research

Parallel repetition for entangled k-player games via fast quantum search

Abstract

We present two parallel repetition theorems for the entangled value of multi-player, one-round free games (games where the inputs come from a product distribution). Our first theorem shows that for a kk-player free game GG with entangled value val(G)=1ϵ\mathrm{val}^*(G) = 1 - \epsilon, the nn-fold repetition of GG has entangled value val(Gn)\mathrm{val}^*(G^{\otimes n}) at most (1ϵ3/2)Ω(n/sk4)(1 - \epsilon^{3/2})^{\Omega(n/sk^4)}, where ss is the answer length of any player. In contrast, the best known parallel repetition theorem for the classical value of two-player free games is val(Gn)(1ϵ2)Ω(n/s)\mathrm{val}(G^{\otimes n}) \leq (1 - \epsilon^2)^{\Omega(n/s)}, due to Barak, et al. (RANDOM 2009). This suggests the possibility of a separation between the behavior of entangled and classical free games under parallel repetition. Our second theorem handles the broader class of free games GG where the players can output (possibly entangled) quantum states. For such games, the repeated entangled value is upper bounded by (1ϵ2)Ω(n/sk2)(1 - \epsilon^2)^{\Omega(n/sk^2)}. We also show that the dependence of the exponent on kk is necessary: we exhibit a kk-player free game GG and n1n \geq 1 such that val(Gn)val(G)n/k\mathrm{val}^*(G^{\otimes n}) \geq \mathrm{val}^*(G)^{n/k}. Our analysis exploits the novel connection between communication protocols and quantum parallel repetition, first explored by Chailloux and Scarpa (ICALP 2014). We demonstrate that better communication protocols yield better parallel repetition theorems: our first theorem crucially uses a quantum search protocol by Aaronson and Ambainis, which gives a quadratic speed-up for distributed search problems. Finally, our results apply to a broader class of games than were previously considered before; in particular, we obtain the first parallel repetition theorem for entangled games involving more than two players, and for games involving quantum outputs.Comment: This paper is a significantly revised version of arXiv:1411.1397, which erroneously claimed strong parallel repetition for free entangled games. Fixed author order to alphabetica

    Similar works