1,545 research outputs found

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine

    Current Trends in Intelligent Control Neural Networks for Thermal Processing (Foods): Systematic Literature Review

    Get PDF
    Thermal processing is a technique for sterilizing foods through heating at high temperatures. Thermal processing plays a significant role in preserving foods economically, efficiently, reliably, and safely. Control in thermal processing of foods is necessary to avoid any decrease in food quality, i.e., color change, reduced content, sensory quality, and nutrition. Artificial Neural Network (ANN) has been developed as a computing method in research and developments on thermal processing methods to discover one suitable for food processing without damaging food quality. To this date, ANN has been used in food industries for modeling many processes. The paper aims to identify the latest trend in intelligent neural network control for the thermal processing of foods. The paper conducted a systematic literature review with five research questions using Preferred Reporting Items for Systematic Review (PRISMA). According to screening results and article selection, 240 potential articles have fulfilled the inclusion criteria. Then, each article was explored to identify the advantage and the advance of intelligent network control in thermal food processing. It can be concluded that the technology in information and computations of food processing has rapidly developed and advanced through the utilization of a combination of ANN with fuzzy logic and/or genetic algorithms

    Machine learning for property prediction and optimization of polymeric nanocomposites: a state-of-the-art

    Get PDF
    Recently, the field of polymer nanocomposites has been an area of high scientific and industrial attention due to noteworthy improvements attained in these materials, arising from the synergetic combination of properties of a polymeric matrix and an organic or inorganic nanomaterial. The enhanced performance of those materials typically involves superior mechanical strength, toughness and stiffness, electrical and thermal conductivity, better flame retardancy and a higher barrier to moisture and gases. Nanocomposites can also display unique design possibilities, which provide exceptional advantages in developing multifunctional materials with desired properties for specific applications. On the other hand, machine learning (ML) has been recognized as a powerful predictive tool for data-driven multi-physical modelling, leading to unprecedented insights and an exploration of the system's properties beyond the capability of traditional computational and experimental analyses. This article aims to provide a brief overview of the most important findings related to the application of ML for the rational design of polymeric nanocomposites. Prediction, optimization, feature identification and uncertainty quantification are presented along with different ML algorithms used in the field of polymeric nanocomposites for property prediction, and selected examples are discussed. Finally, conclusions and future perspectives are highlighted

    Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Get PDF
    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines

    An artificial intelligence platform for design optimization and data analysis: application for fire and ventilation problems

    Get PDF
    This thesis focuses on the development of novel multi-objective software platforms to assist engineering design and investigation, especially for simulation-based indoor environment problems, which always involve multiple evaluation criteria. In addition, this thesis aims to develop new methods to reduce the computational cost associated with the design process. In modern building design, engineers are constantly facing challenging to find an optimal design to maintain a high level of thermal comfort and indoor air quality for occupants while minimizing the system energy consumption. Over the past decades, several algorithms have been proposed and developed for optimizing the heating, ventilation and air conditioning (HVAC) system for indoor environment. Nevertheless, the majority of these optimization algorithms are focused on single objective optimization procedures and require a large training sample for surrogate modelling. For multi-objective HVAC design problems, previous studies introduced an arbitrary weighting factor to combine all design objectives into one single objective function. The near-optimal solutions were however sensitive to the chosen value of the weighting factor. In another hand, the computational cost is very heavy in the computer-aided investigation process of reverse engineering problems. Computational Fluid Dynamics (CFD) aided fire investigation is one of the reverse engineering. With the significant growth of the world population, our cities are becoming more and more crowding. In this situation, any fire occurring would cause severe consequences, including property damage and human injuries or even deaths. In assessing the fire cause, the fire origin determination is a crucial step identifying the origin of fire outbreak and the sequential fire and smoke propagation. Traditionally, fire investigators relied upon the visible fire damages at the fire scene to determine the location of fire originated based on their own professional experience. The fire investigation process is however subject to the expert interpretation inherently embedded in the qualitative analyses. In addition, we are living in an era of big data, where lots amount of data are generating every day, especially in engineering field. Traditional analysis methods are not suitable to handle large amount of data quickly and accurately. In contrast, new techniques such as machine learning are able to deal with big data and extract data features. The main body of this thesis is composed of seven chapters, and the details of each chapter are as the followings: The research background and a comprehensive literature review are described in the first two chapters where the research gaps found in the existing literatures are discussed. From Chapter 3 to Chapter 6, the main contributions of this research are demonstrated. In Chapter 3, a nondominated sorting-based particle swarm optimization (NSPSO) algorithm together with the Kriging method to perform optimization for the HVAC system design of a typical office room was developed. In addition, an adaptive sampling procedure was also introduced to enable the optimization platform to adjust the sampling point and resolution in constructing the training sample. Chapter 4 presents a Multi-fidelity Kriging algorithm to quantitatively determine the fire origin based on the soot deposition patterns predicted by the numerical simulations, which provides an unbiased and fast methodology to assist the fire investigation. A comprehensive multi-objective optimization platform of the ventilation system inside a typical high-speed train (HST) cabin is discussed in Chapter 5, where the NSPSO and the Multi-fidelity Kriging were combined together to reduce computational cost. Chapter 6 demonstrates a successful application of convolutional neural networks (CNN) in vegetation feature analysis to help cut powerline wildfire risk caused by vegetation conduction ignition. Finally, all the contributions in this research are summarised in Chapter 7

    Thermal Management in Laminated Die Systems Using Neural Networks

    Get PDF
    The thermal control of a die is crucial for the development of high efficiency injection moulds. For successful thermal management, this research provides an effective control strategy to find sensor locations, identify thermal dynamic models, and design controllers. By applying a clustering method and sensitivity analysis, sensor locations are identified. The neural network and finite element analysis techniques enable the modeling to deal with various cycle-times for the moulding process and uncertain dynamics of a die. A combination of off-line training through finite element analysis and training using on-line learning algorithms and experimental data is used for the system identification. Based on the system identification which is experimentally validated using a real system, controllers are designed using fuzzy-logic and self-adaptive PID methods with backpropagation (BP) and radial basis function (RBF) neural networks to tune control parameters. Direct adaptive inverse control and additive feedforward control by adding direct adaptive inverse control to self-adaptive PID controllers are also provided. Through a comparative study, each controller’s performance is verified in terms of response time and tracking accuracy under different moulding processes with multiple cycle-times. Additionally, the improved cooling effectiveness of the conformal cooling channel designed in this study is presented by comparing with a conventional straight channel

    Numerical Simulation

    Get PDF
    Nowadays mathematical modeling and numerical simulations play an important role in life and natural science. Numerous researchers are working in developing different methods and techniques to help understand the behavior of very complex systems, from the brain activity with real importance in medicine to the turbulent flows with important applications in physics and engineering. This book presents an overview of some models, methods, and numerical computations that are useful for the applied research scientists and mathematicians, fluid tech engineers, and postgraduate students

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc
    • …
    corecore