372 research outputs found

    Unconstrained Global Optimization of Molecules on Surfaces: From globally optimized structures to scanning-probe data

    Get PDF
    The adsorption of molecules on a surface plays a vital role in heterogeneous catalysis. For a proper unterstanding of the reaction mechanisms involved, the adsorption ge ometry of the molecules on the surface needs to be known. So far, experimental data from tunneling microscopes and spectroscopy, such as STM and IRAS are the main ways to obtain such knowledge. Due to the vast search space of adsorption geometries, especially for oligomers, optimizations using ab initio methods can be used to confirm the experimental data only if good initial guesses are available. Global optimization can serve two purposes in these situations. On the one hand it allows for a thorough investigation of the given search space, which can provide good initial guesses for subsequent high-level structural refinements. On the other hand, given a known reaction mechanism, it could also be used to find catalysts that influence e.g. the relevant bonds. With respect to this idea the topic of this thesis is to find a local optimization method cheap enough such that the total computational cost of global optimization does not exceed availability and yet good enough that the results are meaningful to the problem at hand. With this in mind multiple force field and semiempirical methods have been tested and evaluated mainly on benzene, acetophenone and ethyl pyruvate on Pt(111) surfaces. Some other adsorbates have also been tested shortly. In addition to these global optimization results, DFT geometry optimizations of ethyl pyruvate on Pt(111) have been performed and the structures of the best adsorption geometry from global optimization and from DFT are compared. Furthermore, from the DFT data STM images have been calculated that are compared to experimental results. The theoretical and experimental STM images agree well

    Global optimization of material properties : clusters, solar cells and metal surfaces

    Get PDF
    Different global optimization tasks have been treated within this thesis. Using an analytic modified embedded atom method (MEAM), a structural-energetic global optimization of lithium and sodium clusters has been performed. With the Aufbau-Abbau procedure we identified up to six most stable isomers for each cluster size N within the size range 2 <= N <= 150, which was followed by a detailed energetic and structural analysis of the obtained Li and Na isomers. For N <= 5 the MEAM partly yields results which are unusual for model potentials, such as planar or linear cluster geometries. Besides the structural optimization of clusters within continuous search spaces, also global property optimizations within discrete search spaces have been performed. Employing a genetic algorithm, a part of our inverse design concept, we optimized organic molecules with respect to their usage within solar cells. Occasionally chemical intuition may help to predict and to understand the substution patterns of the molecules that may be beneficial for solar energy harvesting. Moreover, we extended our inverse design approach to the optimization of the adsorption properties of metal surfaces. The implementation of this project was challenging and associated with several problems. However, also here interesting results could be obtained, which can serve as starting point for further investigations.In dieser Arbeit werden verschiedene globale Optimierungsprobleme behandelt. Unter Verwendung einer analytisch modi fizierten Embedded-Atom-Methode (MEAM), wurden strukturell-energetische globale Optimierungen von Lithium- und Natriumclustern durchgeführt. Für jede Clustergröße N im Bereich 2 <= N <= 150 identi fizierten wir mittels des Aufbau-Abbau-Verfahrens bis zu sechs der stabilsten Isomere, woran sich eine detaillierte energetische und strukturelle Analyse der erhaltenen Li- und Na-Isomere anschloss. Für N <= 5 liefert die MEAM zum Teil, für Modellpotentiale, untypische Ergebnisse, wie flache oder lineare Clustergeometrien. Neben der strukturellen Optimierung von Clustern innerhalb kontinuierlicher Suchräume, wurden auch globale Optimierungen von Materialeigenschaften in diskreten Suchräumen durchgeführt. Unter Verwendung eines genetischen Algorithmus, ein Bestandteil unseres Inverse-Design-Konzeptes, optimierten wir organische Moleküle hinsichtlich ihres Einsatzes in Solarzellen. Chemische Intuition kann vereinzelt hilfreich sein, die für die Nutzung von Sonnenenergie vorteilhaften Substitutionsmuster der Moleküle vorherzusagen und zu verstehen. Zudem erweiterten wir unseren Inverse-Design-Ansatz um die Optimierung der Adsorptionseigenschaften von Metalloberflächen. Die Umsetzung dieses Vorhabens war herausfordernd und mit einigen Problemen verbunden. Jedoch konnten auch hier interessante Ergebnisse erhalten werden, die als Basis weiterer Studien dienen können
    corecore