) = (1 - \varepsilon^2)^{\Omega\left(\frac{n}{\log(|I||O|)} - |\log(\varepsilon)|\right)}, where ∣I∣|I| and ∣O∣|O| are the sizes of the input and output sets. From this result, we show that for any entangled game GG, ω∗(Gn)≀(1−Δ2)Ω(nQlog⁥(∣I∣∣O∣)−∣log⁥(Δ)∣Q)\omega^*(G^n) \le (1 - \varepsilon^2)^{\Omega(\frac{n}{Q\log(|I||O|)} - \frac{|\log(\varepsilon)|}{Q})} where pp is the input distribution of GG and Q=∣I∣2max⁥xypxy2min⁥xypxyQ= \frac{|I|^2 \max_{xy} p_{xy}^2 }{\min_{xy} p_{xy} }. This implies parallel repetition with exponential decay as long as min⁥xy{pxy}≠0\min_{xy} \{p_{xy}\} \neq 0 for general games. To prove this parallel repetition, we introduce the concept of \emph{Superposed Information Cost} for entangled games which is inspired from the information cost used in communication complexity.Comment: In the first version of this paper we presented a different, stronger Corollary 1 but due to an error in the proof we had to modify it in the second version. This third version is a minor update. We correct some typos and re-introduce a proof accidentally commented out in the second versio

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2∗\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    Entangled Games Are Hard to Approximate

    Get PDF
    We establish the first hardness results for the problem of computing the value of one-round games played by a verifier and a team of provers who can share quantum entanglement. In particular, we show that it is NP-hard to approximate within an inverse polynomial the value of a one-round game with (i) a quantum verifier and two entangled provers or (ii) a classical verifier and three entangled provers. Previously it was not even known if computing the value exactly is NP-hard. We also describe a mathematical conjecture, which, if true, would imply hardness of approximation of entangled-prover games to within a constant. Using our techniques we also show that every language in PSPACE has a two-prover one-round interactive proof system with perfect completeness and soundness 1-1/poly even against entangled provers. We start our proof by describing two ways to modify classical multiprover games to make them resistant to entangled provers. We then show that a strategy for the modified game that uses entanglement can be “rounded” to one that does not. The results then follow from classical inapproximability bounds. Our work implies that, unless P=NP, the values of entangled-prover games cannot be computed by semidefinite programs that are polynomial in the size of the verifier's system, a method that has been successful for more restricted quantum games

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher
    • 

    corecore