36,248 research outputs found

    An efficient MapReduce-based parallel clustering algorithm for distributed traffic subarea division

    Full text link
    Traffic subarea division is vital for traffic system management and traffic network analysis in intelligent transportation systems (ITSs). Since existing methods may not be suitable for big traffic data processing, this paper presents a MapReduce-based Parallel Three-Phase K -Means (Par3PKM) algorithm for solving traffic subarea division problem on a widely adopted Hadoop distributed computing platform. Specifically, we first modify the distance metric and initialization strategy of K -Means and then employ a MapReduce paradigm to redesign the optimized K -Means algorithm for parallel clustering of large-scale taxi trajectories. Moreover, we propose a boundary identifying method to connect the borders of clustering results for each cluster. Finally, we divide traffic subarea of Beijing based on real-world trajectory data sets generated by 12,000 taxis in a period of one month using the proposed approach. Experimental evaluation results indicate that when compared with K -Means, Par2PK-Means, and ParCLARA, Par3PKM achieves higher efficiency, more accuracy, and better scalability and can effectively divide traffic subarea with big taxi trajectory data

    Closing the Gap for Pseudo-Polynomial Strip Packing

    Get PDF
    Two-dimensional packing problems are a fundamental class of optimization problems and Strip Packing is one of the most natural and famous among them. Indeed it can be defined in just one sentence: Given a set of rectangular axis parallel items and a strip with bounded width and infinite height, the objective is to find a packing of the items into the strip minimizing the packing height. We speak of pseudo-polynomial Strip Packing if we consider algorithms with pseudo-polynomial running time with respect to the width of the strip. It is known that there is no pseudo-polynomial time algorithm for Strip Packing with a ratio better than 5/4 unless P = NP. The best algorithm so far has a ratio of 4/3 + epsilon. In this paper, we close the gap between inapproximability result and currently known algorithms by presenting an algorithm with approximation ratio 5/4 + epsilon. The algorithm relies on a new structural result which is the main accomplishment of this paper. It states that each optimal solution can be transformed with bounded loss in the objective such that it has one of a polynomial number of different forms thus making the problem tractable by standard techniques, i.e., dynamic programming. To show the conceptual strength of the approach, we extend our result to other problems as well, e.g., Strip Packing with 90 degree rotations and Contiguous Moldable Task Scheduling, and present algorithms with approximation ratio 5/4 + epsilon for these problems as well

    Cusp Points in the Parameter Space of Degenerate 3-RPR Planar Parallel Manipulators

    Get PDF
    This paper investigates the conditions in the design parameter space for the existence and distribution of the cusp locus for planar parallel manipulators. Cusp points make possible non-singular assembly-mode changing motion, which increases the maximum singularity-free workspace. An accurate algorithm for the determination is proposed amending some imprecisions done by previous existing algorithms. This is combined with methods of Cylindric Algebraic Decomposition, Gr\"obner bases and Discriminant Varieties in order to partition the parameter space into cells with constant number of cusp points. These algorithms will allow us to classify a family of degenerate 3-RPR manipulators.Comment: ASME Journal of Mechanisms and Robotics (2012) 1-1

    Load-Balancing for Parallel Delaunay Triangulations

    Get PDF
    Computing the Delaunay triangulation (DT) of a given point set in RD\mathbb{R}^D is one of the fundamental operations in computational geometry. Recently, Funke and Sanders (2017) presented a divide-and-conquer DT algorithm that merges two partial triangulations by re-triangulating a small subset of their vertices - the border vertices - and combining the three triangulations efficiently via parallel hash table lookups. The input point division should therefore yield roughly equal-sized partitions for good load-balancing and also result in a small number of border vertices for fast merging. In this paper, we present a novel divide-step based on partitioning the triangulation of a small sample of the input points. In experiments on synthetic and real-world data sets, we achieve nearly perfectly balanced partitions and small border triangulations. This almost cuts running time in half compared to non-data-sensitive division schemes on inputs exhibiting an exploitable underlying structure.Comment: Short version submitted to EuroPar 201
    • …
    corecore