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Abstract 

This thesis focuses on the development of novel multi-objective software 

platforms to assist engineering design and investigation, especially for 

simulation-based indoor environment problems, which always involve 

multiple evaluation criteria. In addition, this thesis aims to develop new 

methods to reduce the computational cost associated with the design 

process. 

In modern building design, engineers are constantly facing challenging to 

find an optimal design to maintain a high level of thermal comfort and 

indoor air quality for occupants while minimizing the system energy 

consumption. Over the past decades, several algorithms have been 

proposed and developed for optimizing the heating, ventilation and air 

conditioning (HVAC) system for indoor environment. Nevertheless, the 

majority of these optimization algorithms are focused on single objective 

optimization procedures and require a large training sample for surrogate 

modelling. For multi-objective HVAC design problems, previous studies 

introduced an arbitrary weighting factor to combine all design objectives 

into one single objective function. The near-optimal solutions were 

however sensitive to the chosen value of the weighting factor.  

In another hand, the computational cost is very heavy in the computer-

aided investigation process of reverse engineering problems. 

Computational Fluid Dynamics (CFD) aided fire investigation is one of the 

reverse engineering. With the significant growth of the world population, 

our cities are becoming more and more crowding. In this situation, any 

fire occurring would cause severe consequences, including property 

damage and human injuries or even deaths. In assessing the fire cause, 

the fire origin determination is a crucial step identifying the origin of fire 

outbreak and the sequential fire and smoke propagation. Traditionally, 

fire investigators relied upon the visible fire damages at the fire scene to 

determine the location of fire originated based on their own professional 

experience. The fire investigation process is however subject to the expert 

interpretation inherently embedded in the qualitative analyses.  
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In addition, we are living in an era of big data, where lots amount of data 

are generating every day, especially in engineering field. Traditional 

analysis methods are not suitable to handle large amount of data quickly 

and accurately. In contrast, new techniques such as machine learning are 

able to deal with big data and extract data features.  

The main body of this thesis is composed of seven chapters, and the 

details of each chapter are as the followings: 

The research background and a comprehensive literature review are 

described in the first two chapters where the research gaps found in the 

existing literatures are discussed. From Chapter 3 to Chapter 6, the main 

contributions of this research are demonstrated. In Chapter 3, a 

nondominated sorting-based particle swarm optimization (NSPSO) 

algorithm together with the Kriging method to perform optimization for 

the HVAC system design of a typical office room was developed. In 

addition, an adaptive sampling procedure was also introduced to enable 

the optimization platform to adjust the sampling point and resolution in 

constructing the training sample. Chapter 4 presents a Multi-fidelity 

Kriging algorithm to quantitatively determine the fire origin based on the 

soot deposition patterns predicted by the numerical simulations, which 

provides an unbiased and fast methodology to assist the fire investigation. 

A comprehensive multi-objective optimization platform of the ventilation 

system inside a typical high-speed train (HST) cabin is discussed in 

Chapter 5, where the NSPSO and the Multi-fidelity Kriging were combined 

together to reduce computational cost. Chapter 6 demonstrates a 

successful application of convolutional neural networks (CNN) in 

vegetation feature analysis to help cut powerline wildfire risk caused by 

vegetation conduction ignition. Finally, all the contributions in this 

research are summarised in Chapter 7. 
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Introduction 

 Background and Motivation 

In recent decades, with the development of the computer science, the 

computer-aided engineering (CAE) techniques have been widely applied 

to assist industrial design process. Traditionally, the design process is a 

cycle of trial and error which includes lots of experimental tests and thus 

consumes huge amount of resources. Nowadays, the usage of 

computational simulation techniques helps to shorten the design period 

by replacing the time-consuming experimental tests with relatively fast 

numerical simulations. However, the improvement of replacing 

experiments with simulations only is limited without changing the 

conventional trial and error design scheme. We need a smarter design 

scheme for modern engineering design to explore more solutions and to 

reduce design cost in the meanwhile. 

In the modern indoor environment design process, computational fluid 

dynamics (CFD) techniques have been widely adopted to analyze air 

distribution and flow characteristics. In comparison to the traditional 

design cycle, CFD simulations offer a faster and more economical way for 

engineers to carry out parametric studies, leading towards a more 

desirable system design. However, the parametric analysis using CFD 

technique is inherently discrete in the design space with pre-selected 

design variable values, and the best optimum solution could be “hidden” 

in the discretized domain. In other words, the accuracy of a near-optimum 

solution depends largely on the “resolution” of the test matrix where 

significant computational costs are required. In addition, in traditional 

non-adaptive experiments, decisions such as how to sample during an 

experiment are made and fixed in advance. However, the main 

disadvantage of uniform sampling is high resource cost, because the 

sampling density must be uniformly high everywhere in order to meet the 

sampling requirements in some particular areas. On the other hand, most 
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of the heating, ventilation and air conditioning (HVAC) system design 

normally involves multi-objective considerations. Design indices such as 

predicted mean vote (PMV), percentage dissatisfied of draft (PD), age of 

air, CO2 concentration and energy cost are commonly considered in 

literatures. It is challenging for traditional methods to handle multiple 

design criteria in an efficient way. 

The numerical simulation technology makes it feasible to solve reverse 

engineering problem, such as the building fire investigation. Fire origin 

determination is a challenging task in forensic sciences owing to the 

complex transient fire behaviour and its inherent nature in destroying 

evidence. One of the key hypothesis of the fire investigator is the correct 

identification of the fire origin. For most of the fire scenarios, the 

determination of fire origin is crucial for an accurate and reliable fire 

cause assessment. Today, with the development of computational 

technology, the application of fire simulation for fire scene reconstruction 

has gained measured success in the past decades. Nonetheless, fire 

reconstruction studies are efficient in forward engineering processes 

where fire consequences are predicted based on known fire size and 

location. Fire origin determinations are unfortunately reserve 

engineering processes where fire consequences or damages are known 

except the fire size or locations. As each CFD simulation requires 

considerable computational time and resources, it is still impractical 

relying on CFD solely for fire investigation; especially for fire origin 

determination where a huge amount of simulations are required to 

support the reversed engineering process. An efficient way of creating 

simulation cases and using simulation results are required to make such a 

kind of CAE method to solve reverse engineering problems. 

Apart from the indoor building fires, the wildland fires can pose 

significant consequences on human life, assets and ecologic environment. 

In the past decade, wildfires have caused huge losses of human lives and 

properties around the world including in Greece (Amiridis et al. 2012), 

the United States (Keeley et al. 2009), Russia (Vivchar 2011) and 

Australia (Chafer et al. 2004, Stephenson et al. 2013, Collins et al. 2015). 

Especially, in Australia, over the past century, 20% of the total building 



 

5 
 

losses in nature hazards arise from bushfires (Mcaneney et al. 2009). 

Understanding the ignition process of the wildfire is essential to reducing 

the risk of future wildland fires. Huge amounts of data have been collected 

from both historical fire field and laboratory experimental tests in 

purpose of analysing the reason of causing the wildland fire and avoiding 

the future occurrence of wildland fire. However, the traditional analysis 

methods are not suitable to handle large amount of data quickly and 

accurately. Developing new analysis methods is essential to help 

engineers better understand the ignition process in wildland fires and to 

reduce the risk of future wildland fires. 

 Research Gaps and Objectives 

When designing a multi-objective optimization ventilation system, in 

most previous works (Laverge and Janssens 2013, Li et al. 2013), a single 

objective function was constructed by aggregating several design indices 

using pre-defined weighting factors. One particular disadvantage of this 

method is that the optimal solution could be sensitive to the values of the 

weighting factors. In other words, different values of weighting factors 

could result in substantially different solutions. The weighting factors 

must be therefore chosen carefully based on subjective factors such as 

engineering or expert judgements. Furthermore, the optimization 

procedure gives only one near-optimal solution where there is no 

flexibility for the designer to strike a balance or “trade-off” of the 

conflicting parameters. It is nearly impractical to explore all the possible 

solutions by trying different weights. 

In addition, in constructing the sample data, most studies from previous 

literatures adopt uniform sampling where the CFD simulations are 

uniformly distributed within the design range (Zhou and Haghighat 

2009a, Li et al. 2013). The main disadvantage of uniform sampling is its 

high cost, as the sampling density must be uniformly high everywhere in 

order to meet the sampling requirements in some particular areas. 

Nevertheless, in most practical cases, the final optimal solutions are 

normally concentrated in a certain region within the design space. 
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Therefore, substantial computational time could be wasted in 

constructing the sample data for some virtually redundant samples which 

are far away from the optimal solution. 

On the other hand, in previous literatures, researchers have been 

struggled to strike a balance between the simulation accuracy and the 

computational cost (Lin et al. 2005, Lin et al. 2009, Zhou and Haghighat 

2009a). For example, in most previous literatures, the simplified manikin 

models such as rectangle or cylinder blocks are used in CFD simulations 

to study the indoor environment (Lin et al. 2009, Yuan et al. 1999, Li et al. 

2013). Using simplified manikin model is unable to get accurate CFD 

predictions, especially when we are targeting on flow zones near the 

manikin. A few of other researchers applied high-resolution 3D scanned 

thermal manikin models to improve the CFD accuracy. However, it would 

dramatically increase the cost of computational resources at the same 

time. Although the usage of parallel computing could help to reduce the 

total computational time, it still poses a significant burden to the 

computational resources as multiple CPU cores have to be occupied to do 

parallel computing. There is a lack of a method which is capable to save 

computational cost without sacrificing the simulation accuracy. In 

addition, a data analysis tool which can handle a large amount of data 

quickly and accurately, thus can be automated and industrialized, is yet to 

be developed. 

In attempting to fill the aforementioned research gaps found in 

literatures, the specific objectives of this thesis are: 

• To develop a new design scheme to achieve multi-objective 

optimization without having to use any weighting factors, and is 

capable to explore the whole design space, to provide multiple 

solutions. 

• To develop a response-adaptive sampling approach, which 

allocates the sampling points in an adaptive way to save 

computational resources. 
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• To develop a new surrogate model of CFD simulation, which is able 

to save computational cost without sacrificing the simulation 

accuracy. 

• To develop a new data analysis tool, which is able to handle a large 

amount of data quickly and accurately, by using machine learning 

technology. 

 Thesis Outline 

This thesis is composed of seven chapters. The topic of each chapter is 

outlined below: 

Chapter 2 provides a comprehensive literature review in relation to the 

existing CFD studies, especially in the area of indoor ventilation system 

design. Different surrogate models and optimization schemes are 

reviewed in this chapter. The drawbacks of reviewed methods are also 

discussed. The reviewed literature lays a solid foundation for the research 

outcomes in the following chapters. 

Chapter 3 presents a nondominated sorting-based particle swarm 

optimization (NSPSO) algorithm together with the Kriging method to 

perform optimization for the HVAC system design of a typical office room. 

In addition, an adaptive sampling procedure was also introduced to 

enable the optimization platform to adjust the sampling point and 

resolution in constructing the training sample.  

Chapter 4 presents a Multi-fidelity Kriging algorithm to quantitatively 

determine the fire origin based on the soot deposition patterns predicted 

by the numerical simulations, which provides an unbiased and fast 

methodology to assist the fire investigation.  

Chapter 5 illustrates a comprehensive multi-objective optimization 

platform of the ventilation system inside a typical high-speed train (HST) 

cabin, where the NSPSO and the Multi-fidelity Kriging were combined 

together to reduce computational cost.  
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Chapter 6 demonstrates a successful application of convolutional neural 

networks (CNN) in vegetation feature analysis to help cut powerline 

wildfire risk caused by vegetation conduction ignition. 

Chapter 7 concludes and highlights all the conclusions and contributions.  

 Contribution 

Based on the research gaps and research objectives discussed before, this 

thesis contributes to the following major outcomes: 

a) Developed a new multi-objective optimization design scheme for 

HVAC system design, which is free of using weighting factors, and 

is capable to explore the whole design space, to provide multiple 

solutions. 

b) Developed an adaptive CFD sampling approach, which is able to 

allocate the sampling points in an adaptive way according to the 

distribution of optimal solutions, helping to save computational 

resources dramatically. 

c) Developed a multi-fidelity surrogate model of CFD simulation, 

which is able to save computational cost without sacrificing the 

simulation accuracy. 

d) Developed a new data analysis tool, which is capable to handle a 

large amount of data quickly and accurately, by using machine 

learning technology. 
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Literature Review  

This chapter presents a review of the techniques and methodologies in 

the literatures related to this thesis. The review covers three main 

aspects: 

1) Indoor ventilation system design. In this section, the technology 

and approaches appeared in current literatures related to CFD-

assisted indoor ventilation system design is described. The review 

includes the validation of CFD simulation, the surrogate methods 

of CFD simulations, and the assessments of thermal comfort and 

indoor air quality. 

2) Evolutionary algorithms development. In this section, the 

development history of evolutionary algorithms (EAs) is reviewed. 

The algorithms include genetic algorithm (GA), particle swarm 

optimization (PSO), nondominated sorting genetic algorithm 

(NSGA) and nondominated sorting particle swarm optimization 

(NSPSO). 

3) Machine learning techniques. In this section, the machine learning 

techniques used for image classification and recognition are 

demonstrated. 

 Indoor ventilation system design 

 CFD modelling and validation 

In the modern indoor environment design, to achieve a higher system 

performance, computational fluid dynamics (CFD) simulation tools such 

as ANSYS Fluent, StarCCM+ and OpenFOAM have been widely adopted to 

analyze air distribution and flow characteristics and their relationship in 

thermal comfort and energy consumption (Ravikumar and Prakash 2009, 
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Cardinale et al. 2010, Hiyama et al. 2010, Kochetov et al. 2015, Gangisetti 

et al. 2016). 

Having been developed for more than 70 years, the computational fluid 

dynamic (CFD) has been accepted as a reliable tool to solve and analyze 

problems that involve fluid flows, as long as the simulation model is well 

generated (including geometry, mesh, boundary conditions, turbulent 

model, etc.). CFD is a branch of fluid mechanics that uses numerical 

methods to solve the governing equations of fluid dynamics. These 

equations called Navier–Stokes equations (shown in Figure 2.1 (Tu et al. 

2008)) include mass conservation, momentum equation, energy equation 

and additional equations for turbulent flow. 

Figure 2.1 The Navier–Stokes equations for incompressible flow (Tu 2008). 
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Where 𝑢, 𝑣, 𝑤 are the local velocity components; 𝑡 is the time; 𝜌 is the 

fluid density; 𝑝 is pressure; Γ is the general diffusion coefficient; 𝑇 is the 

fluid temperature; 𝜆 is the thermal conductivity; 𝐶𝑝 is the thermal 

capacity; 𝑆𝑇 is the internal thermal source; 𝑆∅ is the source term; 𝐺𝑘 

represents the generation of turbulent kinetic energy due to the mean 

velocity gradients, and 𝐺𝑏 is the generation of turbulent kinetic energy 

due to buoyancy.𝜇𝑒𝑓𝑓 is the effective viscosity, and 𝜇𝑡 is the turbulent 

viscosity. The quantities 𝛼𝑘 and 𝛼𝜀 are the inverse effective Prandtl 

numbers 𝑃𝑟 for k and 𝜀, respectively, 𝛼𝑘= 𝛼𝜀 ≈ 1.393. The model constants 

values 𝐶1𝜀 =  0.0845 , 𝐶2𝜀 =  1.42 and 𝐶3𝜀 = 1.68 are derived based on the 

analytically of the RNG theory. Historically, the first two-dimensional (2D) 

computational methods were developed in the 1930s using conformal 

transformations of the flow about a cylinder to the flow about an airfoil. 

One of the earliest types of calculations resembling modern CFD is those 

by Lewis Fry Richardson (Richardson 1922), in the sense that these 

calculations used finite differences and divided the physical space into 

cells. After the 1950s, the computer power available paced development 

of three-dimensional methods. The first paper with three-dimensional 

model was published by John Hess and A.M.O. Smith of Douglas Aircraft in 

1967 (Hess and Smith 1967). More recently, some commercial CFD 

software packages have made the application of this numerical method 

much easier and more reliable. 

Typically, in the field of heat and mass transfer in indoor environment, 

Yuan et al. 1999 published their experimental measurement data and 

computational simulation results of room airflow in 1999. In their 

experiment test, they built a well-insulated chamber divided into two 

parts, a test chamber and a climate chamber (shown in Figure 2.2), and 

each chamber has a separate heating, ventilation and air conditioning 

(HVAC) system. They used a flow visualization system to observe airflow 

patterns, a hot-sphere anemometer system to measure air velocity and a 

thermocouple system to measure surface and air temperature. 
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Figure 2.2 Sketch of the test facility in literature (Yuan et al. 1999). 

 

For comparison, Yuan et al. also conducted a computational model using a 

commercial CFD code. The RNG k-ε turbulent model was used and the 

residual target for convergence criteria was set to be 10-3. By limitation of 

computer performance in the 1990s, the mesh was coarse with only 

48*44*24 grids. But they still got good enough results compared with 

their experimental data (see Figure 2.3 and Figure 2.4). 
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Figure 2.3 Comparison of temperature profile in a small office (Yuan et al. 1999). 
 

 

Figure 2.4 Comparison of velocity profile in a small office (Yuan et al. 1999). 

 

After yuan et al.’s study, a lot of researchers used their experimental data 

to validate CFD simulation models. In addition, there are other 

researchers using CFD to help their study works. Zhang Lin et al. studied 
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the effect of internal partitions on the performance (thermal comfort and 

indoor air quality) of under floor air supply ventilation in a typical office 

environment using CFD numerical modeling (Lin et al. 2009), and 

Qingyan Chen et al. applied both experimental and CFD method to study 

ventilation performance prediction for buildings (Chen et al. 2010). All of 

these studies indicate that the CFD is a reliable tool for fluid flow analysis. 

From the literature, the CFD can be used not only for prediction, but also 

can be used for optimization (Turner and Awbi 2015, Wang et al. 2013, 

Santos et al. 2012, Lee et al. 2011). However, the CFD optimization 

requires lots of professional experience to determine the potential 

optimal design area, otherwise the optimization process would be great 

uncertainly or blindly and cost a lot of time. With the help of some 

evolutionary algorithms, the optimization process can be guided and the 

designers would find the interesting area very quickly, even though 

without previous experience. 

 Surrogate methods of CFD 

In comparison to the traditional design cycle, CFD simulations offer a 

faster and more economical way for engineers to carry out parametric 

studies, leading towards a more desirable system design. Albeit a near-

optimum solution could be obtained, the parametric analysis using CFD 

technique is inherently discrete in the design space with pre-selected 

design variable values. The best optimum solution could be “hidden” in 

the discretized domain (Stavrakakis et al. 2011). Furthermore, the 

accuracy of a near-optimum solution depends largely on the “resolution” 

of the test matrix where significant computational costs are required. To 

enhance the accuracy of the near-optimum solution with practical 

computational time and resource, Artificial neural network (ANN) (Varol 

et al. 2007, Zhou and Haghighat 2009a,b, Stavrakakis et al. 2011, Lu and 

Xue 2014) or other surrogate techniques (Li et al. 2012, Li et al. 2013) are 

employed as an alternative approach to approximate the nonlinearity and 

complex behaviour of the multidimensional systems. One of the first 

studies using CFD-ANN coupled approach to assess the effect of 

architectural-designs on the thermal comfort can be found in (Krauss et 
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al. 1997). In general, numerical results predicted by CFD modelling were 

adopted to establish a database for training the ANN or surrogate models. 

These CFD-trained ANN or surrogate models then captured the 

relationship between design parameters and objective function. 

Optimization procedures using gradient methods (Gyulai et al. 2007, 

Stavrakakis et al. 2011, Welle et al. 2011) or evolutionary optimization 

algorithms (Luh and Lin 2011, Li et al. 2013, Afrand et al. 2015, Zhai et al. 

2014) were then performed using the trained models for allocating the 

near-optimum solution within the continuous design space. Although 

significant computational time and resource can be reduced, a 

considerably large amount of CFD results are still required for 

constructing a reliable database for the training of ANN or surrogate 

models. 

On the other hand, most of the HVAC system design normally involves 

multi-objective considerations. Design indices such as predicted mean 

vote (PMV), percentage dissatisfied of draft (PD), age of air, CO2 

concentration and energy cost are commonly considered in literatures. 

Especially, in terms of indoor thermal comfort evaluation, substantial 

research works have done by Ricciardi’s group (Buratti and Ricciardi 

2009, Buratti et al. 2013, Nematchoua et al. 2014, Ricciardi and Buratti 

2015, Buratti et al. 2016, Ricciardi et al. 2016). In most previous works, a 

single objective function was constructed by aggregating several design 

indices using pre-defined weighting factors (Laverge and Janssens 2013, 

Li et al. 2013). One particular disadvantages of this method is that the 

optimal solution could be sensitive to the values of the weighting factors. 

In other words, different values of weighting factors could result in 

substantially different solutions. The weighting factors must be therefore 

chosen carefully based on subjective factors such as engineering or expert 

judgements. Furthermore, the optimization procedure gives only one near 

optimal solution where there is no flexibility for the designer to strike a 

balance or “trade-off” of the conflicting parameters. For example, a lower 

indoor temperature may be preferable in summer which is in conflict 

with the goal to minimize energy consumption. 
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 Assessment of indoor thermal comfort 

According to the American Society of Heating Refrigeration and Air 

Conditioning Engineers (ASHRAE), the definition of human thermal 

comfort was expressed as the state of people’s mind that expresses 

satisfaction with the surrounding environment (Ashrae 2004). The most 

important factors affecting the thermal comfort depend on four 

environmental variables, which are: the air temperature, the mean 

radiant temperature, the relative air velocity, and the relative humidity. 

In recent year, the evaluation of the thermal comfort inside 

transportation cabins has been studied by many researchers. Currently, 

there are several indices that have been used for evaluating thermal 

comfort by international standards. One of these indices is the Predicted 

Mean Value (PMV) index (Gilani et al. 2015), which predicts the response 

of the thermal vote of a large group of people exposed to the same 

environment. Even though the PMV presents the empirical fit to human 

sensation, it has been developed based on the mathematical formulation 

proposed by Fanger (Fanger 1972). In the Fanger’s mathematical model, 

it applies an energy balance for a human using the different energy 

exchange mechanisms, and experimentally derived physiological 

parameters. Table 2.1 describes the seven-point thermal sensation scale 

was used by Fanger based on the PMV index value. 

Table 2.1 Thermal sensation scale used by (Fanger 1972). 

Sign Value Description 

+ 3 Hot 

+ 2 Warm 

+ 1 Slightly warm 

 0 Neutral 

- 1 Slightly cool 

- 2 Cool 

- 3 Cold 

Another proposed index is the Predicted Percentage Dissatisfied (PPD), 

which calculates a prediction of the number of thermally dissatisfied 

people (Gilani et al. 2015).  The PPD is used for predicting the number of 
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people that feel uncomfortable warm or cold. It is a quantitative 

prediction of the percentage of thermally dissatisfied people based on 

PMV. Figure 2.5 illustrates the relationship between PMV and PPD. As can 

see, when the PMV index is near 0, the PPD value is also near 0 

correspondingly. With the PMV changes to +3 (hot) or -3 (cold), the PPD 

values also exponential growth into 100%. 

 

 

Figure 2.5 The Predicted Percentage of Dissatisfied (PPD) persons as a function of 
the predicted mean vote (PMV) index (Gilani et al. 2015). 

 

According to ASHRAE (Ashrae 2004), draft which is unwanted local 

cooling due to air movement can cause occupant dissatisfaction in indoor 

spaces. The sensation of the draft depends on the speed of air, the 

fluctuating of air speed (turbulence), the air temperature and clothing 

conditions. Sensitivity to draft is most likely to be feel on the skin where is 

not covered by clothing, especially the neck, head, shoulders, ankle, feet 

and legs. Draft could increase with increasing air speed and turbulence 

intensity, meanwhile could decrease with increasing air temperature (Liu 

et al. 2017). Even though both PMV and PPD have considering the 

temperature, relative velocity and humidity, the influence of turbulence 

intensity is not included in the formula of neither PMV nor PPD. Thus, the 

percentage of dissatisfied (PD) due to draft model was applied for the 

thermal comfort analysis (Gilani et al. 2015). 
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Current thermal comfort standards, such as ASHRAE Standard 55-2004 

(Ashrae 2004) and ISO 7730 (Iso 2005), defines a metric which quantifies 

draft in terms of what percentage of occupants will be dissatisfied with a 

space due to annoyance by the local draft conditions. The model was 

proposed by (Fanger 1972), which developed by curve-fitting 

experimental data utilizing a simple empirical model of human skin heat 

transfer. It expresses the percentage dissatisfied (PD) with the draft as a 

function of convective heat loss. The model relates air speed, 

temperature, and turbulence intensity to the percentage dissatisfied with 

air movement around people. According to ASHRAE Standard 55-2004 

(Ashrae 2004), the PD should be < 20% for a comfort human occupancy 

environment. 

For evaluating the PD value in a specific environment, the measurement 

locations are to be defined with respect to the occupant (Ashrae 2004). A 

minimum of three spatial locations are required to evaluate an occupant’s 

environment: head area, waist area and ankle area. For a seated occupant, 

which is most common in HST cabin environment, the assessment levels 

are recommended as 1.1, 0.6 and 0.1 m above the floor. 

 Assessment of indoor air quality 

During the travel, passengers are long time stay inside the HSR cabin. To 

maintain the good air quality inside the cabin is a critical issue. Air 

contaminants inside the relative closed cabin environment would 

downgrade indoor air quality (IAQ) and affect passengers’ health and 

comfort (Wolkoff 1991, Franklin 2007). According to the existing studies 

(Kelly and Fussell 2015, Austin et al. 2002), the indoor air quality could be 

affected by a wide range of contaminants, such as smoke, volatile organic 

compounds (VOCs), biological particles, pollen, virus etc. As classified by 

previous researcher (Austin et al. 2002), the current found indoor 

contaminants can be mainly summarised into two categories: gaseous 

contaminants and particulate contaminants (which includes biological 

contaminants). Among the currently found indoor contaminants, some 

contaminates such as the virus can directly affect passengers’ heathy, 

while some contaminants such as body odour are nontoxic but could 
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cause unpleasant sensory and mental distractions (Wolkoff 2013). In this 

section, the airborne contaminates were discussed from both gaseous 

contaminates and particle contaminates. 

Gaseous contaminants are the smallest and most common type of cabin 

airborne pollution, which include hundreds of volatile organic compounds 

(VOCs) as well as many inorganic gaseous contaminants. Compared with 

the other category of indoor air contaminants, gaseous contaminants have 

distinctive properties related to their small sizes. They are existing in the 

form of individual molecules like oxygen and nitrogen in the air 

environment. Most gaseous molecules have a size between 3.4 −

20 × 10−10 meters. The molecules of gaseous contaminants have fast 

thermal motion speed in random directions. The dynamic movement of 

indoor gaseous contaminants are governed by convection and diffusion 

laws. 

Considering the composed of gaseous contaminants, two sub-categories 

can be further classified: inorganic gaseous contaminants and volatile 

organic compounds (VOCs). The inorganic compounds are defined as 

those molecules that lack carbon atom while organic compounds contain 

carbon bonds in which at least one carbon atom is covalently linked to an 

atom of another type (commonly hydrogen, oxygen, or nitrogen). 

However, in a normal indoor environment such as HSR cabin 

environment, the VOCs are the predominant gaseous contaminants. This 

is because the inorganic gaseous contaminants such as CO and H2S are 

rare to be detected. Thus, the gaseous contaminants in this study would 

mainly focus on the VOCs. 

From a previous study (Mirkhani et al. 2012), there are more than five 

hundred kinds of gaseous contaminants in the indoor environment. 

However, the total concentration of these gaseous contaminants in the 

indoor environment is usually very small. In a normal indoor 

environment, the concentration of VOCs is less than 1 milligram per cubic 

metre. Even the concentration of VOCs in the indoor environment is very 

small, there are many sources can release VOCs, such as the material 

(carpet, composite wood, upholstery fabrics, vinyl floors et al.), appliances 
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and personal care products (cooked food, fuel oil, Air fresheners et al.) 

and people. Among these VOCs released sources, the new materials may 

release VOCs, but the emission rate will decline very quickly over time. 

For old materials, the emissions of VOCs could almost negligible. The 

appliances and personal care products only release VOCs when in use. But 

for passengers, the VOCs release rate is continuous during all the travel. 

Therefore, in the HST cabin environment, the VOCs are mainly released 

from passengers. 

For our human beings, the formation of VOCs (body odour) is mainly 

caused by skin glands excretions and bacterial activity (Lundström and 

Olsson 2010). Table 2.2, present the type of VOCs compounds in different 

places of the human body. 

Table 2.2 VOCs compounds in different places of human body (Lundström and 
Olsson 2010) 

 

According to the study by Batterman and Peng (2010), human beings 

release VOCs in the form of body odor at a rate of 14.8 mg per hour per 

person. Considering the cabin environments are usually very crowded 

and relative sealed, this VOCs released rate could be a significant quantity 

for a long travel period. The high concentration of body odour might 
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cause health and comfort issues thus needs to be monitored and 

controlled (Wolkoff 2013, Franklin 2007). 

Due to small sizes of molecule level, the transport behaviours of VOCs are 

quite different from the other type contaminants in a ventilated indoor 

environment. Compared with the surrounding air, the VOCs molecules 

have the same physics laws and mathematical equations. Since this 

reason, the molecules of VOCs can easily reach human’s lung via 

respiratory airways. Meanwhile, the VOCs may have a chemical reaction 

with cells on the mucous membrane thus cause the sense of smell. The 

transport of VOCs in the indoor environment is influenced by both 

convections along with carrying airflow and interaction with surrounding 

air molecules. 

Particulate contaminants are an inanimate tiny grain of mass such as 

tobacco smoke, oil smoke and dust while biological contaminants include 

virus, bacteria, mould, pollen etc. Unlike gaseous contaminants, the sizes 

of particulate and biological contaminants vary from 0.001 𝜇𝑚 to 1000 

𝜇𝑚, which has nearly six orders of magnitude difference (Howie 1990, 

Escombe et al. 2007). Relative size chart of common air contaminants has 

been plotted in Figure 2.6. Under such a large diverse range of size 

distribution, human’s nasal filtration system is difficult to filter out all the 

harmful contaminants.  



 

22 
 

 

Figure 2.6 Relative size chart of common air contaminants (Howie 1990). 

 

To identify the critical size range of harmful particulate contaminants, a 

number of existing studies carefully investigated the particle deposition 

rate in human's nasal cavity (Hsu and Chuang 2012, Kelly et al. 2004). The 

deposition efficiency of the inhaled articles measured have been 

summarised in Figure 2.7 (Kelly et al. 2004, Hsu and Chuang 2012). It can 

be noticed from Figure 2.7 that 80% of the particles smaller than 1 nm 

and larger than 10 𝜇𝑚 have been filtered be human’s nasal system. 

However, for the particle between100 nm and 5 𝜇𝑚, they have very low 

deposition efficiency when passing through the nasal system. These range 

of particles were also identified as PM2.5 (Chen et al. 2016), which are 

more dangerous than other particles due to their extremely low 

deposition rate in human's nasal cavity. Meanwhile, a few harmful 

contaminants are showing in this range such as viruses, bacteria, etc. 
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Figure 2.7 Particle deposition in nasal cavity (Kelly et al. 2004, Hsu and Chuang 
2012). 

  

According to previous study (Yan et al. 2014), the infectious virus 

released through coughing or sneezing of passengers is the main reason 

of disease transmission in public transport. Based on the experiment by 

Chao et al. (2009), the mean diameter of contaminants from coughing was 

13.5 𝜇𝑚 with average release speed of 11.7 m/s. Within half a second, 

most sputum droplets would quickly evaporate and become droplet 

nuclei with an average diameter of 3.5 microns (Redrow et al. 2011). The 

size evaporated droplet is in the range of PM 2.5 which has low deposit 

rate in human's nasal cavity. The perniciousness of the contaminants from 

coughing has attracted many attentions, especially after previous global 

outbreaks of diseases including SARS and H1N1. Gupta et al. (2011) 

numerically and experimentally investigated the distribution of 

contaminants released from coughing and breathing. It was found that the 

contaminants have similar transport characteristics.  

Compared with the gaseous contaminates, particulate contaminants are 

much larger. Thus, the mathematical equations for gaseous contaminants 

cannot be applied for particulate contaminants. Li et al. (2014b) 

experimentally measured both gaseous and particulate contaminants 

transport behaviour. They found that the gaseous contaminants were 

primarily affected by the airflow, while the particle contaminants could 

suspend in the air or be carried by indoor airflow, which was affected by 

more factors such as the diameter of the particle and the release speed. 
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 Evolutionary algorithms development 

In artificial intelligence, an evolutionary algorithm (EA) is a subset of 

evolutionary computation, a generic population-based metaheuristic 

optimization algorithm, which uses mechanisms inspired by biological 

evolution, such as reproduction, mutation, recombination, and selection. 

Started from last century, a variety of EAs have been developed. Among 

them, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are 

the most popular and widely used. 

 

 

Figure 2.8 A typical flow chart of GA. 
 

Genetic Algorithm is a search heuristic that mimics the process of natural 

selection. Some early pioneers including Fraser, Burnell (Fraser et al. 

1970), Crosby (Crosby and L 1973) and Hans-Joachim Bremermann made 

great contribution to the modern GA, providing essential elements of GA 

like recombination, mutation, and selection. Figure 2.8 shows a typical 
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work flow of GA.  In the process of GA, different crossover operators 

(single-point crossover, k-point crossover, uniform crossover, partially 

matched crossover, etc.) and/or mutation operators (bit string mutation, 

flip bit, boundary mutation, Gaussian mutation, shrink mutation, etc.) 

could be applied to solve specific problems. Although compared to classic 

gradient-based optimization, the heuristic-based searched techniques 

such as GA have some advantages in solving non-convex optimization 

problems, there are still limitations when GA is used to solve real-world 

engineering problems, which naturally involve multiple conflicting 

objectives. An example of real-world multiple conflicting objectives is 

shown in Figure 2.9 (Deb 2001). It clearly demonstrates the conflicting 

factors when buying a vehicle between price and comfort. One must 

choose a trade-off balance, which means more comfort costs more money. 

In addition, there exist multiple solutions when considering multiple 

objectives, which are suitable to different users. 

 

 

Figure 2.9 An example of multiple conflicting objectives when choosing a car. 

 

In order to handle multi-objective optimization problems (MOPs), in early 

1990s, Fonseca et al. 1993, Horn et al. 1994 and Srinivas et al. 1994 

proposed a number of methods which could find multiple Pareto-optimal 

solutions in one single simulation run for solving MOPs. Among them, 

there are two popular methods which have been widely adopted by lots of 
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later researchers: niching approach (Horn et al. 1994) and nondominated 

sorting method (Srinivas and Deb 1994). Especially, in literature (Srinivas 

and Deb 1994), a new concept was suggested – nondominated sorting. 

Based on nondominated sorting method, a new population diversity-

preservation mechanism (NSGA) instead of niching method was proposed 

in (Srinivas and Deb 1994). In 2002, Deb et al. improved the NSGA in 

three aspects (computational complexity, elitism and parameter-less 

diversity-preservation) and called the new algorithm NSGA-II. This is a 

significant contribution to multi-objective evolutionary algorithms 

(MOEAs) and their paper has been cited over 14,000 times. 

Particle Swarm Optimization is another popular EA. Originally introduced 

by Kennedy and Eberhart (Kennedy 2001), the PSO has been developed 

by a large number of researchers. Maurice Clerc and James Kennedy 

studied the stability and convergence of PSO (Clerc and Kennedy 2002). 

In order to solve discrete optimization problem, Kennedy et al. introduced 

a binary version of PSO (Kennedy and Eberhart 1997). Following 

Kennedy’s work, Khanesar et al. proposed a novel binary PSO which 

suggested that the velocity of a particle is its probability to change its 

state from its previous state to its complement value, rather than the 

probability of change to 1, making the original binary PSO find better 

results. Inspired by NSGA-II (Deb et al. 2002), Li made a contribution to 

multi-objective PSO by introducing nondominated sorting method into 

PSO and proposed a NSPSO in his paper (Li 2003b), and tested the 

algorithm using some classic benchmark test problems.  

Rania et al compared the performance of PSO with GA in (Hassan et al. 

2005) and concluded that PSO has the same effectiveness (finding the 

true global optimal solution) as the GA but with significantly better 

computational efficiency (fewer function evaluations) by implementing 

statistical analysis and formal hypothesis testing. It indicates that PSO 

converges faster than GA. Therefore in my PhD research, I will mainly 

focus on the application of NSPSO to engineering optimization design, in 

particular, heat and transfer system. 
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Before we can apply the EAs, a data set must be generated for searching. 

In traditional engineering design, a large amounts of historic data from 

industry should be collected and this method is extremely expensive in 

both economic and time. Recently, we can adopt CFD to generate the 

required database. Therefore, a new technology called CFD-EA coupling 

method has attracted much attention of researchers. This new method 

can be applied in many fields, including ventilation system design (Lin et 

al. 2005, Lin et al. 2009, Zhou and Haghighat 2009a), fire detection 

(Stavrakakis and Markatos 2009), truss structures design (Luh and Lin 

2011), shape optimization (Peri et al. 2001), heat transfer (De Bellis and 

Catalano 2012, Charnay et al. 2001), composites material manufacturing 

(Santos et al. 2012, Wang et al. 2012), etc. 

The application of CFD simulation technology makes the engineering 

optimization design more time efficient and economic compared with 

experimental design. Particularly, in the field of HVAC system 

optimization design, a lot of research has been done using numerical 

methods, which combine CFD and EAs. A review will be given as follows. 

In 2006, K.F.Fong et al. studied energy management optimization in a 

HVAC system using simulation-EP (evolutionary programming) coupling 

technology. They built a mathematical model of energy consumption in a 

subway station with the help of TRNSYS and EP optimization was 

conducted to search for optimal design parameters. Their results show 

that the simulation-EP coupling method is feasible for handling discrete, 

non-linear and highly constrained nature of the HVAC problems. Zhou, L. 

and F. Haghighat proposed a CFD-ANN-GA optimization method for 

ventilation system design in (Zhou and Haghighat 2009a,b). They used a 

validated CFD model to get discrete airflow profiles with responding to 

different combinations of inlet boundary conditions. Artificial Neural 

Network (ANN) was then adopted to generate continuous response 

surface of design objectives based on the acquired data and finally, a GA 

optimizer searched for the optimal design parameter. Their results 

indicate that the combination of CFD, ANN and GA is a good way for 

solving engineering optimization design problem. In 2013, Li et al. 

improved Zhou’s work by introducing a POD model instead of the ANN to 
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get the response surface in a faster way and they got similar optimal 

results. In addition, the CFD-EA coupling method was also adopted in 

other research papers related to HVAC system optimization design 

(Stavrakakis et al. 2011, Zhai et al. 2014). 

 Machine learning techniques 

Machine learning, seen as a subset of artificial intelligence (AI), is an 

application of AI that provides systems with the ability to automatically 

learn and improve from experience without being explicitly programmed. 

The focus of machine learning techniques is to develop a computer 

program that can access data and use it to learn for themselves. Machine 

learning algorithms build a mathematical model of sample data, known as 

"training data", in order to make predictions or decisions without being 

explicitly programmed to perform the task (Koza et al. 1996, Bishop 

2006). Machine learning algorithms are used in a wide variety of 

applications, such as email filtering, and computer vision, where it is 

infeasible to develop an algorithm of specific instructions for performing 

the task. 

According to their approach, the type of data they input and output, and 

the type of task or problem that they are intended to solve, the machine 

learning algorithms are often categorized as supervised and semi-

supervised learning, unsupervised learning, and reinforcement learning. 

Supervised learning algorithms build a mathematical model of a set of 

data that contains both the inputs and the desired outputs (Russell and 

Norvig 2016). The data is known as training data, and consists of a set of 

training examples. Each training example has one or more inputs and a 

desired output, also known as a supervisory signal. In the case of semi-

supervised learning algorithms, some of the training examples are 

missing the desired output. In the mathematical model, each training 

example is represented by an array or vector, and the training data by a 

matrix. Through iterative optimization of an objective function, 

supervised learning algorithms learn a function that can be used to 

predict the output associated with new inputs (Elkan 2001). 
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Unsupervised learning algorithms take a set of data that contains only 

inputs, and find structure in the data, like grouping or clustering of data 

points. The algorithms, therefore, learn from test data that has not been 

labeled, classified or categorized. Instead of responding to feedback, 

unsupervised learning algorithms identify commonalities in the data and 

react based on the presence or absence of such commonalities in each 

new piece of data (Tucker 2004). Reinforcement learning is an area of 

machine learning concerned with how software agents ought to take 

actions in an environment so as to maximize some notion of cumulative 

reward. Due to its generality, the field is studied in many other disciplines, 

such as game theory, control theory, operations research, information 

theory, simulation-based optimization, multi-agent systems, swarm 

intelligence, statistics and genetic algorithms (Alpaydin 2014). 

Although pioneering machine learning research was conducted in the 

1950s using simple algorithms, it did not attract much attentions until 

2010s when AI beats human in Go game. Because of new computing 

technologies, deep learning has become feasible, which leads to machine 

learning becoming integral to many widely used software services and 

applications, such as image recognition, object detection, human face 

recognition, chat bot, etc. 

Among the deep learning algorithms, the most popular one is 

Convolutional Neural Networks (CNN), which has been widely used in 

image recognition and natural language processing. The CNN is a class of 

deep artificial neural networks firstly introduced by (Fukushima 1980), 

which has been successfully applied to analysing two-dimensional visual 

images, such as hand-written character recognition (Lecun 1989, Lecun 

and Bengio 1995, Niu and Suen 2012). A typical structure of CNN consists 

of one input and one output layer with multiple hidden layers in between 

as shown in Figure 2.10. The hidden layers of a CNN typically consist of a 

series of convolutional layers, subsampling (pooling) layers and fully 

connected layers (see Figure 2.10). The convolutional layers apply 

convolution filters to the original input to extract the feature maps which 

is passed to the next layer. Following the convolutional layer, there may 

be a pooling layer which combines the outputs of neuron clusters at one 
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layer into a single neuron. There are several methods of pooling, including 

max pooling, average pooling and linear combination pooling. By applying 

convolutional and pooling, the CNN significantly reduces the number of 

neurons, allowing the network to be deeper with fewer parameters 

(Aghdam and Heravi 2017), and making the network practical for training 

with limited computational resources. It is worth noting that there can be 

multiple convolutional layers and pooling layers in a CNN and more layers 

makes the network deeper. Finally, the fully connected layer receives the 

information from last hidden layer and turns it into high-level reasoning 

output. 

 

 

Figure 2.10 A typical CNN structure 

 

Since the first successful application of LeNet on hand-written digits 

recognition (Lecun et al. 1990), the CNN has shown great potential on 

solving different problems including image classification (Ciresan et al. 

2011), face recognition (Parkhi et al. 2015), natural language processing 

(Kumar et al. 2016) and object tracking (Hong et al. 2015). 
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Multi-objective optimization of HVAC 

system in an office room using NSPSO 

The main findings of this chapter have been published in: 

• Li, N., Cheung, S. C., Li, X. & Tu, J. (2017). Multi-objective optimization 

of HVAC system using NSPSO and Kriging algorithms—A case study. 

Building Simulation, 10(5), 769-781.  IF = 1.673, Q1  

 

• Li, N., Cheung, S. C., Li, X. & Tu, J. (2015). Multi-objective optimization 

of thermal comfort and energy consumption in a typical office room 

using CFD and NSM-PSO. The 21st International Congress on Modelling 

and Simulation (MODSIM 2015), Gold Coast, Australia, November 2015. 

 

 

In modern building design, engineers are constantly facing challenging to 

find an optimal design to maintain a high level of thermal comfort and 

indoor air quality for occupants while minimizing the system energy 

consumption. Over the past decades, several algorithms have been 

proposed and developed for optimizing the heating, ventilation and air 

conditioning (HVAC) system for indoor environment. Nevertheless, the 

majority of these optimization algorithms are focused on single objective 

optimization procedures and require a large training sample for surrogate 

modelling. For multi-objective HVAC design problems, previous studies 

introduced an arbitrary weighting factor to combine all design objectives 

into one single objective function. The near-optimal solutions were 

however sensitive to the chosen value of the weighting factor.  Aiming to 

develop a multi-objective optimization platform with minimal 

computational cost, this paper presents a nondominated sorting-based 

particle swarm optimization (NSPSO) algorithm together with the Kriging 

method to perform optimization for the HVAC system design of a typical 
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office room. In addition, an adaptive sampling procedure is also proposed 

to enable the optimization platform to adjust the sampling point and 

resolution in constructing the training sample. The significant 

computational cost could be reduced without sacrificing the accuracy of 

the optimal solution. The proposed methods are applied and assessed in a 

typical HVAC system and the results indicate that compared to traditional 

methods, the presented approach can handle multi-objective optimization 

in a ventilation system with up to 46.6% saving of computational time. 

 Introduction 

In the modern indoor environment design, driven by the higher 

expectation of occupants and soaring energy cost, indoor thermal comfort 

and energy efficiency are the two main concerns in the heating, 

ventilation and air conditioning (HVAC) systems. To achieve a higher 

system performance, computational fluid dynamics (CFD) simulation 

tools such as ANSYS Fluent, StarCCM+ and OpenFOAM have been widely 

adopted to analyze air distribution and flow characteristics and their 

relationship in thermal comfort and energy consumption (Ravikumar and 

Prakash 2009, Cardinale et al. 2010, Hiyama et al. 2010, Kochetov et al. 

2015, Gangisetti et al. 2016). 

In comparison to the traditional design cycle, CFD simulations offer a 

faster and more economical way for engineers to carry out parametric 

studies, leading towards a more desirable system design. According to our 

previous works (Tu 2008), CFD has been proved to be a reliable 

prediction tool which has been widely adopted in industrial applications 

and academia research. Albeit a near-optimum solution could be 

obtained, the parametric analysis using CFD technique is inherently 

discrete in the design space with pre-selected design variable values. The 

best optimum solution could be “hidden” in the discretized domain 

(Stavrakakis et al. 2011). Furthermore, the accuracy of a near-optimum 

solution depends largely on the “resolution” of the test matrix where 

significant computational costs are required. To enhance the accuracy of 

the near-optimum solution with practical computational time and 
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resource, Artificial neural network (ANN) (Varol et al. 2007, Zhou and 

Haghighat 2009a,b, Stavrakakis et al. 2011, Lu and Xue 2014) or other 

surrogate techniques (Li et al. 2012, Li et al. 2013) are employed as an 

alternative approach to approximate the nonlinearity and complex 

behaviour of the multidimensional systems. One of the first studies using 

CFD-ANN coupled approach to assess the effect of architectural-designs 

on the thermal comfort can be found in (Krauss et al. 1997). In general, 

numerical results predicted by CFD modelling were adopted to establish a 

database for training the ANN or surrogate models. These CFD-trained 

ANN or surrogate models then captured the relationship between design 

parameters and objective function. Optimization procedures using 

gradient methods (Gyulai et al. 2007, Stavrakakis et al. 2011, Welle et al. 

2011) or evolutionary optimization algorithms (Luh and Lin 2011, Li et al. 

2013, Afrand et al. 2015, Zhai et al. 2014) were then performed using the 

trained models for allocating the near-optimum solution within the 

continuous design space. Although significant computational time and 

resource can be reduced, a considerably large amount of CFD results are 

still required for constructing a reliable database for the training of ANN 

or surrogate models. 

On the other hand, most of the HVAC system design normally involves 

multi-objective considerations. Design indices such as predicted mean 

vote (PMV), percentage dissatisfied of draft (PD), age of air, CO2 

concentration and energy cost are commonly considered in literatures. 

Especially, in terms of indoor thermal comfort evaluation, substantial 

research works have done by Ricciardi’s group (Buratti and Ricciardi 

2009, Buratti et al. 2013, Nematchoua et al. 2014, Ricciardi and Buratti 

2015, Buratti et al. 2016, Ricciardi et al. 2016). In most previous works, a 

single objective function was constructed by aggregating several design 

indices using pre-defined weighting factors (Laverge and Janssens 2013, 

Li et al. 2013). One particular disadvantages of this method is that the 

optimal solution could be sensitive to the values of the weighting factors. 

In other words, different values of weighting factors could result in 

substantially different solutions. The weighting factors must be therefore 

chosen carefully based on subjective factors such as engineering or expert 

judgements. Furthermore, the optimization procedure gives only one near 
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optimal solution where there is no flexibility for the designer to strike a 

balance or “trade-off” of the conflicting parameters. For example, a lower 

indoor temperature may be preferable in summer which is in conflict 

with the goal to minimize energy consumption. 

As an attempt to overcome the aforementioned shortcoming, in this 

study, we propose the use of a nondominated sorting-based particle 

swarm optimization (NSPSO) algorithm to achieve multi-objective 

optimization without having to use any weighting factors. This 

population-based algorithm, as an improved technique of the basic 

particle swarm optimization (PSO), is capable to obtain a set of 

nondominated solutions (i.e. approximated Pareto front solutions); 

providing the engineers a set of optimal solutions where the most 

appropriate design solution based on professional judgment or end-user 

desire can be chosen (Carrese et al. 2011). Furthermore, to minimize the 

computational requirement for constructing a reliable training database, 

Kriging or Gaussian process regression together with adaptive sampling 

technique is also adopted to dynamically allocate additional CFD 

simulation dataset where there is a higher likelihood of having a near 

optimal solution. A case study is used to demonstrate the feasibility of the 

proposed optimization approach in a real-world HVAC application. 

 Multi-objective optimization methods 

 Basic principles of particle swarm optimization 

Traditional mathematical programming methods for solving both single- 

and multi-objective optimization problems have been successfully 

adopted in many science and engineering problems (Martínez and Coello 

2013). Nevertheless, it is also well known that these methods have 

difficulty in solving non-convex and multimodal problems (Deb 2001). In 

contrast, population-based stochastic optimization methods such as 

Evolutionary Algorithms (EAs) have the advantage of not requiring 

gradient information in the optimization process which could provide 

remedy for this class of problems (Martínez and Coello 2013). Among 
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existing population-based stochastic optimization methods, Particle 

Swarm Optimization (PSO) has proven to be faster in convergence in 

comparison with standard EAs (Hassan et al. 2005). PSO was first 

introduced by (Kennedy 2001) based on the inspiration drawn from 

observations of the social behaviours of insects including learning from 

previous experience and communicating with successful individuals. In 

PSO, each particle has its own position and velocity, which are 

represented by xi and vi, respectively. The position and velocity of the 

particle are updated according to the following equations: 
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+ = + +
            (3.1) 

where pi and pg represent the personal best position and global best 

position, respectively, and the c1 and c2 are two uniform random numbers 

within the range [0, 1]. The φ1 and φ2 are two constants which are usually 

set to 2. The parameter ω decreases with iterations within the range [0.4, 

1.2]. To avoid going out of the search space, both the position and velocity 

are limited within boundaries, [xmin, xmax] and [vmin, vmax], respectively. 

Nevertheless, it is worth noting that the original PSO can only provide 

solutions for single-objective optimization problems. 

  Nondominated sorting based PSO 

Inspired by the works done by (Deb et al. 2002), (Li 2003a) proposed a 

Nondominated Sorting Method to extend the original PSO to multi-

objective optimization problems (MOP) - namely Nondominated Sorting 

based Particle Swarm Optimization (NSPSO). In NSPSO, the updating 

equations for particle position and velocity remain unchanged, but the 

selection of the personal best and global best has been re-designed. Two 

main mechanisms are used to determine the global best among the 

population – 1) nondominated sorting for identifying different fronts, and 

2) crowding distance computed for particles within each front to 

encourage solution diversity. These kinds of information are used to 

select suitable leaders (i.e. global best) at each iteration to guide the 
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particles moving towards the Pareto-optimal Front while still maintaining 

a good distribution of solutions along the Pareto-front. 

a) Nondominated Sorting 

Figure 3.1 shows an example of the nondominated sorting process. 

Considering 2 objectives (i.e. f1 and f2) to be optimized in the process, the 

entire population (i.e. the 10 particles that labelled as 1 to 10) is sorted 

into different levels of fronts according to the domination comparisons 

between particles. The particles in same front are nondominated with 

each other. As depicted in Figure 3.1, Front 1 is the highest-level 

nondominated front because all particles in it are not dominated by any 

other particles in the entire population. The main goal of nondominated 

sorting is to classify the whole population into different levels of 

nondominated fronts. The global best particle (leader of the population) 

can be randomly selected from the highest-level front. This kind of 

selection process will push the whole population towards the true Pareto 

Front. More information regarding nondominated sorting can be found in 

(Li 2003a). 

 

Figure 3.1 An example of nondominated sorting process in NSPSO. 

 

b) Crowding distance 
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Unlike in single-objective optimization, maintaining the diversity in a set 

of solutions is vital in a multi-objective optimization (Deb et al. 2002, Li 

2003a). Throughout the optimization process, the leader must be selected 

properly to avoid local optimal aggregation of the whole population. In 

NSPSO, computing the crowding distance values among particles in the 

highest-level of nondominated front is used to select leaders that are both 

good and far apart from each other. Inspired by (Deb et al. 2002), we 

introduced a new way to calculate the crowding distance. Figure 3.2 

Crowding distances among individuals in the highest-level nondominated 

front. shows an example of the crowding distance among particles. For 

each particle, the crowding distance is defined as the following: 

1
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                                        (3.2) 

The particle with a higher crowding distance value will have a high 

probability to be selected as the leader. Consequently, particles in the top 

front are likely to maintain a good level of population diversity. 

 

Figure 3.2 Crowding distances among individuals in the highest-level 
nondominated front. 

 

Compared with other MOEAs, such as NSGAII and decomposition-based 

MOEAs, NSPSO has the advantages on running speed and convergence. As 



 

38 
 

the main goal of this study is to save computational cost, NSPSO was 

selected to conduct multi-objective optimization. 

 Surrogate modelling 

Evolutionary optimization algorithms are efficient in obtaining a 

representation of the Pareto front for the MOP (Carrese et al. 2011). 

However, generating all the elements in an objective array by simulations 

could still be computationally demanding. Previous studies have adopted 

surrogate modelling techniques (e.g. ANN (Varol et al. 2007, Lu and Xue 

2014) and Support Vector Machine (SVM) (Zhao 2009)) which is trained 

by computational simulated samples to achieve substantial saving in 

computational time and resources.  However, to ensure its accuracy, ANN 

and SVM require considerably large training samples which pose 

significant burden on the computational cost. Alternatively, other than the 

ANN and SVM algorithms, the Kriging method has aroused much attention 

due to its capability in achieving high prediction accuracy with relatively 

small training sample size. Aiming to minimize the computational cost for 

large training samples, Kriging method is therefore adopted and 

incorporated with NSPSO in the present study. A brief introduction to the 

Kriging method is presented in this section. More detailed derivation and 

formulation of the Kriging method can be found in (Forrester et al. 2008) 

and the references therein. The Kriging technique provides the best linear 

unbiased estimator of the unobserved fields based on the sampled data 

(Journel and Huijbregts 1978). The basic idea of Kriging is to predict the 

value of a function at a given point by computing a weighted average of 

the known values of the function in the neighborhood of the point, which 

is expressed as: 

1
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where ˆ( )Lz x  represents a local estimation at the data location Lx , ( )z x  is 

the sampled value at the data location x and  represents the weighting 
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coefficient which can be calculated by minimizing the estimation 

variance: 
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subjects to the unbiased condition: 

ˆ[ ( ) ( )] 0L LE z z− =x x                                          (3.5) 

and the normalization condition: 
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The weighting coefficient   in Equation (3.3) can be solved using a 

quasi-Newton optimization method or other similar algorithm (Gano et al. 

2006). Finally, the prediction value at the unobserved location can be 

given by Equation (3.3). 

 Case description 

 CFD modelling and validation 

To assess the feasibility and performance of the aforementioned 

approach, this investigation focuses on a practical HVAC design 

optimization case study where the air quality, thermal comfort and 

energy consumption of a typical office room are optimized against the 

supply air velocity and supply air temperature (Zhou and Haghighat 

2009a, Li et al. 2013). The case study is constructed with a reference to a 

full-scale experimental measurements reported by (Yuan et al. 1999). 

Figure 3.3 shows a three-dimensional representation of the typical office 

room. According to the experimental setup, the outside temperature is 

26.7°C, and room temperature is maintained between 23.3°C - 26°C using 

displacement ventilation system. The supply cooled air is discharged one 
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side at the low level of the room (i.e. label 1 in the figure) and the return 

air leaves the room from the exhaust at the center of the ceiling (i.e. label 

2). Two heat sources mincing two office workers were placed in the room 

(i.e. label 3 and 4). Computers and lightings were also dissipating heat to 

the room. In this study, all simulations are assumed to be steady state 

where ideal gas law were adopted for the air properties. More details of 

boundary conditions have been tabulated in Table 3.1. Based on the 

previous work by Yuan et al. (1999), experimental measurements were 

carried out within an environmental chamber where solar radiation 

contribution was neglected. To validate our CFD with the experimental 

data, no solar radiation is incorporated in the simulation. 

 

 

Figure 3.3 The geometry layout of the typical office room. 
 

Table 3.1 The boundary conditions adopted in the CFD simulations. 

Number Name Boundary details Comments 

1 Air-conditioning 
Normal speed & 
Static temperature 

Controlled 
variables 

2 Exhaust Average static pressure 0   [Pa] 

3,4 Occupant Temperature 37  [°C] 

5,6 Desktop Heat flux 108.5[W/m2] 

7,8 Table Adiabatic ------- 

9 
Partition 
window 

Heat transfer coefficient 3.7[W/(m2K)] 

10,11 Furniture Adiabatic ------- 

12-17 Light Heat flux 34[W/m2] 
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 Room wall Heat transfer coefficient 0.19[W/(m2K)] 

 

A CFD model of the office room was built in ANSYS Workbench, which 

contains in total 1,043,811 nodes and 2,849,852 elements. To ensure the 

validity of the CFD simulation, predictions of the CFD model were first 

validated against the full-scale experimental data reported by (Yuan et al. 

1999). In the experiment, a hot-sphere anemometer system was used for 

air velocity, velocity fluctuation measurements and a thermocouple 

system was used to measure surface and air temperatures. Figure 3.4 

shows the comparisons between the measured and predicted air 

temperature and velocity along the vertical line at the center of the office 

room where supply air temperature and velocity were maintained at 17°C 

and 0.09m s-1 respectively.  

 

Figure 3.4 Comparisons between the CFD simulation results and experimental data. 

 

As depicted, the predicted temperature variation was successfully 

captured by the CFD model and compared well agreed with the 

measurements. Similarly, the velocity profile was also in good agreement 

with the experiment. These encouraging results show the reliability of the 

CFD predictions and its capability for providing sampling data for the 

design optimization procedures. 
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 Optimization objectives 

In the presented study, the Predicted Mean Vote, CO2 concentration, and 

energy consumption were adopted to quantitatively assess the 

performance of the HVAC system in terms of thermal comfort, air quality 

and energy efficiency respectively. The definition of the Predicted Mean 

Vote, CO2 concentration, and energy consumption are briefly discussed in 

the following sections.  

a) Predicted mean vote 

The predicted mean vote (PMV) is a thermal comfort evaluation index 

which was first introduced by (Fanger 1972). It is used to assess indoor 

thermal comfort based on heat balance and a set of experimental data 

collected from a given controlled climate chamber. The index represents 

the mean subjective satisfaction with the indoor thermal environment 

with a number between -3 (cold) and +3 (hot). The zero value is defined 

as the ideal representation of thermal neutrality. The PMV index is 

evaluated based on an empirical equation which is correlated to the local 

air temperature, mean radiant temperature, relative humidity, air speed, 

metabolic rate, and clothing insulation (Fanger 1972). In this study, we 

assume that the occupants are seated in quiet position (i.e. metabolic rate 

of 1.0 met) with a summer clothing (i.e. 0.2 clo), and we evaluated the 

average PMV based on the predicted field information obtained from CFD 

simulations. 

b) CO2 Concentration 

To assess the air quality within the space, the concentration of CO2 

emitted by occupants throughout the office room was also resolved in the 

CFD simulation. In the simulation, the CO2 is emitted from the occupants 

with the emission rate 0.87L min-1. Similar to the average PMV, the 

average CO2 concentration was extracted from the predicted CFD field 

information. 

c) Energy consumption 
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Following the previous study (Zhou and Haghighat 2009a, Li et al. 2013), 

the energy consumption of the air-conditioning system is divided into two 

parts: ventilation fan power and the cooling or heating load. Energy 

consumption in the two parts is determined as follow: 

/

/

( )

( )

air
fan

fan

cooling heating supply p return supply

outdoor outdoor return

total fan cooling heating

P V
E

E m c T T

m h h

E E E
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=

= −

+ −

= +

                     (3.7) 

where P is air pressure difference of the fan and V is volume flow rate of 

supply air (m3 s-1), m represents the mass flow rate of the air (kg s-1), cp 

is the specific heat capacity of air, T represents temperature, h is the 

specific enthalpy of air (J kg-1) which is related to air temperature and 

relative humidity. Similarly, we can get energy costs from the CFD-Post 

package. 

 Optimization results and analysis 

 Multi-objective optimization platform 

As mentioned earlier, the aim of this case study is to optimize the value of 

|PMV|, CO2 concentration and energy consumption against a set of control 

design parameters (i.e. supply air velocity and temperature). However, 

these three indices are in conflict with each other, which means there 

does not exist an optimal solution where all indices are at the minimal 

value. Weighting factors were used to get trade-off solutions in previous 

research (Zhou and Haghighat 2009a, Li et al. 2013). In order to overcome 

the drawbacks of the weighting methods, we proposed a multi-objective 

optimization platform by integrating the CFD modelling technique, 

Kriging method and NSPSO algorithm to consider the three objectives 

simultaneously and obtain the corresponding Pareto Front of without any 

weighting factor. A schematic of the methodology is depicted in Figure 

3.5. 
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Figure 3.5 CFD-based multi-objective optimization system framework. 

 

As depicted in the flowchart, the CFD simulation technique is adopted to 

establish the sample data as the input of the Kriging method. Following 

the previous studies (Zhou and Haghighat 2009a, Li et al. 2013), a total of 

25 CFD simulations with different combinations of controlled variables 

have been carried out (see also Figure 3.6). Similar to the validation study, 

all simulations were carried out using the ANSYS CFX 14.5 with the 

identical mesh resolution and boundary conditions (expect the supply air 

temperature and velocity). Based on the simulated results, local air 

velocity, temperature and associated parameters were extracted for 

evaluating the corresponding PMV, CO2 concentration and energy 

consumption value. All the obtained values (i.e. a total of 25 set of data) 

were then used to construct the sample data for the Kriging method. In 

terms of thermal comfort, we would like the PMV value to be as close to 0 

as possible. At the same time, we also would like to minimize CO2 

concentration and energy consumption. In order to describe the 

conflicting relationships among these three objectives, we listed three 

groups of typical values in Table 3.2. The first row in Table 3.2 shows the 

point where the PMV is the closest to 0 while both the CO2 concentration 
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and the energy consumption are quite large. Similarly, the second and the 

third row show the points where the CO2 concentration and the energy 

consumption are minimum, respectively, while the other two objectives 

are quite large. Therefore, these three objectives are conflicting with each 

other. We cannot find a point where all the objectives are at their 

minimum value. As we mentioned before, traditional methods using 

weighting factors for solving MOP are inefficient. In this paper we 

developed a multi-objective optimization platform based on NSPSO to 

solve MOP efficiently. The details and results will be described in the 

followings. 

 

Figure 3.6 Definitions of inlet boundary conditions in CFD simulations. 
 

Table 3.2 Three typical groups of values minimizing PMV, CO2, Energy, respectively. 

T(°C) V(m/s) PMV CO2 Energy 

19.5 0.19 -0.063 0.078 863.6 

21 0.5 -0.964 0.028 1671.8 

21 0.1 0.327 0.083 334.4 

  

In order to study the accuracy of the Kriging prediction, 16 more CFD 

simulations were added, which are located in the center of each sampling 

grid. We compared the values of the three objectives exported from the 

CFD-Post with the values predicted by the fully Kriging surrogate model 

(i.e. the Kriging model using all the 25 CFD sample data defined in Figure 

3.6). The percentage errors between the CFD results and the Kriging 

prediction are shown in Figure 3.7. From Figure 3.7, we can see that the 
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maximum errors of prediction for PMV and CO2 are less than 5.2% and 

the maximum error of prediction for Energy is less than 0.6%, which 

indicates the Kriging prediction has achieved a good accuracy. 

 

Figure 3.7 Percentage errors of Kriging prediction for the three objectives - PMV, 
CO2 and Energy, respectively. 

 

Afterward, a three-objective optimizer based on the NSPSO algorithm was 

implemented using the MATLAB R2013b. In the optimization procedure, 

the Kriging surrogate method was used to calculate the fitness values for 

each particle in the population. The initial size of the swarm population 

was 200 and the maximum iteration number was set to be 100. Figure 3.8 

shows the trade-off solutions given by the NSPSO algorithm. The blue dots 

represent the finally reserved particles in the objective space, which 

constitute a set of solutions approximating the Pareto-Front. In order to 

compare our results with the results given by weighted method 

introduced in (Li et al. 2013), the previous results are also plotted in 

Figure 3.8 (shown as red stars). Each red star in Figure 3.8 represents a 

solution given by a set of fixed weighting factors. From the comparison, 
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we can notice that the solutions given by previous method (red stars) are 

only a small subset of the Pareto front given by our approach. It is also 

noted that our approach does not depend on any weighting factor, and 

after only one simulation run, a set of trade-off solutions can be found in 

the objective space, providing the designers with the choices of a range of 

trade-off solutions. 

 

Figure 3.8 Comparison of solutions given by NSPSO and solutions given by 
Weighting method in 3D objective space. 

 

 Adaptive sampling for Kriging 

The above section has clearly demonstrated the capacity of the proposed 

multi-objective optimization platform. By replacing the CFD simulations 

with the Kriging method, the optimization process could reduce 

significantly the computational time. Nevertheless, in constructing the 

sample data, CFD simulations are uniformly distributed within the design 

range (see Figure 3.6). The main disadvantage of uniform sampling is its 

high cost, because the sampling density must be uniformly high 

everywhere in order to meet the sampling requirements in some 

particular area. Nevertheless, in most practical cases, the final optimal 

solutions are normally concentrated in a certain region within the design 

space. Therefore, substantial computational time could be wasted in 

constructing the sample data for some virtually redundant samples which 

are far away from the optimal solution. To strike a balance between 
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accuracy and computational cost, the sampling points should be 

strategically placed in the region where has a higher likelihood of getting 

optimal solutions rather than uniformly distributed throughout the 

design space. To achieve this, we introduced an adaptive sampling 

procedure to determine sampling point. Adaptive sampling designs, also 

known as response-adaptive designs, are ones where the accruing data 

(i.e., the observations) are used to adjust the experiment as it is being run 

(Hardwick and Stout 2016). The adaptive sampling method is then 

adopted to govern the construction of the sample data where sampling 

points are allocated based on the likelihood of having optimal solution 

within the region. A flowchart showing the procedures in constructing the 

sample data for Kriging and its integration with the multi-objective 

optimization platform is also shown in Figure 3.9. 

 

 

Figure 3.9 Framework of the CFD-based multi-objective optimization approach 
with adaptive sampling procedure. 

 

To assess the potential computational saving, the adaptive sampling 

procedure will be applied to the same HVAC design optimization case 

study and compared against the results from uniform sample data (i.e. as 

presented in previous section). To make a comparison with the previous 
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result, instead of locating the sampling point in any point within the 

design space, the adaptive sampling method is applied to determine the 

next sampling location based on halving method. This is to ensure the 

sampling locations are consistent with the uniform sampling method. To 

initialize the process, four sampling locations (red stars in Figure 3.13) 

were firstly specified at all corners of the design space (i.e. corner at the 

minimum and the maximum value of supply air temperature and velocity, 

which are (17, 0.1), (17, 0.5), (21, 0.1), (21, 0.5)). Based on the four 

sampling locations, Kriging method was then applied to evaluate the 

response surface. The NSPSO algorithm was then performed to evaluate 

the distribution of optimal particles throughout the design space.  

After the CFD simulations are finished, we generate the response surfaces 

using Kriging prediction. Then we run the NSPSO for 100 times and 

calculate the distribution density of optimal particles in design space. The 

distribution density contour is shown in Figure 3.10(a) and the column 

charts in Figure 3.10(b) and Figure 3.10(c) indicate the projections of the 

density contour in temperature plane and velocity plane, respectively. As 

mentioned before, in order to make a comparison with the case described 

in Section 3.4.1, we want the sampling locations in this adaptive case 

would be a subset of the locations described in Figure 3.6. It is easy to 

reach this goal by using halving method. Therefore, in Figure 3.10(b) and 

Figure 3.10(c), the red line in the middle cuts the plane into two sides and 

for each side, reserving or removing depends on the distribution density 

of the optimal solutions in the areas. For example, in Figure 3.10(b), the 

right side (i.e. T > 19°C) should be reserved for adding more sampling 

points rather than the left side (i.e. T < 19°C), because there located much 

more optimal solutions (98%) on the right segment than the optimal 

solutions on the left segment (only 2%). Differently, in Figure 3.10(c), 

both sides are required to add more sampling points, because the results 

show that there are almost as many optimal solutions on both sides (57% 

vs 43%). The promising area after first halving process has been 

determined which is shown in Figure 3.12(a) (green shadow) and 

accordingly, the green points in Figure 3.13 are inserted to be simulated 

in next iteration. The first iteration of process described in Figure 3.9 has 

been finished. The next iteration process is almost same except with 4 
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more CFD sample data used in the Kriging prediction. The distribution 

density contour and having analysis are shown in Figure 3.11. The 

acquired promising area in the second iteration process is indicated in 

Figure 3.12(b) (red shadow) and the blue points in Figure 3.13 are added, 

accordingly. Since the minimum sampling resolution has been reached, 

we stop adding more sampling points. Figure 3.13 illustrates the final CFD 

sampling locations. 

 

Figure 3.10 Probability density of optimal solutions in the design space (initial 4 
CFD sampling locations). (a) Contour of probability density in 2D design space. (b) 

Projected probability density on the temperature design space. (c) Projected 
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probability density on the  velocity design space. 

 

 

Figure 3.11 Probability density of optimal solutions in design space (initial 4 CFD 
sampling locations + 4 new adding sampling locations). (a) Contour of probability 

density in 2D design space. (b) Projected probability density on the temperature 
design space. (c) Projected probability density on the velocity design space. 
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Figure 3.12 Halving process in design space. (a) Halving process in first iteration of 
adaptive sampling procedure cutting the whole design space into 4 parts. (b) 

Halving process in second iteration of adaptive sampling procedure cutting the 
promising areas (green shaded in (a)) into 4 parts. 

 

 

Figure 3.13 Final CFD Sampling locations in the adaptive sampling case. 
 

With the adaptive sampling procedure, one can notice that the final 

sample data only constructed with 13 sampling points. Therefore, only 13 

CFD simulations were required in constructing the sample database. 

Table 3.3 shows a comparison of the required total computational time 

(i.e. the total of CFD simulation and the optimization computational time) 

for both cases. The table clearly shows that the adaptive sampling 

procedure could reduce up to 46.6% of the total computational time. 
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Table 3.3 Comparisons of CPU time consumptions (500 particles in the 
optimization process). 

Approach Procedure CPU Time (s) Iteration
s 

Total CPU Time (s) 

Traditional 

CFD simulation 7.904E+04 25 1.976E+06 

Single objective PSO 1.168 ~ 500 
 

~ 5.840E+02 

NSPSO + Kriging 
CFD simulation 7.904E+04 13 1.028E+06 

NSPSO 1.372E+02 200 2.744E+04 

Total Saved CPU Time 9.211E+05(s) (46.6%) 

 

Although a significant saving has been achieved, it is essential to verify 

the accuracy of the optimal results with less sample data. Figure 3.14 

shows the comparison of the predicted Pareto Front with the uniform 

sample data and the adaptive sampling procedure. As depicted, the blue 

dots are the solutions obtained from the uniform sample data; while 

solutions for adaptive sampling are represented in red dots. The figure 

clearly shows a good agreement of the Pareto Front obtained from both 

cases; demonstrating that the NSPSO algorithm together with the Kriging 

method are capable to maintain the accuracy of the optimal solution while 

achieving significant saving with less sample data. 
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Figure 3.14 Comparisons of Pareto Fronts between using traditional CFD sampling 
and using adaptive CFD sampling (blue - traditional, red - adaptive). 

 

A closer examination on the Kriging method in both cases is also 

presented here. Figure 3.15 shows the comparisons of the prediction 

design objectives (i.e. PMV, CO2 concentrations and energy consumption) 

based on the uniform sampling data and the 13 sample data from 

adaptive sampling. As depicted, prediction differences between both 

cases are represented in the contour plot; while the probability 

distribution of the optimal solutions were also presented in while contour 

lines. As depicted, majority of difference between both cases are located 

on the left half of the design space where most of the sampling points 

were eliminated by adaptive sampling procedure. This clearly exemplifies 

that the adaptive sampling procedure has strategically allocated the 

sampling points where the optimal solutions are highly likely to be found. 

While relative error could be higher in other region, the lack of sampling 

data did not affect the accuracy of the final optimal solutions. 



 

55 
 

 

Figure 3.15 Contours of Kriging prediction differences between using 13 CFD 
samples and 25 CFD samples (PMV, CO2, Energy, respectively). 

 

 Conclusions 

A multi-objective optimization platform has been proposed and 

developed by incorporating the Nondominated Sorting based Particle 

Swarm Optimization (NSPSO) algorithm with the Kriging method. To 

remedy the drawback of some previous studies, the NSPSO algorithm 

removes the necessity of using weighting factors in constructing the 

objective function and obtains the corresponding trade-off solutions (i.e. 

Pareto Front) for the given objective space. With the visualization of 

solutions in objective space, designers could easily pick up the most 

appropriate design solution according to their own judgments and 

preferences, rather than being struggled to decide the value of weighting 

factor in advance. 
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Special attention is also taken to minimize the computational cost where 

considerably large training sample based on Computational Fluid 

Dynamics (CFD) simulations are usually required for the surrogate 

modelling. The Kriging method where the best linear unbiased value of 

the unobserved fields is estimated based on the known sampled data is 

adopted in the present study. One particular advantage of the Kriging 

method is its capability in achieving high prediction accuracy with 

relatively small training sample size. Predictions from the Kriging method 

are compared and assessed with the CFD predictions. The comparison has 

shown that the Kriging method provides excellent accuracy in prediction 

with the maximum error of 5.12%. In addition, with the proposed 

adaptive sampling procedure, further reduction of computational cost 

could be realized. Based on the given case study, the optimization 

platform achieves a saving of 46.6% of CPU time without sacrificing the 

accuracy of the optimal solution. 

In this study, for assessing the performance of the proposed optimization 

algorithm, a benchmark case study that has been validated by many 

researchers (Yuan et al. 1999, Zhou and Haghighat 2009a,b, Li et al. 2012, 

Li et al. 2013) was selected. To further examine the capacity of the 

algorithm, research work is currently carrying out to adopt and assess the 

proposed method with a more complex optimization case in related to the 

HVAC design of an airliner cabin occupied with passengers (Yan et al. 

2014). 

  



 

57 
 

  

Multi-fidelity surrogate algorithm for 

fire origin determination 

The main findings of this chapter have been published in: 

• Li, N., Lee, E.W.M., Cheung, S. C. & Tu, J. (2019). Multi-fidelity 

surrogate algorithm for fire origin determination in compartment 

fires. Engineering with Computers.  IF = 1.951, Q1 

 

With the significant growth of the world population, our cities are 

becoming more and more crowding. In this situation, any fire occurring 

would cause severe consequences, including property damage and human 

injuries or even deaths. In assessing the fire cause, the fire origin 

determination is a crucial step identifying origin of fire outbreak and the 

sequential fire and smoke propagation. Traditionally, fire investigators 

relied upon the visible fire damages at the fire scene to determine the 

location of fire originated based on their own professional experience. 

The fire origin determination process is however subject to the expert 

interpretation inherently embedded in the qualitative analyses. Aiming to 

develop an alternative methodology assisting the fire investigation, we 

proposed a new Multi-fidelity Kriging algorithm to quantitatively 

determine the fire origin based on the soot deposition patterns predicted 

by the numerical simulations. Advantage of the Multi-fidelity Kriging is its 

capacity in maintaining a reliable accurate prediction with very limited 

computational requirement in simulations. The algorithm is tested 

against a total of 41 different fire origins in a single compartment (i.e. 5 m 

width × 5 m length × 4 m height) with only one doorway for ventilation. 

The test results demonstrated that the Multi-fidelity Kriging algorithm is 

capable to predict the fire origin based on the simulated soot deposition 

pattern while posing significant saving to the computational cost by 
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correcting low-fidelity samples based on knowledge extract on high-

fidelity simulation results. 

 Introduction  

Fire origin determination is a challenging task in forensic sciences owing 

to the complex transient fire behaviour and its inherent nature in 

destroying evidences. One of the key hypothesis of the fire investigator is 

the correct identification of the fire origin (Association 2013). For most of 

the fire scenarios, the determination of fire origin is crucial for an 

accurate and reliable fire cause assessment. Today, with the development 

of computational technology, the application of fire simulation for fire 

scene reconstruction has gained measured success in the past decades. 

One of the representative studies is the fire scene reconstruction by fire 

modelling for the Station Nightclub fire occurred in Rhode Island of the 

United States on the 20th February 2003 (Bryner et al. 2007, Galea et al. 

2008). The reconstructed fire scene revealed that the burning of the 

convoluted polyurethane foam caused the fire grew drastically within 90s 

after the ignition; generating large amount of smoke and hot gases. 

Another successful example is the reconstruction of the arson fire scene 

occurred in a 10 storeys hotel in Taoyuan city of Taiwan (Shen et al. 

2008). The arson fire was lit with gasoline poured on the hallway carpet 

which accelerated the fire growth and spreading rate; restricting the 

evacuation of occupants and resulting 5 deaths and 10 injuries. Recently, 

a number of successful fire reconstruction studies have been carried for 

various serious fire cases using the latest fire modelling technique (Chi 

2013, Yuen et al. 2014, Jahn et al. 2015). These studies clearly exemplified 

the feasibility of using computational fluid dynamics (CFD) to capture and 

the realistically reconstruct the fire scenarios. Nonetheless, fire 

reconstruction studies are efficient in forward engineering processes 

where fire consequences are predicted based on a known fire size and 

location. Fire origin determinations are unfortunately reserve 

engineering processes where fire consequences or damages are known 

except the fire size or locations. As each CFD simulation requires 

considerable computational time and resources, it is still impractical 
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relying CFD solely for fire investigation; especially for fire origin 

determination where a huge amount of simulations are required to 

support the reversed engineering process. 

Several surrogate methods (also referred as meta methods) have been 

proposed in previous literatures as the fast alternatives to CFD simulation 

(Varol et al. 2007, Zhou and Haghighat 2009a,b, Stavrakakis et al. 2011, Li 

et al. 2012, Li et al. 2013). One of these methods is artificial neural 

network (ANN). Research works done by pioneers (Okayama 1991, Milke 

and Mcavoy 1995, Lee et al. 2000, Li et al. 2001) have proved that ANN is 

an efficient way to be applied in specific fire predictions. Afterwards, in 

recent years, more researchers have put their efforts on improving the 

performance of ANN for some particular scenarios (Lee et al. 2004, Yuen 

et al. 2006, Lo et al. 2009, Maeda et al. 2009, Erdem 2010, Safi and 

Bouroumi 2013). Among them, a good example is from Lee et al.’s work 

(Lee et al. 2004), which proposed a novel ANN fire model that is capable 

to process fire data with embedded noise. One of the main drawbacks is 

that ANN requires large amounts of data for model training to ensure 

reliable prediction accuracy. Previous literature proved that complex 

models like ANNs tend to be overfitting the training data due to the 

nature of the model, without sufficient training data, the model could 

yield inaccurate predictions for unseen data (Atiya and Ji 1997). In 

addition, for constructing the training data, high resolution mesh were 

adopted in the CFD simulations posing significant burden on the 

computational resources and time. Reducing the grid number (i.e. 

adopting a coarse mesh) could certainly save the computational time, 

while the accuracy and reliability would be sacrificed. 

The fire investigator / forensic scientist is responsible to interpret and 

present the significance of the evidence to the justice system (Taroni et al. 

2006). Without reliable testimony of witnesses or video records, the 

investigators are required to determine the fire origin based on the post-

fire observations and expert interpretation of the scene evidence. 

Unfortunately, many of the interpretation and data analysis processes are 

implicit and subject to investigator bias. A survey of 586 fire investigators 

revealed that only 50% had an undergraduate qualification or higher, of 
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which only 18% were related to science or engineering (Tinsley and 

Gorbett 2013). The recent criminal arson case resulted in the execution of 

Cameron Todd Willingham in America exemplifies the irreversible 

consequence due to the failure of the investigator “to acknowledge or 

apply the contemporaneous understanding of the limitations of fire 

indicators” (Beyler 2009). Apart from providing evidence to the legal 

system, fire investigation also plays a significant role in identifying 

potential fire hazard due to improper designs or faulty devices and 

products. 

In this paper, at the first step in developing an alternative methodology 

for assisting the fire investigation, we proposed a new Multi-fidelity 

Kriging algorithm to quantitatively determine the fire origin based on the 

CFD numerical predictions. Unlike the traditional surrogate methods, the 

Multi-fidelity Kriging technique utilizes a few of high-fidelity CFD 

predictions and large numbers of low-fidelity CFD predictions to 

guarantee the prediction accuracy but limited computational time and 

resources. To demonstrate the concept of the algorithm, the scope of this 

paper focuses on a relatively small fire size corresponding to pre-

flashover fire scenario. 

 Methodology  

 Kriging Technique 

As demonstrated in previous studies (Yeoh et al. 2002a, Yeoh et al. 2002b, 

Lee et al. 2004), it is certainly possible to use numerical model predicting 

the fire consequence of several fire scenarios and matching it with the fire 

scene details to identify the plausible fire origin. As discussed above, 

unfortunately, re-constructing the fire scenarios using numerical fire 

model could be time consuming and computationally exhaustive. 

Surrogate techniques (also referred as Meta models in literatures) have 

been proposed as a fast alternative to numerical fire model, such as ANN 

(Lee et al. 2004, Yuen et al. 2006, Lo et al. 2009, Maeda et al. 2009, Erdem 

2010, Safi and Bouroumi 2013) and Support Vector Machine (SVM) (Ko et 
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al. 2009, Zhao 2009, Zhao et al. 2011, Yang et al. 2012). However, to 

ensure accuracy, both ANN and SVM require large amounts of training 

data which still put a significant challenging to the computational cost. 

Alternatively, other than ANN and SVM, the Kriging method has aroused 

much attention due to its capability in achieving high prediction accuracy 

with relatively small training sample size. Kriging is one of the methods of 

interpolation, deriving from regionalized variable theory (Cressie 1990). 

It gives predictions according to the best linear unbiased estimator of the 

distribution of the process based on the spatial analysis on the measured 

data (Stein 2012). Different from complex neural networks, Kriging does 

not rely on large data set for training. In fact, it has the advantage of 

providing accurate predictions with limited measured data. Detailed 

formulations of Kriging have been given elsewhere in (Handcock and 

Stein 1993, Van Beers and Kleijnen 2004, Sivia and Skilling 2006, Wikle 

and Berliner 2007, Forrester et al. 2008). In this section, a brief 

introduction to Kriging is presented as followings. 

Kriging was originally developed in geostatistics by Danie G. Krige (Krige 

1951), to estimate the most likely distribution of gold based on samples 

from a few boreholes. It can also be used to predict a Gaussian process 

governed by prior covariance in other engineering fields. The basic idea of 

Kriging is to predict the value of a function at a given point by computing 

a weighted average of the known values of the function in the 

neighbourhood of the point, which is expressed as: 

1
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where ˆoz  represents a local estimation at the data location ( , )o ox y , iz  is 

the known sampled value at the data location ( , )i ix y and i represents the 

weighting coefficient which can be calculated by minimizing the 

estimation variance: 
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subjects to the unbiased condition: 

https://en.wikipedia.org/wiki/Danie_G._Krige
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ˆ( ) 0o oE z z− =                                                     (4.3) 

and the normalization condition: 

1

1
n

i

i


=

=                                                          (4.4) 

The weighting coefficient i  in Equation (4.1) can be solved using a 

quasi-Newton optimization method or other similar algorithm (Gano et al. 

2006). Finally, the prediction value at the unobserved location can be 

given by Equation (4.1). 

 Multi-fidelity Kriging 

Based on the formulation, Kriging poses great saving of computational 

resources without going through the tedious simulation process as 

required in CFD technique. Nevertheless, similar to other methods, it still 

requires training data extracted from CFD simulation results. For each 

simulation result, to ensure the accuracy, it is well known that high mesh 

resolution is crucial to minimize the discretization and truncation errors 

in the numerical procedures. The high mesh resolution impose significant 

computational burden in constructing the training data. To remedy this 

problem yet retaining the same level of prediction accuracy, we will 

introduce a Multi-fidelity Kriging method where the training data could 

be extracted from a small sample of high quality mesh while majority of 

the rest are constructed by computationally efficient low resolution mesh. 

Multi-fidelity Kriging, also known as Multivariate Kriging or Co-Kriging, 

was originally developed for mineral explorations where measurements 

of different ores are available (De Baar et al. 2015). It calculates estimates 

or predictions for a poorly sampled variable (low-fidelity data) with help 

of a well-sampled variable (high-fidelity data). A full derivation of Multi-

fidelity Kriging can be found in (Forrester et al. 2007). Here we assume 

that we have two sets of data yield to Gaussian process: 
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1 1 1

2 2 2

( ) ( )

( ) ( )

Z s s

Z s s

 

 

= +

= +
                                                (4.5) 

where 1Z  represents the high-fidelity process and 2Z  represents the low-

fidelity process, 1  and 2  are the random errors contained in the high-

fidelity process and low-fidelity process, respectively. There exists 

autocorrelation for each process and cross-correlation between them. 

Multi-fidelity Kriging attempts to predict the high-fidelity process 1 0( )Z s  

using information (autocorrelation and cross-correlation) in the covariate 

2Z  to make a better prediction, as the following: 

1 2 DZ Z Z= +                                                    (4.6) 

where   is regression coefficient and DZ  is a new process representing 

the difference between the high-fidelity process and the low-fidelity 

process, which will correct the low-fidelity data. The whole procedure of 

the proposed method in this paper is shown in Figure 4.1. 

 

Generate boundary FDS 

cases with Fine-Mesh 

settings (Hi-Fi cases)

Run FDS simulations for 

Hi-Fi cases

Start

End

Generate random FDS 

cases with Coarse-Mesh 

settings (Low-Fi cases)

Generate random FDS 

cases with Coarse-Mesh 

settings (Low-Fi cases)

Get the prediction 

parameters using 

Multi-Fidelity Kriging

Predict the fire location 

using Kriging 

according to the Multi-

Fidelity prediction data

Prediction accuracy 

analysis

Extract key parameters 

which describe the soot 

deposition on the side 

walls for all cases

Run FDS simulations for 

Low-Fi cases

 

Figure 4.1 Framework of the proposed fire prediction method based on Multi-
fidelity Kriging. 
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 Soot deposition model 

In most indoor fire cases, the fire materials do not burn cleanly due to 

organics contained in furniture, and thus generate large amounts of soot. 

Some of these soots are deposited on the walls and blacken the surfaces 

(see Figure 4.2 as an example). Since soot are mostly fine particles (i.e. 

range from 0.1 - 10 micron) which suspend in the hot smoke layer before 

deposition, soot deposition pattern could uniquely reflect the flow and 

distribution of smoke layer of each fire case and contains rich information 

of the fire behaviour. Riahi et al. (Riahi et al. 2013) investigated the smoke 

or soot deposition from the hot smoke layer onto wall surface using 

various fuels (i.e. PMMA, PP and gasoline). Their studies have shown that 

soot deposition pattern on the wall can be quantitatively measured using 

digital photographs and digital image analysis. Their measured data also 

validated against the predictions from a thermophoretic smoke 

deposition model with encouraged agreements. They concluded that the 

flame height and fire size could be calculated based on the clean zone area 

(i.e. area without soot deposition) on the wall. Their studies clearly 

ascertained that soot deposition pattern could be one of the effective 

evidences collected from post-fire investigate or predicted from 

numerical simulation for estimating the fire size and identifying the fire 

origin in fire investigation. In this study, soot deposition patterns were 

predicted based on numerical model using CFD technique. A brief 

description of the soot deposition model is summarized below.   
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Figure 4.2 An example of soot deposition patterns on the wall after fire is 
extinguished. 

 

The smoke deposition can be driven by several factors including 

Brownian diffusion, thermophoresis, sedimentation, inertial impaction 

and turbulent diffusion. Previous studies (Talbot et al. 1980, Ciro et al. 

2006, Cohan 2010, Hartman et al. 2012, Riahi et al. 2013) have shown that 

the thermophoretic soot deposition model is capable to give accurate 

prediction of smoke deposition process on walls during fire, by 

comparing the numerical simulation results against the experimental 

results. The governing equation in thermophoretic model is: 

th air
T

air

K
v T

T




=                                                      (4.7) 

where Tv  is deposition velocity of soot particles,   and   are properties 

of air at a film temperature. T  is the gas temperature and thK  is a constant 

value, 0.55. The temperature gradient T  dominates the thermophoretic 

process which can be calculated by the following equation: 

( )gas wall

air

h T T
T

k

−
 =                                               (4.8) 

where h  is the heat transfer coefficient and airk  is the thermal 

conductivity of air. Thus the soot mass deposited on a surface is the 

integration of thermophoretic velocity and optical density with respect to 

time: 
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,

dtT

s g

OD
m A v



 
=   

 
                                               (4.9) 

where A  represents the area of the surface, OD  is the optical density, and 

s,g  is the gas phase mass specific extinction coefficient. Since FDS 5.5.1 

provides a soot deposition model which has been verified by 

experimental data in both Gottuk (Gottuk et al. 2008) and Cohan’s works 

(Cohan 2010), in this paper, we use this embedded model to predict soot 

deposition patterns. 

 Workflow in post-fire investigation 

To help the readers understand how the proposed method would be used 

to help fire investigators locate the fire origin, Figure 4.3 depicts the 

workflow of utilizing the proposed multi-fidelity Kriging technique in 

practical fire investigation. Firstly, the investigators need to measure the 

geometry dimensions of the compartment which was on fire and record 

the smoke patterns on the walls. The next step is to reconstruct a series of 

fire scenarios in FDS where the fire origins can vary among all possible 

locations. The simulation results together with the corresponding fire 

origins could be used to train a Kriging model to provide investigators 

with prediction fire origin according to measured smoke patterns. Finally, 

we can validate the prediction result by running one more FDS simulation 

using the predicted fire origin and comparing the soot patterns from the 

simulation with those from the fire fields. 
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Get into the fire field and 

measure the geometry 

dimensions and record the 

smoke patterns on walls

Generate Multi-Fidelity 

cases by adopting Multi-

Fidelity mesh resolution 

and run all the simulations

Start

End

Reconstruct the fire 

scenario in FDS according 

to the measured geometry 

information with different 

fire origins

Reconstruct the fire 

scenario in FDS according 

to the measured geometry 

information with different 

fire origins

Predict the fire origin 

according to the field 

measurement using 

simulation results as 

training data

Validate the prediction by 

reconstructing the fire 

scenario in FDS with 

predicted fire origin

Extract key parameters 

which describe the soot 

deposition on the side 

walls for all FDS results

 

Figure 4.3 Workflow when the proposed method is used in post-fire investigation. 
 

 Preparation of Fire Scenario and Training 

data  

 Fire Scenario in a single compartment 

To assess the feasibility of the multi-fidelity Kriging for fire investigation, 

this study focuses on a typical single compartment fire case. The typical 

single compartment (i.e. 5 m width × 5 m length × 4 m height) is 

considered with a single two-metre-high doorway as the only ventilation 

opening installed at the centre of the front wall. Detailed information 

about the model is listed in Table 4.1. Aiming to develop a non-biased and 

accurate fire origin determination algorithm based on the post-fire soot 

deposition pattern (location and magnitude), a group of fire scenarios 

were established where all other variables (such as geometry, fuels, heat 

release rate and duration) are assumed to be constant while a raised fire 

bed with the heat release rate of 204.3kW could be varied at any location 

on the floor level. Numerical simulations were conducted to simulate each 

fire scenario using the Fire Dynamic Simulator (FDS, version 5.5.1). 

Together with other field information, soot position pattern on each wall 
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were simulated for each fire scenario using the embedded soot deposition 

model in FDS. After each simulation completed, contour of soot deposition 

patterns on the three vertical walls (except the doorway wall) were then 

extracted together with the known fire origin location as the input of the 

training data for the multi-fidelity Kriging. More details regarding the 

numerical simulations are described in next section. 

 
Table 4.1 Details of the single compartment fire model in FDS. 

Name Length(m) Width(m) Height(m) Comments 

Room 5.0 5.0 4.0 ---------- 

Extended Region 5.0 5.0 8.0 ---------- 

Doorway 0.2 1.0 2.0 ---------- 

Fire bed 1.0 1.0 0.1 Propane 

Wall --- --- --- Isothermal 

 

  Numerical modelling details 

Figure 4.4 shows the isometric view of the geometry arrangement of the 

computational domain for the numerical simulation. To isolate the end 

effect from the boundaries, an extended region was imposed beyond the 

wall boundaries of the single compartment connecting to the doorway. All 

boundaries of the extended region were specified as opening boundary 

condition where static pressure equals to atmospheric pressure (i.e. 101.3 

kpa). All wall boundaries of the compartment were assumed to be 

isothermal. The raised fire sources with the heat release rate of 204.3kW 

were adopted for all fire cases. Figure 4.5 illustrates the location of the 

fire source for a total 41 different fire origin scenarios. As depicted, the 

fire scenarios consist of 16 fire origins uniformly allocated alongside with 

the wall (i.e. 0.5 m away from the nearest wall coloured as red dots in the 

figure). Another 25 fire origins were randomly allocated within the 

compartment floor area (see the blue dots in the figure). All fire origins 

were assumed to be a propane gas burner with a raised fire bed of 0.1 m 

above the floor level. For all fire scenarios, numerical simulations were 
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carried out from the ignition of fire until 1400 seconds where the flow 

field and soot deposition pattern had become steady and fully developed.  

 

 

Figure 4.4 Model of single compartment fire in FDS. 

 

 

Figure 4.5 Sample locations of the fire. Red – with fine mesh setup. Blue – with 
coarse mesh setup. 

 

In terms of the mesh setup, based on our previous works (Cheung and 

Yeoh 2009), to ensure the simulation accuracy, the grid size should range 
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between 4-16 times smaller than the characteristic length scale of a fire 

plume structure (Mcgrattan et al. 1998), which can be calculated as: 

2/5

*

ref ref p

Q
L

T C g

 
=  
 
 

                                        (4.10) 

where Q  is the heat release rate of the fire. With respect to our design fire 

size, the characteristic length is estimated to be roughly 0.5m. As we 

mentioned before, in order to reduce computational cost, multi-fidelity 

cases are adopted. Therefore, we adopted 0.1m for the high-fidelity case 

and 0.2m for the low-fidelity case, which makes the total grid number in 

the high-fidelity case is 8 times of that in the low-fidelity case. In terms of 

the computational time, on a 2.1-GHz 8-core windows 7 machine, the 

high-fidelity case costs 24 hours to complete, while the low-fidelity case 

only consumes 1 hour to finish. Figure 4.6 shows a comparison of grid 

size between the high-fidelity case (fine mesh) and low-fidelity case 

(coarse mesh). The simulation results from these in total 41 cases will be 

used as multi-fidelity data to train the Multi-fidelity Kriging surrogate 

model.  

 

 

Figure 4.6 Comparison of grid size between high-fidelity case (50×50×40 grids) and 
low-fidelity case (25×25×20 grids). 

 

The numerical model has been fully verified by a series of comprehensive 

tests in the authors’ previous study (Cheung and Yeoh 2009), where the 
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numerical predictions of time-averaged velocity were compared and 

validated against experimental measurements. The purpose of validation 

is to verify the robustness of the mathematic models and numerical 

procedures in the simulation and its performance in capturing the 

turbulent air flow behaviours and heat transfer processes during fire. 

With the satisfactory agreement between numerical predictions and 

experimental data as shown in (Cheung and Yeoh 2009), the authors 

would claim that the adopted numerical model is valid and reliable. 

 Soot deposition pattern parameterization 

As shown in Figure 4.2, after the fire is extinguished, the soot deposition 

patterns on wall surfaces clearly reflect the fire behaviour. We can 

simulate a similar soot deposition process in FDS using the embedded 

thermophoretic model. Figure 4.7 gives an example of soot deposition 

contours which is directly exported from FDS simulation results. 

However, the contours contain too much information and thus are too 

complicated to be surrogated using fast alternatives like Kriging. In 

addition, in reality, it is hard to measure the exact value of soot 

concentration while it is easy to get a boundary line of the soot pattern, as 

shown in Figure 4.2. Therefore, in this section, we will introduce a method 

which is capable to extract the boundary line from the soot deposition 

contour. 

 

 

Figure 4.7 An example of extracting the boundary line of soot deposition. The 
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contour shows the soot deposition mass on the wall and the red line is the extracted 
boundary which can be used to describe the soot deposition pattern. 

 

The approach developed by He et al. (He et al. 1998) is adopted to 

determine the boundary line. It is based on least-square techniques as 

shown the following equations: 

( )
       

,
       

l

u

p for y H
y H

p for y H



= 


                                       (4.11) 

where ( )
0

1
H

lp p y dy
H

=   and ( )
1 rH

u

r H

p p y dy
H H

=
−  .

 

The height of the smoke layer above floor of a room is assumed to be 𝐻. 

The headroom is 𝐻𝑟 . A function 𝜙(𝑦, 𝐻) separates the upper smoke layer 

and the lower clear layer by the following equation where 𝑝 is taken to be 

the mass of soot deposited on wall. The least-square approach is to 

determine the height of the smoke layer, ℎ, such that the squared error in 

equation (4.12) is minimized.  

( ) ( )
2 2

0

1 1
min

rHh

l u
h

r h

H p y p dy p y p dy
H H H

  
= − + −       −  

  (4.12) 

An example of such a process is shown in Figure 4.7. The soot deposition 

mass (kg/m2) is plotted as the contour in Figure 4.7 and the bold red line 

indicates the extracted boundary line representing the height of the 

smoke layer. After getting the smoke height, we then used 4 parameters 

(A,B,C,D) to describe that boundary line, where A is the mean height, B is 

the slope of the line, C and D are extracted from a second order fitting 

function of the line, see bellowing for the definition: 

2

( )

( )

...

mean y

slope

A

y

y Cx

B

xD

=

=

= + +

                                        (4.13) 
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In later prediction procedure, we used these extracted 4 parameters to 

describe the feature of the soot deposition on each wall. 

 Results and analysis  

 Performance validation of Multi-fidelity Kriging 

The performance of the multi-fidelity Kriging is crucial in correlating the 

high fidelity CFD prediction with the low one without sacrificing the 

accuracy. Performance assessment for the multi-fidelity Kriging technique 

is firstly presented in this session. A one-dimensional wave function with 

low and high-fidelity attributes is adopted for the assessment which is 

given by the following equations: 

(x) 0.2sin(3 x) + 0.1*cos(9 x)+0.3cos( x)

(x) 0.2sin(3 x) + 0.1*cos(9 x)

HF

LF

f

f

  

 

=

=
          (4.14) 

Training samples were then extracted from the low and high fidelity 

function as an input for Kriging process. Figure 4.8(a) shows the true plot 

of HFf  (black solid line) and the Kriging prediction (red dash curve) with 5 

samples, from which one can observe that there is a huge difference 

between the true values and the predicted values, i.e. in this case, the 

function has been under-sampled due to too small amounts of samples. 

One method to improve prediction accuracy is to add more samples (see 

as Figure 4.8(b) with 20 samples). However, these additional high-fidelity 

training samples would boost the computational cost significantly. Figure 

4.8(c) shows the Multi-fidelity Kriging prediction of the same process HFf  

but with only 5 high-fidelity training samples plus 20 training samples 

from the low-fidelity process LFf . The comparison between Figure 4.8(b) 

and Figure 4.8(c) indicates the replacement of high-fidelity samples with 

low-fidelity samples does not affect the prediction accuracy but could 

help save lots of computational costs. Similarly, Figure 4.9 gives a 2D 

example, where the multi-fidelity process is defined by the following 

equations: 
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2 2

2 2

(x, y) 0.2sin(2 xy) 0.1cos[4 (x y )] 0.3cos[ (x y)]

(x, y) 0.2sin(2 xy) 0.1cos[4 (x y )]

HF

LF

f

f

  

 

= + + + +

= + +

(4.15) 

Figure 4.9(a) gives the true value for reference. Figure 4.9(b) and Figure 

4.9(c) show the predictions by ordinary Kriging with 10 and 50 high-

fidelity training samples, respectively and Figure 4.9(d) shows the Multi-

fidelity Kriging results replacing 50 high-fidelity samples with 50 low-

fidelity samples. From the comparisons of the contours in Figure 4.9, we 

can conclude that Multi-fidelity Kriging can give accurate predictions with 

a few of high-fidelity data plus a large amount of low-fidelity data, which 

helps relieve the computational burden significantly.  

The above assessment clearly demonstrated the significant advantage of 

the Multi-fidelity Kriging in correlating the fine and coarse training data 

input and its capacity in producing high accuracy predictions with limit 

computational cost. On the other hand, it is worth noting that the Multi-

fidelity Kriging works at best when there is a strong cross-correlation 

between the low and high fidelity data. In this study, the multi-fidelity 

data are extracted from the identical CFD package (i.e. FDS) with different 

mesh resolutions (i.e. high-fidelity data – fine mesh, low-fidelity data – 

coarse mesh). In other word, we could assume that predicted results were 

strongly cross-correlated with different level of discretization and 

truncation errors.  
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Figure 4.8 An example of 1-D Multi-fidelity Kriging prediction results. (a) The 
prediction using only a few of high-fidelity data is under sampled and there are 

huge differences between the prediction values and the true values. (b) The 

prediction using a large amount of high-fidelity data is well sampled. (c) The 
prediction using a few of high-fidelity data plus a large amount of low-

fidelity data achieves good prediction accuracy, where the low-fidelity data 
are inaccurate but help to correct the prediction. 
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Figure 4.9 An example of 2-D Multi-fidelity Kriging prediction results. (a) Contours 
of true values for reference. (b) Contours of prediction values using only a few of 
high-fidelity, huge error observed. (c) Contours of prediction values using a large 

amount of high-fidelity, well sampled. (d) Contours of prediction values using 
a few of high-fidelity data plus a large amount of low-fidelity data. 

 

 Fire induced flow pattern and corresponding soot 

deposition profiles 

Similar to the study by Gorbett et al. (Gorbett et al. 2017), numerical 

simulation were conducted using fire dynamics simulator (FDS) to 

develop a matrix of fire scenarios and its corresponding soot deposition. 

As mentioned before, analogue to the degree of damage used by Gorbett 

et al. (Gorbett et al. 2017), the soot deposition profiles based on variety of 

fire origin were predicted and extracted representing the fire 

consequence of each fire scenario.  
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Figure 4.10 Comparisons of flow streamlines and soot deposition against different 
fire locations. (a) Fire is put in the centre. (b) Fire is put at the corner. 

 

Figure 4.10 shows the predicted fire induced flow pattern and its 

corresponding soot deposition contour with respect to two different fire 

origin locations (i.e. central and corner fire). On the left of the figure, the 

isosurface of the hot smoke layer (i.e. at 378K) is depicted while the black 

streamlines trace the fire induced airflow pathway entering through the 

doorway, entraining into the fire and circulating at the upper layer of the 

room. Driven by the entrainment, different locations of the fire origin 

would result in different air flow pattern and hot layer distributions 

within the room; causing different soot deposition patterns on the walls. 

As shown in Figure 4.10(a), for the central fire case, cold air is entrained 

through the doorway towards the central fire marking roughly symmetric 

airflow distributions on both sides of the doorway (i.e. left and right) 

within the room. As shown in the contour, soot deposition pattern on both 
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walls are largely symmetric. The strong entrainment of air also push the 

fire and hot air towards the rear wall causing soot deposition level at the 

rear wall (see also in the figure). On the other hand, for the corner fire 

case as shown in Figure 4.10(b), the fire at the corner induces a strong 

fire plume and ceiling jet at the corner top level; causing higher 

concentrated soot deposition at the edge of right wall near the corner. The 

fire plume incur a ceiling jet carrying soot particles along the ceiling and 

causing soot deposition at the opposite corner (i.e. the rear and left walls).  

The figure clearly exemplifies that physical mechanism of fire induced air 

flow and its corresponding soot deposition pattern under different fire 

origin locations. The soot deposition pattern therefore could pose vital 

information for determining the fire origin locations. More importantly, 

such information could be obtained at the fire scene or predicted by 

validated numerical models. 

 

 

Figure 4.11 Comparisons of parameterized soot profiles among boundary cases. 
 

Furthermore, Figure 4.11 shows the comparisons of parameterized soot 

profiles among boundary cases, indicating a strong relation between fire 
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origin and soot profile. Figure 4.11(a) labels all boundary cases with 

numbers. Figure 4.11(b) demonstrates the mean height (blue dots) and 

the slope (red stars) of the soot boundary line on the back wall in 

corresponding fire cases. As depicted in Figure 4.11(b), one could clearly 

observe that the mean smoke height appears almost symmetric with 

respect to the centre of the wall and the slope of the smoke layer 

increases with the corresponding fire locations. In case of the fire located 

on the left side of the back wall (i.e. location 1 and 2), a negative value of 

slope can be observed, representing the mean height of smoke layer on 

the left half wall is higher than that on the right half wall. An opposite 

trend can be observed while the fire is located on the right side (i.e. 

location 4 and 5), where the slope values turn to positive. In case 3, 

because the fire is located exactly in the centre, the slope of the smoke 

layer is zero, which is consistent with common knowledge. Regarding the 

mean smoke height (i.e. blue line), an extremely high level of smoke layer 

can be observed from case 1 and 5, which is because the smoke is driven 

by the fire plume at the corner flowing straight up towards the ceiling 

(see also in Figure 4.11(b)). Similar features can also be observed from 

Figure 4.11(c) and Figure 4.11(d) which demonstrate the soot profiles on 

the left wall and the right wall, respectively. It can be noted that the mean 

smoke heights in Figure 4.11(c and d) are not symmetric, which is caused 

by the impact of the airflow through the doorway. The above assessment 

clearly exemplified the relation between the soot deposition profiles and 

the locations of fire origin.  

 Prediction comparison between high and low-fidelity 

predictions 

Although multi-fidelity Kriging technique could be adopted saving 

computational resource, the matter requires a strong correlation between 

the high and low fidelity training data. Figure 4.12 shows the comparisons 

of the soot deposition contours between the high-fidelity result (top) and 

the low-fidelity result (below). As depicted, one can observe that there are 

slight differences in the details of the contours (e.g. the yellow curve), 

however, in terms of the clean zone area (i.e. the blue parts of the 



 

80 
 

contour), both of the high-fidelity and low-fidelity predictions exhibit 

similar characteristic within the room. A closer examination on the soot 

deposition pattern on the three walls is shown in Figure 4.13. Following 

the discussion in Section 4.3.3, the boundaries of the clean zone area on 

the three walls were extracted (see the red curve in the figure). 

Furthermore, we compared the boundary lines extracted from the soot 

deposition contours using the method discussed in Section 4.3.3 and the 

results are shown in Figure 4.13. In the figure, the colorful contours show 

the soot deposition on side walls which are exported from FDS directly, 

and the red curves are the extracted lines. The comparisons indicate that 

the low-fidelity results are not 100% accurate but there is a strong 

positive cross-correlation between the high-fidelity results and the low-

fidelity results, which is the basic requirement of the Multi-fidelity 

Kriging. More details about the cross-correlation will be discussed in next 

section.  
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Figure 4.12 Contours of soot deposition on the room walls at 1400 seconds after 
burning of the fire which is put in the centre of the floor. Top: Results from high-
fidelity case (fine mesh). Bottom: Results from low-fidelity case (coarse mesh). 
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Figure 4.13 Comparisons of contours and extract lines of soot deposition on the 
walls at fire location (3.5, 1), in low-fidelity case and high-fidelity case. 

 

 Prediction of fire origin 

A correlation tests for all the parameters extracted from the soot 

deposition pattern (section 4.3.3) between high-fidelity and low-fidelity 

cases were carried out according to (Lewis 1995). Table 4.2 shows the 

cross-correlation coefficients between the predicted the high-fidelity and 
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low-fidelity data. As shown in the table, all cross-correlation coefficients 

are of high value (i.e. greater 0.8) which clearly reflected that all 

parameters embedded a strong cross-correlation link between high-

fidelity and low-fidelity data. In other word, both high-fidelity and low-

fidelity data are reliable as a training database for the proposed Multi-

fidelity Kriging algorithm.  

 

Table 4.2 Cross-correlation coefficients between the high-fidelity data and the low-
fidelity data. 

Parameter Left wall Back wall Right wall 

A 0.8817 0.9590 0.8593 

B 0.8589 0.9719 0.9120 

C 0.8512 0.8270 0.8571 

D 0.8467 0.8022 0.8130 

 

As mentioned before, a series of fire scenarios with a total 41 different 

fire locations (i.e. 16 boundary cases and 25 random cases) within a 

single compartment were developed. The performance of the Multi-

fidelity Kriging algorithm was assessed against the 41 fire scenarios 

database. In each prediction, one of the random cases was selected as the 

unseen data. The rest of the 40 cases (including 16 boundary cases and 24 

random cases) were utilized for training the algorithm. All high-fidelity, 

multi-fidelity and low-fidelity data were utilized as the training sample 

(except the selected unseen case). Predictions were then made by the 

algorithm determining the fire origin location of the unseen case based on 

the unseen soot deposition pattern. Table 4.3 lists the absolute errors 

between the true location and the predicted fire origin location for all the 

25 random cases. As expected, in general, predictions based on all high-

fidelity database are in higher accuracy in comparison to those based on 

low-fidelity database. More importantly, predictions based on the multi-

fidelity database retain almost identical accuracy compared to all high-

fidelity database. A closer examination on the prediction accuracy can be 

found in Figure 4.14, which shows the cumulative probabilities calculated 

based on the normalized distribution of the prediction errors. As 
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depicted, in case one taking 95% as the confidence interval, the prediction 

errors of using high-fidelity training data, multi-fidelity training data and 

low-fidelity training data are 0.89m, 0.90m and 1.31m, respectively. By 

using only 16 high-fidelity simulation data, the algorithm could capture 

the correlation between the high-fidelity and low-fidelity simulation 

results and produce accurate predictions almost comparable to those 

made by all high-fidelity training samples. This clearly demonstrates the 

robustness of the algorithm. More importantly, without scarifying the 

accuracy, the algorithm poses significant computational saving in 

constructing the training samples. In this study, since only 16 out of 41 

cases require high-fidelity simulation results, the multi-fidelity Kriging 

algorithm managed to reduce the associated computational time by 58%.  

 

 

Figure 4.14 Cumulative probability plots of prediction error (high-fidelity, multi-
fidelity and low-fidelity, respectively). 
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Table 4.3 Absolute errors between the true location and the predicted location. 

 

 Conclusions  

A novel Multi-fidelity Kriging algorithm for fire forensic investigations 

was proposed in this paper, which is capable to quantitatively determine 

the fire origin based on the soot deposition patterns that could be 

measured in the post-fire fire scene or predicted by means of numerical 

simulations. Aiming to develop an alternative methodology assisting the 

fire investigation, the proposed methodology does not involve expert 

True location High-Fidelity Multi-Fidelity Low-Fidelity 

+ 
   x           y      Predicted 

location 
Error (m) Predicted 

location 
Error (m) Predicted 

location 
Error (m) 

 2.4 0.4 2.40 0.13 0.27 2.19 0.31 0.23 3.31 0.06 0.98 

 1.1 1.6 1.07 1.63 0.04 1.16 1.69 0.11 2.11 1.60 1.01 

 1.4 -1.6 1.85 -1.45 0.47 0.73 -1.86 0.72 1.40 -0.92 0.68 

 3.5 1.2 3.02 1.34 0.50 3.94 0.83 0.58 3.53 1.51 0.31 

 4.1 -1.6 4.30 -0.76 0.87 4.14 -0.88 0.72 3.30 -0.69 1.21 

 1.8 0 1.99 0.07 0.20 1.98 0.05 0.18 2.25 0.01 0.45 

 3.2 0 3.59 0.40 0.56 3.87 0.00 0.67 3.21 0.03 0.03 

 4 1.1 4.24 0.53 0.62 4.25 1.49 0.46 3.67 0.91 0.38 

 3.9 -0.1 3.17 0.51 0.95 2.96 -0.03 0.94 3.23 0.04 0.69 

 4.3 -0.4 4.54 -0.94 0.60 3.56 0.02 0.85 2.94 0.05 1.43 

 0.7 -0.6 0.77 -0.95 0.36 1.14 -0.84 0.50 1.39 -1.47 1.11 

 0.9 0.8 1.41 0.68 0.53 1.16 1.22 0.50 1.46 0.82 0.56 

 1.1 0.2 1.32 0.09 0.24 1.35 0.39 0.32 1.13 -0.18 0.38 

 1.7 0.7 1.45 0.74 0.25 1.75 0.87 0.17 2.53 0.46 0.87 

 1.8 -1.4 1.38 -1.55 0.45 2.28 -1.17 0.53 2.65 -1.55 0.86 

 1.8 -0.4 1.74 -1.18 0.78 1.81 -0.26 0.14 1.63 0.29 0.71 

 2.2 1.6 2.46 1.22 0.46 1.96 1.21 0.46 1.87 1.19 0.53 

 2.3 -0.8 2.07 -1.25 0.51 2.36 -1.34 0.55 2.65 -1.82 1.08 

 2.4 0.9 2.02 1.03 0.40 2.50 0.90 0.10 2.54 1.08 0.23 

 3 -1.2 3.27 -0.79 0.49 3.05 -1.43 0.24 3.43 -1.24 0.44 

 2.1 1.4 1.49 1.32 0.61 2.84 1.49 0.75 2.89 1.28 0.80 

 3.1 -0.8 2.74 -0.72 0.37 3.22 -0.67 0.18 3.85 -0.75 0.75 

 3.1 0.6 3.17 0.52 0.11 2.95 0.66 0.16 2.52 0.09 0.77 

 3.9 1.2 3.61 0.80 0.49 3.89 1.29 0.09 4.07 0.29 0.93 

 2.7 -1.4 2.47 -0.68 0.76 2.55 -0.78 0.64 2.27 -1.09 0.53 
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interpretations and professional judgments in process, which could 

eliminate the inevitable subjective bias and human error in the 

determination process. A series of fire scenarios (i.e. totally 41 cases) 

based on a single compartment fire situation was utilized for assessing 

the performance of the proposed Multi-fidelity Kriging algorithm. Soot 

deposition pattern on the compartment wall were predicted by the widely 

adopted fire CFD package - Fire Dynamics Simulator (FDS). The predicted 

soot deposition patterns on three vertical wall surfaces were extracted 

and parameterized into 4 parameters describing the boundary line of the 

pattern. Performance assessment shows the algorithm could capture the 

correlation between the high-fidelity and low-fidelity simulation results 

and produce accurate predictions almost comparable to those made by all 

high-fidelity training samples. Taking 95% as the confidence interval, the 

prediction errors of using high-fidelity and multi-fidelity training data are 

of 0.89m and 0.90m, respectively. More importantly, without scarifying 

the accuracy, the multi-fidelity Kriging algorithm managed to reduce the 

associated computational time for constructing the training sample by 

58%.  

As a preliminary validation of the proposed approach, the authors built a 

single compartment fire model in this paper. Predictions of fire origin in 

complex geometries (e.g. multi-compartments) is subject to on-going 

research work. In this paper, we used propane as the burning material in 

the CFD model, which is a relative lightly sooting fuel, where the level of 

soot concentration is 10-5 kg/m2. Most of the building fires involve 

burning heavily sooting materials such as foamed furniture and natural or 

synthetic carpets. Using propone as the primary fuel in this paper 

representing a conservative assumption in terms of soot deposition on 

the wall. In practical building fires, it is expected to have a more rigorous 

soot deposition on the walls. In addition, more scenarios with post-

flashover fire will be studied in the future.   
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Multi-objective optimization design 

of HST cabin ventilation system 

The main findings of this chapter have been published in: 

• Li, N., Yang, L., Li, X., Tu, J. & Cheung, S. C. (2019). Multi-objective 

optimization design of high-speed train cabin ventilation system 

using particle swarm optimization and Multi-fidelity Kriging. 

Building and Environment, 155, 161-174. IF = 4.539, Q1 

 

Maintaining a high level of thermal comfort and indoor air quality for 

occupants while minimizing the system energy consumption is crucial for 

long-haul High-speed train cabins. The traditional way of handling the 

multi-objective problem relies on the “trial and error” design which 

involves lengthy manual design parameter adjustment and performance 

evaluation based on on-site measurements or analytical and empirical 

models. To shorten design optimization process, a multi-objective 

optimization platform has been developed using the nondominated 

sorting-based particle swarm optimization (NSPSO) algorithm for 

searching the trade-off optimal design of the ventilation system in a fully 

occupied high-speed train (HST) cabin. A computational model of the HST 

cabin occupied by four full rows of passengers was constructed using 

ANSYS Fluent. To ensure the accuracy of the CFD model, high resolution 

computational thermal manikins were adopted to simulate the thermal 

and pollutant dispersion under influence of the passengers. Different 

combinations of ventilation operation parameters were evaluated against 

its performance in terms of thermal comfort, air quality and energy 

consumption. Furthermore, to reduce the computational cost of 

constructing the training sample, a Multi-fidelity Kriging technique is also 

proposed a surrogate method in replacing the time-consuming CFD 

simulations while maintaining an acceptable accuracy. The result 



 

88 
 

demonstrates that the presented approach is capable to perform a multi-

objective optimization for indoor ventilation system design and yield 

accurate Pareto-front result with up to 35.61% saving of computational 

time. 

 Introduction  

Driven by the rapid expansion of aviation in a global scale, a number of 

researchers have conducted studies on the impact of the ventilation 

system on the aircraft cabin environment via both experimental and 

numerical techniques (Chen et al. 2013, Liu et al. 2013, Li et al. 2015, Li et 

al. 2018a, Li et al. 2018b, You et al. 2018). Meanwhile, high-speed trains 

(HST) has emerged as an alternative fast public transportation around the 

world due to their huge transport capacity and high efficiency (Yang et al. 

2018). Different from aircraft cabin, trains operate on the ground where 

the associated heat transfer between the cabin and outside ambient are 

significantly different from the aircraft cabin. In addition, the air 

infiltration and transient pressure change in train cabin when another 

train passing by or the train going through the tunnel have a unique 

impact on the cabin environment. Unlike the airliner cabin, an HST cabin 

is a semi-enclosed space with high occupant density where passengers 

are normally staying inside for many hours throughout the journey. The 

heating, ventilation and air conditioning (HVAC) systems are critical in 

controlling the cabin environment which has a direct impact on the 

passengers’ thermal comfort and health. On the other hand, while 

providing a comfortable environment for passengers, air conditioning 

system consumes around 75% of all other non-propulsive energy 

consumption in the cabin (Liu et al. 2015). The investigation of optimal 

design of the ventilation system in HST cabin to ensure passengers’ 

thermal comfort and health while minimizing energy consumption is of 

significant importance to the railway industry. 

To obtain an optimal design, in the conventional “trial and error” design 

cycle, system design parameters such as supply airflow rate, air 

temperature and humidity are manually adjusted and evaluated based on 
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on-site measurements or analytical and empirical models (Liu et al. 

2015). Over the past decades, with the rapid development of computer 

technology, computational fluid dynamics (CFD) techniques have been 

widely adopted to predict the indoor air environment aiming to shorten 

the time and reduce the cost of the lengthy HVAC system design cycles in 

buildings (Ravikumar and Prakash 2009, Cardinale et al. 2010, Hiyama et 

al. 2010, Kochetov et al. 2015, Limane et al. 2018, Tian et al. 2018, Cao et 

al. 2014, Pu et al. 2014, Wang and Zhai 2016, Yan et al. 2016) and long-

haul transportation cabins (Liu et al. 2012, Li et al. 2016, Liu et al. 2013, 

Kwon et al. 2009, Zhang and Li 2012, Konstantinov and Wagner 

2014,2015). Without any doubt, compared with the on-site measurement 

or experimental analysis, the CFD technique appears to be a cost and time 

effective alternative for design optimization. Nevertheless, due to the 

nature of trial and error design process, a large number of simulations is 

usually required for covering the entire design space; leading to a 

significant computational time and resource. 

 

In order to reduce the computational time, some surrogate techniques 

such as artificial neural network (ANN) (Zhou and Haghighat 2009a,b, 

Acikgoz et al. 2017, Bre et al. 2018), Support Vector Machine (SVM) 

(Mousa et al. 2017), Kriging (Li et al. 2017) and Proper Orthogonal 

Decomposition (POD) (Li et al. 2013) are employed as a fast alternative 

approach replacing the CFD simulation to approximate the nonlinear and 

complex behaviour of the indoor airflow. On the other hand, aiming to 

automate the trial and error process, evolutionary algorithms (EA) have 

been proposed and coupled with the CFD to search the globally optimal 

solution (Luh and Lin 2011, Li et al. 2013, Zhai et al. 2014). Although the 

CFD-EA coupled approach significantly reduces the required number of 

CFD simulations to reach optimal solution, it still requires a substantial 

amount of CFD simulations for training the surrogate models to construct 

a reliable response space for EA. 
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Furthermore, the evaluation of indoor environment can be a complex 

process where multiple evaluation criteria are normally involved such as 

air velocity and temperature near the occupants, contaminant 

concentrations, percentage dissatisfied of draft, age of air, total energy 

consumption, etc. The system design is therefore a multi-objective 

optimization process where trade-off relations among those design 

indices are usually needed to be considered. Especially, in terms of indoor 

thermal comfort evaluation, lots of research works have been done by 

Ricciardi’s group (Buratti and Ricciardi 2009, Buratti et al. 2013, 

Nematchoua et al. 2014, Ricciardi and Buratti 2015, Buratti et al. 2016, 

Ricciardi et al. 2016). In most of the previous works, in order to handle 

multi-objective problem, all the design objectives are aggregated into one 

single objective function through pre-defined biased weighting factors 

(Laverge and Janssens 2013, Li et al. 2013). One of the major 

disadvantages of this method is that the optimal design could be sensitive 

to the weighting factors, thus different values of the weights could result 

in substantially different solutions. Therefore, the values of these 

weighting factors are very much dependent on professional knowledge 

and expert judgements. In addition, the optimization procedure provides 

only one optimal solution per simulation run, offering the designers no 

flexibility in selecting alternative solutions for striking a trade-off of the 

conflicting criteria. 

 

In attempting to address the above shortcomings, we propose a novel 

design scheme where a nondominated sorting-based particle swarm 

optimization (NSPSO) algorithm is utilized to achieve multi-objective 

optimization without using any biased weights. Furthermore, in order to 

minimize the computational cost in the design process while without 

sacrificing the accuracy, an improved surrogate method - Multi-fidelity 

Kriging algorithm is established and adopted in the present study. This 

improved Kriging algorithm is capable to accurately capture the system 

characteristics extract from CFD simulations yet requires very limited 

computational time for constructing the training database. The proposed 

design approach is tested and verified on a full-size computational HST 
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model which is assumed to be fully occupied by passengers. The rest part 

of this paper will describe the details of the design procedure and 

discussions of the validation results. 

 Methodology  

 Particle swarm optimization (PSO) and 

nondominated sorting-based PSO 

As one of the the nature-inspired computational intelligence techniques, 

the particle swarm optimization (PSO) has been widely adopted in solving 

many engineering optimization problems, especially for those non-convex 

and multimodal engineering problems where traditional gradient-based 

mathematical programming methods have difficulties in finding the 

optimal solution (Deb 2001, Martínez and Coello 2013). Furthermore, 

previous study has also proved that the PSO has a faster convergence rate 

in comparison to other population-based stochastic optimization methods 

(e.g. genetic algorithms) (Hassan et al. 2005). As a brief history, the PSO 

was first introduced by (Kennedy 2001) based on the inspiration drawn 

from observations of the social behaviours of insects including learning 

from previous experience and communicating with successful individuals. 

In PSO, each particle has its own position and velocity, which are 

represented by xi and vi, respectively. The position and velocity of the 

particle are updated according to the following equations: 

1 1 2 2(t 1) (t) ( (t)) ( (t))

(t 1) (t) (t 1)

i i i i g i

i i i

v v c p x c p x

x x v

  + = + − + −

+ = + +
               (5.1) 

where pi and pg represent the personal best position and global best 

position, respectively, and the c1 and c2 are two uniform random 

numbers within the range [0, 1]. The φ1 and φ2 are two constants which 

are usually set to 2. The parameter ω decreases with iterations within the 

range [0.4, 1.2]. To avoid going out of the search space, both the position 

and velocity are limited within boundaries, [xmin, xmax] and [vmin, vmax], 
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respectively. Nevertheless, it is worth noting that the original PSO can 

only provide solutions for single-objective optimization problems. 

Inspired by the works done by Deb (Deb et al. 2002), X. Li proposed a 

Nondominated Sorting Method to extend the original PSO to multi-

objective optimization problems (MOP) - namely Nondominated Sorting 

based Particle Swarm Optimization (NSPSO) (Li 2003a). In NSPSO, the 

updating equations for particle position and velocity remain unchanged, 

but the selection of the personal best and global best has been re-

designed. Two main mechanisms are used to determine the global best 

among the population – 1) nondominated sorting for identifying different 

fronts, and 2) crowding distance computed for particles within each front 

to encourage solution diversity. These kinds of information are used to 

select suitable leaders (i.e. global best) at each iteration to guide the 

particles moving towards the Pareto-optimal Front while still maintaining 

a good distribution of solutions along the Pareto-front. 

a) Nondominated Sorting 

Figure 5.1 shows an example of the nondominated sorting process. 

Considering 2 objectives (i.e. f1 and f2) to be optimized in the process, the 

entire population (i.e. the 10 particles that labelled as 1 to 10) is sorted 

into different levels of fronts according to the domination comparisons 

between particles. The particles in same front are nondominated with 

each other. As depicted in Figure 5.1, Front 1 is the highest-level 

nondominated front because all particles in it are not dominated by any 

other particles in the entire population. The main goal of nondominated 

sorting is to classify the whole population into different levels of 

nondominated fronts. The global best particle (leader of the population) 

can be randomly selected from the highest-level front. This kind of 

selection process will push the whole population towards the true Pareto 

Front. More information regarding nondominated sorting can be found in 

(Li 2003a). 
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Figure 5.1 An example of nondominated sorting process in NSPSO. 
 

 

b) Crowding distance 

Different from a single-objective optimization, maintaining the diversity 

in a set of solutions is vital in a multi-objective optimization (Deb et al. 

2002, Li 2003a). Throughout the optimization process, the leader must be 

selected properly to avoid local optimal aggregation of the whole 

population. In NSPSO, computing the crowding distance values among 

particles in the highest-level of nondominated front is used to select 

leaders that are both good and far apart from each other. Inspired by (Deb 

et al. 2002), we introduced a new way to calculate the crowding distance. 

Figure 5.2 shows an example of the crowding distance among particles. 

For each particle, the crowding distance is defined as the following: 

1

1,

1
n

n n

n N
D

d d n N−

 =
= 

+  
                                        (5.2) 

The particle with a higher crowding distance value will have a high 

probability to be selected as the leader. Consequently, particles in the top 

front are likely to maintain a good level of population diversity. 
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Figure 5.2 Crowding distances among individuals in the highest-level 
nondominated front. 

 

Compared with other MOEAs, such as NSGAII and decomposition-based 

MOEAs, NSPSO has the advantages on running speed and convergence. As 

the main goal of this study is to save computational cost, NSPSO was 

selected to conduct multi-objective optimization. 

 Kriging and Multi-fidelity Kriging 

As demonstrated in previous studies (Liu et al. 2013, Tian et al. 2018), it is 

certainly possible to use numerical model predicting the airflow 

behaviours inside buildings or vehicle cabins. However, as discussed 

above, the nature of CFD simulations is inherently time consuming and 

computationally exhaustive, making it impractical for design 

optimization. Surrogate techniques (also referred as Meta methods in 

literatures) have been adopted as a fast alternative to the CFD 

simulations, such as ANN (Zhou and Haghighat 2009a,b) and SVM (Mousa 

et al. 2017). However, to ensure accuracy, both ANN and SVM require 

large amounts of training data which still put a significant challenging to 

the computational cost. Nonetheless, to achieve a reliable and accurate 

prediction, both ANN and SVM require large amounts of training data 

generated from numerical simulations. The construction of training 

database remains a significant computational burden jeopardising the 

progress of the optimization process. Alternatively, other than ANN and 
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SVM, the Kriging method has aroused much attention due to its capability 

in achieving high prediction accuracy with relatively small training 

sample size (Li et al. 2017). Detailed formulations of Kriging have been 

given elsewhere in (Handcock and Stein 1993, Van Beers and Kleijnen 

2004, Sivia and Skilling 2006, Wikle and Berliner 2007, Forrester et al. 

2008). In this section, a brief introduction to Kriging is presented as 

followings. 

Kriging was originally developed in geostatistics by Danie G. Krige (Krige 

1951), to estimate the most likely distribution of gold based on samples 

from a few boreholes. It can also be used to predict a Gaussian process 

governed by prior covariance in other engineering fields. The basic idea of 

Kriging is to predict the value of a function at a given point by computing 

a weighted average of the known values of the function in the 

neighbourhood of the point, which is expressed as: 

1

ˆ
n

o i i

i

z z
=

=                                                          (5.1) 

where ˆoz  represents a local estimation at the data location ( , )o ox y , iz  is 

the known sampled value at the data location ( , )i ix y and i represents the 

weighting coefficient which can be calculated by minimizing the 

estimation variance: 

ˆmin ( z )
i

o oVar z


−                                                    (5.2) 

subjects to the unbiased condition: 

ˆ( ) 0o oE z z− =                                                     (5.3) 

and the normalization condition: 

1

1
n

i

i


=

=                                                          (5.4) 
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The weighting coefficient i  in Equation (5.1) can be solved using a 

quasi-Newton optimization method or other similar algorithm (Gano et al. 

2006). Finally, the prediction value at the unobserved location can be 

given by Equation (5.1). 

Based on the formulation, Kriging poses great saving of computational 

resources without going through the tedious simulation process as 

required in CFD technique. Nevertheless, similar to other methods, it still 

requires training data extracted from CFD simulation results. For each 

simulation result, to ensure the accuracy, it is well known that high mesh 

resolution is crucial to minimize the discretization and truncation errors 

in the numerical procedures. The high mesh resolution imposes 

significant computational burden in constructing the training data. To 

remedy this problem yet retaining the same level of prediction accuracy, 

we will introduce a Multi-fidelity Kriging method where the training data 

could be extracted from a small sample of high quality mesh while 

majority of the rest are constructed by computationally efficient low 

resolution mesh. 

Multi-fidelity Kriging, also known as Multivariate Kriging or Co-Kriging, 

was originally developed for mineral explorations where measurements 

of different ores are available (De Baar et al. 2015). It calculates estimates 

or predictions for a poorly sampled variable (low-fidelity data) with help 

of a well-sampled variable (high-fidelity data). A full derivation of Multi-

fidelity Kriging can be found in (Forrester et al. 2007). Here we assume 

that we have two sets of data yield to Gaussian process: 

1 1 1

2 2 2

( ) ( )

( ) ( )

Z s s

Z s s

 

 

= +

= +
                                                (5.5) 

where 1Z  represents the high-fidelity process and 2Z  represents the low-

fidelity process, 1  and 2  are the random errors contained in the high-

fidelity process and low-fidelity process, respectively. There exists 

autocorrelation for each process and cross-correlation between them. 

Multi-fidelity Kriging attempts to predict the high-fidelity process 1 0( )Z s  
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using information (autocorrelation and cross-correlation) in the covariate 

2Z  to make a better prediction, as the following: 

1 2 DZ Z Z= +                                                    (5.6) 

where   is regression coefficient and DZ  is a new process representing 

the difference between the high-fidelity process and the low-fidelity 

process, which will correct the low-fidelity data.  

 Workflow of the design procedure 

The whole procedure of the proposed method in this paper is shown in 

Figure 5.3. At the beginning, we need to determine the design range of the 

input variables and decide sampling locations. Then we need to build the 

computational model of the design case. In the meshing process, a mesh 

independent analysis is required to decide the proper grid size for the fine 

mesh case and coarse mesh case. Next we run the CFD simulations to get 

Multi-fidelity training results. In the next stage, the multi-objective 

optimization algorithm is used to search for global optimal solutions 

(Pareto Front), where, in each iteration, the Multi-fidelity Kriging is used 

to calculate the objective values of each particle according to the training 

samples from the CFD simulation. Finally, the provided optimal solutions 

are validated by running CFD simulations with the optimal input setups. 

The details of the CFD model and optimization results will be discussed in 

later sections. 

 



 

98 
 

Determine design range 

and sampling resolution

Give the final Pareto 

Front (optimal solutions 

in objective space)
Run CFD simulations to get 

multi-fidelity results:

fine mesh – high-fidelity

coarse mesh – low-fidelity

Start

Yes

No

Create CFD model, run 

mesh independent analysis 

and decide settings for fine 

mesh and coarse mesh

Start NSPSO

Initialize particle 

population

Iteration number 

reached?

Multi-fidelity Kriging to 

get fitness values

Update parameters of all 

particles

Validate the optimal 

results by running CFD 

simulations with the 

given optimal input 

settings

End

 

Figure 5.3 Framework of the CFD-based multi-objective optimization approach 
with Multi-fidelity Kriging. 

  

 Computational model description 

 Model preparation and validation 

In this study, CRH2 model, a typical HST model in China (Wang et al. 

2014), was chosen as the ventilation design environment. The CRH2 

model cabin has the 3-2 seat arrangement (Figure 5.4). In order to save 

computational resources, instead of using a full HST cabin, four rows 

cabin section was built as the computational domain with the front and 

back plane being specified as translational periodic boundaries. The 

approximate periodicity of air flow field in train cabins has been verified 

in our previous studies (Yang et al. 2018). The HST is assumed to be 

operated in summer while the external ambient temperature is assumed 

to be 35℃. To consider both the heat conduction and heat convection 

from the outside to inside through the cabin envelope, an equivalent heat 

transfer coefficient of 2.2 W/(m2K) was assigned for the material of cabin 

walls. The incident heat flux of solar radiation through the windows was  

688.5W/m2 (Yang et al. 2018). Other solid cabin walls including floor and 

seats were assumed to be adiabatic. 
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The cabin is assumed to be fully occupied by adult female passengers 

which are represented by the 3D-scanned manikin models. Figure 5.4 

shows the detail of the computational domain. Radiative heat dissipation 

from the manikins surface is ignored and only convective heat transfer is 

considered in this study, which results in a total convective heat load of 

30W (Yan et al. 2016) for each manikin. In addition, volatile organic 

compounds (VOCs) are assumed to be released from the surface of 

Passenger-S, who is seating in the second row of the second column 

(which is the second column). It should be noted that as a preliminary 

case study of the proposed approach, the authors assumed that only one 

passenger is releasing VOCs, to make the computational time feasible.  

 

 

Figure 5.4 Cabin geometry and detailed meshing features. 

 

The ventilation system of the HST cabin is assumed to be operating in 

compliance to the prevalent railway HVAC standard UIC 553-1 (Uic 2005). 

Air was supplied by inlet diffusers and exhausted by the outlets located 

under seats. 

The commercial CFD software – ANSYS CFX 17.0 was employed as the 

numerical solver. The cabin airflow field was solved using the 

incompressible Navier-Stokes equations, where the generic 

transportation equation is given by: 

𝜕∅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝑢𝑖∅ − Γ
𝜕∅

𝜕𝑥𝑖

) = 𝑆∅                                         (5.7) 
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where ∅ is the general variable; 𝑢 is the fluid velocity; Γ is diffusion 

coefficient; 𝑆∅ is the source term. The RNG k-epsilon turbulence model 

was adopted to model the air turbulence. 

The above mathematic models and numerical procedures have been fully 

validated using a 7-row mock-up cabin (Figure 5.5). Figure 5.5a shows the 

inner look of the experimental cabin mock-up from literature (Li et al. 

2018b), and the right image gives the corresponding geometry layout of 

the CFD model. Details of the experiment setup can be found in literature 

(Li et al. 2018b). The temperature and velocity profiles along three 

different vertical lines were compared against the airflow and 

temperature measurements in the mock cabin (Li et al. 2018b) (see 

Figure 5.5b). Furthermore, referring the study by Cao et al. (Cao et al. 

2016), the statistical error of the PIV measurement for velocity fields 

range from 3% to 8%. Error bars representing an average 5.5% 

measurement error have also been included in Figure 5.5b.  As depicted in 

Figure 5.5b, our numerical predictions have successfully captured the 

general trend and are in satisfactory agreement with the experimental 

data (Li et al. 2018b). One may notice that there are deviations between 

the predicted and measured results, especially for the velocity field. The 

averaged absolute prediction errors of temperature and velocity fields are 

also indicated in the figure. The maximum absolute errors are 0.79 °C and 

0.074 m/s for the temperature and velocity field, respectively. The 

prediction error could be attributed to the simplification of the numerical 

model. As depicted in Figure 5.5a, the experimental measurements were 

conducted in a highly complex environment, involving many factors and 

geometrical details, such as the luggage geometry, the material difference, 

and non-uniform heat release rate of manikins. Such details in the 

physical mock-up model are unfortunately simplified in the 

computational model. The simplification could contribute to the minor 

deviations between the experimental data and the simulated results. 

Overall speaking, comparing our predictions with similar validation in 

literatures (Li et al. 2014a, Li et al. 2018b), our prediction accuracy is on 

the par with existing literatures predicting airflow and temperature in the 

indoor environment. Validating the predicted concentration field of VOCs 

is challenging due to the absence of experimental data in the literature. 
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Theoretically speaking, VOCs are gaseous contaminants where 

transportation in the air is subject to the convection and diffusion 

processes. In a convective-driven indoor space (e.g. HST train cabin), the 

transport of VOCs is predominantly controlled by the convective 

mechanism. Similar conclusion was also presented in a previous study by 

Zhuang et al (Zhuang et al. 2014). Therefore, with any better option, it is 

assumed that the VOCs dispersion is dominant by the convection current 

of the velocity field. 

 

 

Figure 5.5 Validation of the computational model. (a) left: The inner look of the 
experimental cabin mock-up (Li et al. 2018b); right: The geometry layout of the 

CFD model. (b) Comparison of temperature and velocity between experimental and 
simulation results at different locations. 

 

 Design objectives 

In order to assess the performance of the ventilation system inside a HST 

cabin, the Predicted Mean Vote (PMV), Contaminant concentration, and 

energy consumption were adopted as the quantitative indicators to 

evaluate thermal comfort, air quality and energy efficiency, respectively. 

The definitions of these design criteria are briefly introduced as follow. 
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a) Predicted mean vote 

The predicted mean vote (PMV) is a thermal comfort evaluation index 

which was first introduced by (Fanger 1972). It is used to assess indoor 

thermal comfort based on heat balance and a set of experimental data 

collected from a given controlled climate chamber. The index represents 

the mean subjective satisfaction with the indoor thermal environment 

with a number between -3 (cold) and +3 (hot). The zero value is defined 

as the ideal representation of thermal neutrality. It can be calculated by 

the following equation, where the details can be found in (Fanger 1972).  
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The PMV index is evaluated based on an empirical equation which is 

correlated to the local air temperature, mean radiant temperature, 

relative humidity, air speed, metabolic rate, and clothing insulation 

(Fanger 1972). In this study, we assume that the occupants are seated in 

quiet position (i.e. metabolic rate of 1.0 met) with a summer clothing (i.e. 

0.2 clo), and we evaluated the average PMV based on the predicted field 

information obtained from CFD simulations. 

b) Contaminant Concentration 

To assess the air quality within the space, the concentration of VOCs 

emitted by passengers throughout the cabin was also resolved in the CFD 

simulation. For presenting the VOCs contaminants emitted from human 

skin, acetaldehyde is chosen, as it has a relative high concentration level 

compared with other components in VOCs. The kinematic diffusivity of 

acetaldehyde is 1.6e-05 m2/s, and concentration measured from a normal 

human skin is 3.0e-5 kg/m-3. Due to the extremely low concentration of 

gaseous contaminants, the transportation process of VOCs was modeled 

using the drift-flux model: 



 

103 
 

∂φ

∂t
+

∂

∂xi

(Uφ) =
∂

∂xi

(Dφ
∂φ

∂xi

) + Sφ                                       (5.9) 

where U is the fluid velocity in air-flow domain; φ is the concentration of 

contaminant; Sφ is a volumetric source term; Dφ is the kinematic 

diffusivity. Similar to the average PMV, the average VOCs concentration 

was extracted from the predicted CFD field information. 

c) Energy consumption 

Following the previous study (Zhou and Haghighat 2009a, Li et al. 2013), 

the energy consumption of the air-conditioning system is divided into two 

parts: ventilation fan power and the cooling or heating load. Energy 

consumption in the two parts is determined as follow: 
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where P is air pressure difference of the fan and V is volume flow rate of 

supply air (m3 s-1), m represents the mass flow rate of the air (kg s-1), cp 

is the specific heat capacity of air, T represents temperature, h is the 

specific enthalpy of air (J kg-1) which is related to air temperature and 

relative humidity. Similarly, we can get energy costs from the CFD-Post 

package. 

 Results and discussions 

 Design Optimization problem for the HST cabin 

ventilation 

The design optimization of this study aims to allocate the best air 

ventilation conditions (i.e. supply air velocity and temperature setting) 

for the HST cabin of where multiple objectives (i.e. thermal comfort, air 
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quality and energy) are optimized. According to the UIC 553-1, inner 

temperature of the cabin should be set around 27 ℃ under the exterior 

environment condition set in this study. The supply air temperature and 

flow rate for optimization is evaluated based on the energy balance and 

the thermal load in the HST cabin. It is assumed that the thermal energy 

generated and absorbed inside a cabin is equal to the energy taken away 

by the airflow from inlet vents to outlet vents (Qair
̇ ). The main sources of 

thermal load inside the cabin are the heat flux of human body (Qhuman
̇ ) 

and thermal conduction of cabin wall (Qwall
̇ ). The energy balance in the 

cabin can be expressed as follow: 

Qair
̇ = Qwall

̇ + Qhuman
̇                                                   (5.11) 

Based on the cabin energy balance, the fresh air supply rate at inlet 

diffusers is arranged from 20 to 24 m3/h/person, the supply air 

temperature should be ranging from 295K to 299 K. The design ranges of 

the inlet temperature and mass flow rate should be 295 K to 299 K and 

0.51 kg/s to 0.61 kg/s, respectively. In order to generate sufficient 

training samples for the Kriging prediction without significant 

computational burden, a total of 25 set of design parameters are firstly 

located and evenly distributed within the design space (see Figure 5.6). 

Sequentially, a total of 25 CFD simulations with different design 

parameters have been carried out with the identical fine mesh resolution 

and boundary conditions (excepts the supply air temperature and mass 

flow rate). All simulations were carried out in a computational domain 

consisting of a total of 5,951,997 nodal points. A mesh dependent study 

has been carried out and proven that the predicted results are mesh 

independent. More details are presented in the later session.  
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Figure 5.6 Definitions of inlet boundary conditions in CFD simulations. 
 

After the simulations, the key air flow parameters (such as local air 

velocity, air temperature, contaminant concentration, etc.) were extracted 

from the CFD simulated result for evaluating the corresponding design 

objectives – PMV, contaminant concentration and energy consumption. 

Among the objectives, designers would like to create the most 

comfortable and cleanest environment and at the same time, to minimize 

the energy consumption of ventilation system. In reality, it is very 

common that these three objectives are conflicting with each other. In 

order to demonstrate the trade-off relationships, we listed three groups of 

typical results in Table 5.1, where the first row shows the global PMV 

minimum point (i.e. the most thermal comfortable) while both the 

contaminant concentration and the energy consumption are quite large. 

Similarly, the following rows give other situations where contaminant 

concentration and the energy consumption are the global optimal, 

respectively. As shown in the table, all three design objectives are 

conflicting each other where one could only optimize a trade-off solution. 

The CFD simulation results of these three cases are shown in Figure 5.7, 

Figure 5.8, Figure 5.9, respectively. In the figures, the left image gives the 

temperature distribution contour and velocity vectors on a section plane 

inside the cabin, and the right top indicates the PMV distributions around 

passengers’ body surfaces. The right bottom one demonstrates the 

distribution of contaminant concentration near the VOCs release source 

(Passenger S). By comparing Figure 5.7 and Figure 5.8, it is clearly shown 
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that Case 1 has the better thermal comfort (i.e. Case 2 is too cold for the 

passengers) with the worse contaminant control. In contrast, in Case 2, 

contaminants are driven towards a higher elevation level of the cabin 

further away from breathing zone (see also in Figure 5.8). Based on the 

Table 5.1 and Figure 5.7, Figure 5.8, Figure 5.9, it can be observed that the 

design objectives are conflicting where a multi-objective optimization 

platform is required for obtaining the pareto-front of the ventilation 

design problem. 

 

Table 5.1 Three typical groups of values minimizing PMV, Contaminant, Energy, 
respectively. 

Case No. T(°C) V(kg/s) PMV Contaminant(kg/m3) Energy(W) 

1 24.45 0.5731 -1.5E-03 1.52E-07 1646.20 

2 22.04 0.5938 -1.2E00 9.19E-08 2058.44 

3 25.85 0.5100 1.5E-01 1.44E-07 1463.66 

  

 

Figure 5.7 CFD simulation results of case 1 in Table 5.1. 
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Figure 5.8 CFD simulation results of case 2 in Table 5.1. 

 

 

Figure 5.9 CFD simulation results of case 3 in Table 5.1. 
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 Validation of the High-fidelity Kriging Method 

To accelerate the optimization process, the High-fidelity Kriging 

algorithm is used as a fast alternative to the lengthy CFD simulations. In 

order to verify the accuracy of the Kriging prediction, a total of 16 

additional ventilation conditions were simulated by the CFD model (i.e. 

the 16 green points within the design space in Figure 5.10) were carried 

for constructing a reliable respond surface of the objective values within 

the design space. 

 

 

Figure 5.10 The additional CFD simulations and its corresponding ventilation 
conditions within the design space (i.e. green points). 

 

The simulations conducted at red points in Figure 5.10 are used to train 

the Kriging algorithm. After the training, the Kriging method is used to 

predict the three objective values under the 16 different ventilation 

conditions (i.e. green points) and validated against the CFD predictions. 

The prediction error of the Kriging in comparison to the corresponding 

CFD results are shown in Figure 5.11. From the figure, one can observe 

that the maximum error is maintained below 5% for all design objectives. 

Especially, for energy prediction, the Kriging gives a prediction error 

below 0.6%, clearly indicating the robustness of Kriging surrogate 
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method in capturing the response surface of the objective value with 

respect to different ventilation conditions. 

 

 

Figure 5.11 Percentage errors of Kriging prediction for the three objectives - PMV, 
Contaminant and Energy, respectively. 

 

 Design Optimization using NSPSO with High-fidelity 

Kriging 

As mentioned above, a multi-objective optimization is carried out using 

NSPSO where the Kriging method is used for evaluating the objective 

values for replacing the CFD simulations. In this study, NSPSO algorithm 

has been established and implemented using MALAB R2017b. The 

algorithm considers two design input variables (i.e. supply air 

temperature and flow rate) and search the optimal design solutions based 

on the three objectives (i.e. PMV, energy and contaminant concentration). 

The size of swarm population was 100 and the maximum iteration 
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number was 200 (this configuration balances the accuracy and 

computational cost). In each generation, the validated Kriging surrogate 

was used to calculate the fitness values for the whole particle population. 

The final optimal trade-off solutions (i.e. pareto front) obtained from the 

NSPSO within the objective space are shown in Figure 5.12. Meanwhile, 

the corresponding input distribution of the pareto front within the design 

space is also illustrated in Figure 5.13. 

 

 

Figure 5.12 Optimal solutions (‘Pareto Front’) given by NSPSO in objective space. 
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Figure 5.13 Probability density of optimal solutions in design space. 

 

Figure 5.12 clearly shows the trade-off relationships among the design 

objectives, where Figure 5.12(a) gives a 3D Pareto front visualizing the 

trade-off among all the three objectives. For the ease of reading, the 2D 

Pareto fronts considering only two conflicting objectives are shown in 

Figure 5.12(b, c, d). In Figure 5.12, the pareto front represents a trade-off 

solution which are equally good in terms of multi-objective 

considerations. It is worth noting that the solutions listed in Table 5.1 are 

only three single points as part of the Pareto front. As demonstrated, the 

optimization framework using NSPSO and Kriging can entirely avoid 

using the weighting factor in objective function and obtains a set of trade-

off solutions within the objective space in a fast, reliable and automated 

manner. The optimized solutions allow designers to evaluate the best 

options of the complex problem and choose the best design solutions 

based on their professional judgement and user preferences. 
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 Enhancement in optimization process using Multi-

fidelity Kriging 

In previous literatures (Yuan et al. 1999, Lin et al. 2009, Zhou and 

Haghighat 2009a,b, Li et al. 2012, Li et al. 2013, Liu et al. 2015), the 

simplified manikin models such as rectangle or cylinder blocks are used 

in CFD simulations to study the indoor environment. As discussed in our 

previous paper (Yan et al. 2016), using simplified manikin model is 

unable to get an accurate CFD predictions. The prediction errors are 

found particularly jeopardize the manikin. In the present study, 

computational model using very fine 3D-scanned thermal manikin models 

(see Figure 5.4) was adopted to accurately capture the thermal response 

from passengers in the CFD simulations. Unfortunately, the finely spaced 

surface and volume mesh at the vicinity of the manikins have also 

dramatically increased the cost of computational resources. For example, 

for the given computational domain of this study, running a CFD steady 

state simulation using 2-core CPU at 2.9 GHz with the fine mesh requires 

roughly 37 hours to obtain a converged solution. For generating sufficient 

training samples for the Kriging method, a total of 25 simulations are 

required which translates into an approximately of 925 hours. It 

obviously poses a significant burden to the computational resources even 

with the modern parallel computing technology. In attempting to lower 

the computational time and cost, a Multi-Fidelity Kriging algorithm has 

been developed by using part of high-fidelity CFD results (fine mesh) and 

other part of low-fidelity CFD results (coarse mesh) as the training 

database. 

To demonstrate the performance of the multi-fidelity Kriging, a one-

dimensional wave function with low and high-fidelity attributes is 

adopted for the assessment which is given by the following equations: 

4

4
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                     (5.12) 

Training samples were then extracted from the low and high fidelity 

function as an input for Kriging process. Figure 5.14(a) shows the true 
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plot of HFf  (black solid line) and the Kriging prediction (red dash curve) 

with 5 samples, from which one can observe that there is a huge 

difference between the true values and the predicted values, i.e. in this 

case, the function has been under-sampled due to too small amounts of 

samples. One method to improve prediction accuracy is to add more 

samples (see as Figure 5.14(b) with 20 samples). However, these 

additional high-fidelity training samples would boost the computational 

cost significantly. Figure 5.14(c) shows the Multi-fidelity Kriging 

prediction of the same process HFf  but with only 5 high-fidelity training 

samples plus 20 training samples from the low-fidelity process LFf . The 

comparison between Figure 5.14(b) and Figure 5.14(c) indicates the 

replacement of high-fidelity samples with low-fidelity samples does not 

affect the prediction accuracy but could help save lots of computational 

costs. The above assessment clearly demonstrated the significant 

advantage of the Multi-fidelity Kriging in correlating the fine and coarse 

training data input and its capacity in producing high accuracy 

predictions with limit computational cost. 
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Figure 5.14 An example of 1-D Multi-fidelity Kriging prediction results. (a) The 
prediction using only a few of high-fidelity data is under sampled and there are 

huge differences between the prediction values and the true values. (b) The 
prediction using a large amount of high-fidelity data is well sampled. (c) The 

prediction using a few of high-fidelity data plus a large amount of low-
fidelity data achieves good prediction accuracy, where the low-fidelity data 

are inaccurate but help to correct the prediction. 
 

 Multi-fidelity training samples for HST cabin 

ventilation problem 

In this study, the cabin geometry model was discretized using 

unstructured computational mesh by ANSYS ICEM. To accurately capture 

the VOCs dispersion, high quality fine meshes were generated around 

diffusers and 3D-scanned manikins. Furthermore, for resolving the 

boundary layer, inflation layers with a grid expansion ration was applied 

around manikin surface. A grid sensitivity study was conducted over four 

different grid resolutions ranging from coarse mesh (i.e. ~2.8 million 

grids), good-mesh set (i.e. ~3.6 million grids), fine-mesh set (i.e. ~6.0 

million grids) and extremely-fine-mesh set (i.e. ~7.7 million grids). The 

grid sensitivity study results of air flow velocity along the central line of 
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the cabin were illustrated in Figure 5.15. As depicted, the fine-mesh 

predictions have less than 5% difference comparing the one from 

extremely-fine-mesh set. The result clearly demonstrated that the fine 

mesh adopted for all high-fidelity CFD training mesh are grid 

independent. Meanwhile, it is clear that the predictions of the coarse 

mesh pose considerably significant errors (i.e. some of the points are over 

300%) compared to the fine and extremely-fine mesh. To demonstrate 

the robustness of the Multi-fidelity Kriging, predictions from the coarse 

mesh are adopted as low-fidelity training samples. 
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Figure 5.15 Mesh independent testing results. 
 

 

Figure 5.16 Groups of multi-fidelity CFD cases. 
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In this study, we adopted the fine-mesh set (6.0 million grids) and coarse-

mesh set (2.8 million grids) to generate the multi-fidelity training cases. 

The distribution of the multi-fidelity cases is shown in Figure 5.16, where 

9 fine mesh cases plus 25 coarse mesh cases were generated. It is noted 

that at the 9 locations of the fine mesh cases, the corresponding coarse 

mesh cases were also performed (i.e. the overlap points in Figure 5.16). 

With the CFD simulation results from all the multi-fidelity cases (34 in 

total), we can conduct a multi-fidelity surrogate using Multi-fidelity 

Kriging algorithm. In order to verify the accuracy of the multi-fidelity 

surrogate results, Figure 5.17 shows the comparisons of the multi-fidelity 

predictions for the three design objectives in comparison to the 

predictions of the high-fidelity Kriging. As depicted, the predictions of the 

Multi-fidelity Kriging compare extremely well with the predictions of the 

high fidelity Kriging. The maximum difference between two Kriging is less 

than 5% which clearly demonstrates the accuracy and robustness of the 

Multi-fidelity Kriging. 
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Figure 5.17 Comparison of PMV prediction between Multi-fidelity Kriging and fully 
high-fidelity Kriging. 

 

The Multi-fidelity Kriging model is then coupled with the NSPSO for 

design optimization searching the optimal solution within the design 

space. Figure 5.18 shows the comparison of the Pareto Front obtained by 

using the high-fidelity (see all the blue dots) and Multi-fidelity Kriging 

(see all the red dots). The comparison clearly indicates that the Multi-

fidelity Kriging is capable to yield reliable and accurate prediction for the 

NSPSO optimization procedure. The resultant Pareto front shares the 

overall characteristics and captures the quantitative values as the high-

fidelity Kriging method. The maximum prediction error is maintained at 

8.16% which is considerably low for ventilation design problem. 
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Figure 5.18 Comparison of optimal solutions (‘Pareto Front’) in objective space 
between using original high-fidelity Kriging and Multi-fidelity Kriging. 

 

On the other hand, the Multi-fidelity Kriging offers generous saving of the 

total computational time (i.e. the total of CFD simulation and the 

optimization computational time) comparing to the high-fidelity Kriging 

approach. A summary of the total computational time (including 

optimization time) of the two approaches are tabulated in Table 5.2. With 

Multi-fidelity Kriging, 16 training samples extracted from the coarse mesh 

were selected in replacing the fine mesh training sample. At the same 

time, 9 training samples from the coarse mesh overlapped with the fine 

mesh samples were also included to establish the correlation between 

fine and coarse mesh CFD prediction. The table shows that using Multi-

fidelity Kriging could reduce up to 35.61% of the total computational time 

which is over 1/3 of the total time required for the optimization 

procedures. 
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Table 5.2 Comparisons of CPU time consumptions (100 particles in the 
optimization process). 

Approach Procedure CPU Time (s) Iterations Total CPU Time (s) 

Traditional 
CFD simulation 1.332E+05 25 3.330E+06 

Single objective PSO 2.258E+00 >100 

 

>2.258E+02 

NSPSO + Kriging 
CFD (Fine mesh) 1.332E+05 25 3.330E+06 

NSPSO 1.653E+02 1 1.653E+02 

NSPSO +  

Multi-fidelity Kriging 

CFD (Fine mesh) 1.332E+05 9 1.199E+06 

CFD (Coarse mesh) 3.780E+04 25 9.450E+05 

NSPSO 2.371E+02 1 2.371E+02 

Total Saved CPU 

Time 
1.186E+06(s) (35.61%) 

 

 Conclusions 

A multi-objective design approach has been proposed in this paper by 

incorporating the nondominated sorting based particle swarm 

optimization (NSPSO) algorithm with the Kriging method to searching the 

optimal design condition of the ventilation system in a fully occupied 

high-speed train (HST) cabin. The advantage of NSPSO is the capability to 

provide multiple trade-off solutions in one simulation run and to give a 

clear visualization of solutions in both design space and objective space. 

Another benefit of adopting NSPSO is that users can easily select 

alternative solutions according to their experience and preference, rather 

than struggling to choose appropriate weightings at the beginning of 

traditional design process.  

In order to validate the proposed approach, a high resolution 

computational model of Chinese CRH2 train cabin was created with 

ANSYS Fluent package, where the fine 3D-scanned thermal manikin 

models were used to improve the computational accuracy. To address the 

time-consuming problem in CFD simulations, especially when we 

introduced the high resolution computational thermal manikin model, a 

Multi-fidelity Kriging surrogate was also developed in this study. The 
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simulation results demonstrate that the proposed new design procedure 

is capable to save up to 35.61% of the total computational time compared 

to the traditional single objective approach, while maintaining an 

acceptable predictive error. In this paper, we used HST cabin as a test bed 

and validate the proposed methodology. In the future, other application 

such as office compartments and airplane cabin could also be tested.   
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A new method to cut powerline 

wildfire risk caused by vegetation 

conduction ignition using CNN 

The main findings of this chapter have been published in: 

• Li, N., Shang, Y., Tu, J. & Cheung, S. C. (2019). A new method to cut 

powerline wildfire risk caused by vegetation conduction ignition 

in Victoria, Australia, using Convolutional Neural Networks. 

International Journal of Wildland Fire. (under review). IF = 2.445, 

Q1 

 

The occurrence of wildland fires can pose significant consequences on 

human lives, assets and ecologic environment. A number of wildfires that 

occurred in Victoria, Australia were caused by powerline faults. There are 

strong evidences showing that the wildfires caused by electrical fault 

burn larger areas and are associated with more severe consequences than 

fires from other causes. One of the most common ignition processes 

during powerline faults is ignition by electricity conduction through the 

vegetation when tree branches contact live power wires. In order to 

investigate this ignition process, lots of experiments and tests in relation 

to powerline vegetation fault were conducted in the Powerline Bushfire 

Safety Program supported by the Australia’s Victorian Government and all 

the experimental data are available to public. When electrical fault 

happens, if we could detect the fault in an early stage and cut down the 

power, the fire occurrence can be avoided. Aiming to detect the powerline 

vegetation fault as soon as possible after fault occurs, this paper 

developed a new model using Convolutional Neural Networks (CNN), 

which is able to detect the fault species immediately when fault occurs 

and also send alarms if the ignition process is already in a late stage, 
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according to the spectral data of electrical signals caused by vegetation 

faults. The proposed model was tested and validated by the experimental 

data from the Powerline Bushfire Safety Program. 

 Introduction  

Wildland fires can pose significant consequences on life, assets and 

ecologic environment. In the past decade, wildfires have caused huge 

losses of human lives and properties around the world including in 

Greece (Amiridis et al. 2012), the United States (Keeley et al. 2009), 

Russia (Vivchar 2011) and Australia (Chafer et al. 2004, Stephenson et al. 

2013, Collins et al. 2015). Especially, in Australia, over the past century, 

20% of the total building losses in nature hazards arise from bushfires 

(Mcaneney et al. 2009). Understanding the ignition process of the wildfire 

is essential to reducing the risk of future wildland fires. 

A number of wildfires occurred in Victoria, Australia, were attributed to 

electricity distribution infrastructure, including 12th February 1977 

(Mcarthur et al. 1982) and the Ash Wednesday 1983 (Authority 1983, 

Valent 1984). Although electrical fault is not the top cause of wildfire, 

these fires resulted from powerline faults have been proved to burn 

larger areas and thus bring more severe consequences than fires caused 

by other ignitions (Miller et al. 2017). The most recent example was the 

Black Saturday bushfires in Victoria in February 2009, which burnt over 

270,000 ha, killed 173 people, destroyed 2,029 homes and caused $4.4 

billion of economic (Teague et al. 2010, Whittaker et al. 2013, Marxsen 

2016). There was clear evidence showing that six of the major fires on 

Black Saturday were caused by powerline faults (Miller et al. 2017). 

Following the catastrophic wildland fire of Black Saturday in 2009, the 

Victorian Bushfires Royal Commission was established to investigate how 

to better understand bushfires and prevent its occurrence in the future.  

Electrical faults can ignite wildfires through three major ignition 

mechanisms: high voltage arcs near vegetation; molten metal particles 

emitted when vegetation contacts power wires; and high voltage current 

through vegetation (Coldham 2010, Russell et al. 2012). When these hot 
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sources drop to the ground, they can ignite nearby fuels such as dry grass 

and tree leaf, causing small fires (Urban et al. 2015). If this occurs in days 

with extreme weather conditions, the small fires can spread very quickly 

and would result in devastating wildfires (Fernandez-Pello et al. 2015).  

The most complex ignition process during powerline fault is ignition from 

the electricity conduction through the vegetation. The latest research on 

this type of vegetation fault in the Powerline Bushfire Safety program 

(PBSP) established by the Victorian Government was conducted in 2015. 

In the project, over 1,000 tests were performed on 24 species to 

understand the ignition process and provide database of the fault 

signatures of different species (Marxsen 2016). Although the project 

delivered the ignition process from conduction of high voltage electricity 

through vegetation and provided a statistic valid ranking of bushfire risks 

for 12 selected species (Table 6.1), a more scientific approach of species 

fire risk and live fault detection are yet to be studied. 

Table 6.1 lists the statistic fire probability of different plant species for 

experimental test conducted in PBSP where CI represents confidence 

interval. It is clearly indicated that different species have different fire 

probability after touching powerline, where the worst fire risk is Willow 

(Salix Species) and the best is Peppercorn (Schinus Molle), while other 

species fall between these extremes (Marxsen 2016). In addition, the 

previous research works in PBSP also delivered detailed analysis of 

ignition process caused by vegetation fault and provided more than 

300GB of data for all the experimental tests which include photos of 

samples, video recordings, IR camera videos, fault signal recordings, etc. 

An efficient approach to analyse these data is not yet proposed. On the 

other hand, traditional protection system relies on a current limit device 

which uses a pre-set fixed limit value. However, from the ignition process 

research, the current limit should vary from plant species to avoid over-

sensitivity. Therefore, a dynamic detection and protection system is 

required to provide better powerline protection, which is able to cut off 

powerline at the right time according to live fault species detection. 
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Table 6.1 Species fire risk ranking - fire probability for tests with a one amp current 
limit. 

Rank Species 
Number 
of tests 

Average 
fire 
probabilit
y 

Min fire 
probabilit
y (95% 
CI) 

Max fire 
probabilit
y (95% 
CI) 

 1 Salix Sp. 88 1.00 0.72 1.00 

 2 F. Angustifolia 105 0.58 0.32 0.81 

 3 A. Mearnsii 92 0.57 0.33 0.79 

 4 Pinus Radiata 56 0.55 0.28 0.79 

 5 Eu. Baxteri 97 0.53 0.32 0.73 

 6 Eu. Viminalis 95 0.50 0.25 0.75 

 7 A. Melanoxylon 52 0.23 0.07 0.48 

 8 C. Glaucophyllus 43 0.21 0.06 0.46 

 9 A. Pycnantha 29 0.10 0.01 0.37 

 10 P. Undulatum 103 0.07 0.00 0.27 

 11  A. Verticillata 69 0.05 0.00 0.21 

 12  S. Molle 28 0.00 0.00 0.21 

 

In this paper, we proposed a new live model to detect the vegetation fault 

signatures using Convolutional Neural Networks (CNN). A scientific 

approach to classify the species according to the fire risks was also 

presented in the paper. In order to verify the proposed model, three 

typical vegetation species (two extreme cases in Table 6.1, i.e. Salix Sp. 

and S. Molle, and one with the most test data - F. Angustifolia) were 

selected from the experiment conducted in the PBSP. The detection 

accuracy and the fire risk ranking for the selected species are discussed in 

the paper. 

 Methodology  

 History of the vegetation conduction ignition test 

Following the disastrous wildfires (i.e. Black Saturday) in February 2009, 

the Victorian Government of Australia announced a $750 million 

Powerline Bushfire Safety program (PBSP) in 2011; aiming to reduce the 



 

125 
 

risk of bushfires started from electrical faults without causing significant 

impact on electricity supply reliability. Within the program, the world 

first research project focused on vegetation conduction ignition was 

completed in 2015 at Springvale substation, Victoria (Figure 6.1). The 

project studied the ignition processes and recorded corresponding fault 

signatures (i.e. electrical signals caused by vegetation faults) for three 

different fault types: branch across wires (phase-phase), branch touching 

wire (phase – earth), and wire into vegetation. A total of 1,038 experiment 

tests were conducted on 24 plant species in the project. A detailed report 

about the project can be found in (Marxsen 2016) and the full authorised 

data set including photos, videos, test logs and report, are available on the 

DataVic website. Here we give a brief description of the vegetation 

conduction ignition process related to this paper. 

 

Figure 6.1 Vegetation conduction ignition test facility at Springvale. 
 

According to the previous research reported in (Marxsen 2016), the 

vegetation conduction ignition process follows a consistent sequence of 

stages illustrated in Figure 6.2, which shows the direct fault current 

recording with time in a phase to earth test of a Desert Ash sample. The 

process can be divided into four stages: stage one is development of full 

conductor-vegetation contact where showing an increasing of fault 

current; stage two is expulsion of moisture where showing a decreasing 

of fault current; stage three is progressive charring of bark extending 

https://www.data.vic.gov.au/data/dataset/powerline-bushfire-safety-program-vegetation-conduction-ignition-test-report
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from the thinner end of the vegetation sample where significant 

fluctuation of fault current can be viewed; and final stage is flashover 

when flame bridges the high voltage conductors when cutting off the 

power supply as the fault current has reached the current limit 2A. Figure 

6.3 gives an example of the four-stage development of fire after the 

vegetation fault occurs. In stage one, each conductor-branch contact point 

was progressively wrapped in a ball of plasma or flame which 

equivalently enlarges the conductor-branch contact area leading to the 

rising of fault current. Following the first peak of current, in stage two, the 

current starts decreasing. This is because in this stage, the moisture 

contained in the branch turns into steam and leaves the branch. 

Sometimes jets of steam or even streams of water could be seen issuing 

from the branch. In stage 3, after moisture expulsion starts to fade, flame 

slowly spread along the branch from one or both ends and intermittent 

electric arcs appearing the flame would short-circuit the burning section 

of branch and cause large fluctuations in the current. Finally, the whole 

branch was on fire (flashover) in stage four and the power supply was cut 

off by the powerline protection system. 

 

 

Figure 6.2 Typical variation of fault current in the four stages of vegetation fault 
development. 
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Figure 6.3 An example of fire development during the vegetation conduction 
ignition process (Marxsen 2016). 

 

The experimental tests were conducted on a total of 24 plant species, and 

they found different species have similar fault current patterns, however 

the values varies a lot among species. One of the critical values is the first 

peak current as once entering into stage two, the ignition process does 

not normally terminate in stage two as the current starts decreasing (i.e. 

the powerline protection system does not cut off the power supply before 

the first peak if the pre-set current limit is greater than the peak value), it 

usually continues into stage three and four, which would have a great 

probability of causing bushfire. Since different vegetation species have 

different first peak current values, it is hard to choose a proper pre-set 

current limit (neither too sensitive nor too slow) for the powerline 

protection system. In this paper, we developed a new method to cut 

powerline wildfire risk using CNN, which is able to detect the fault species 

immediately when fault occurs and also send alarms if the ignition 

process is already in a late stage (passing stage one). 
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 Convolutional Neural Networks 

First introduced by (Fukushima 1980), the Convolutional Neural 

Networks (CNN) is a class of deep artificial neural networks, which has 

been successfully applied to analysing 2-D visual imagery, such as hand-

written character recognition (Lecun 1989, Lecun and Bengio 1995, Niu 

and Suen 2012). A typical structure of CNN is shown in Figure 6.4, which 

consists of an input and an output layer, as well as multiple hidden layers 

in between. The hidden layers of a CNN typically consist of convolutional 

layers, subsampling (pooling) layers and fully connected layers (see 

Figure 6.4). The convolutional layers apply convolution filters to the 

original input to get feature maps which will be passed to the next layer. 

Following convolutional layer, there may be a pooling layer which 

combines the outputs of neuron clusters at one layer into a single neuron. 

There are several methods of pooling, including max pooling, average 

pooling and linear combination pooling. By applying convolutional and 

pooling, the CNN significantly reduces the number of neurons, allowing 

the network to be deeper with fewer parameters (Aghdam and Heravi 

2017), and making the network practical for training with limited 

computational resources. It is worth noting that there can be multiple 

convolutional layers and pooling layers in a CNN and more layers makes 

the network deeper. Finally, the fully connected layer receives the 

information from last hidden layer and turns it into high-level reasoning 

output. 

 

 

Figure 6.4 A typical CNN structure. 
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Since the first successful application of LeNet on hand-written digits 

recognition (Lecun et al. 1990), the CNN has shown great potential on 

solving different problems including image classification (Ciresan et al. 

2011), face recognition (Parkhi et al. 2015), natural language processing 

(Kumar et al. 2016) and object tracking (Hong et al. 2015). Since the CNN 

has shown great potential in processing images and making predictions 

based on images, in this paper, we applied CNN to detect the powerline 

fault species, according to the spectral data of electrical signals caused by 

vegetation faults. 

 Results and discussions 

 Vegetation fault detection and evaluation model 

In order to perform vegetation fault detection and fire risk evaluation, we 

proposed a two-step detection model. In step one, we build mathematical 

models of the fault current (see Figure 6.2 for an example) and calculate 

the critical point (near the peak in stage one of ignition process). Then we 

can give rankings of fire risk for different species according to the time 

and current value at the critical point. In step two of detection, we create 

and train a CNN model to recognize which species cause the fault 

according to the fault current spectrogram (Figure 6.5). Afterwards, 

combining the fire risk rankings given in step one, we provide a 

comprehensive solution for powerline vegetation fault detection. Details 

of the two-step model are described as followings.  
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Figure 6.5 An example of direct fault current spectrogram. 

 

a) Step one of detection 

As discussed in Section 6.2.1, it would be hard to get fault signal detected 

if the ignition process has passed stage one (i.e. fault current has peaked 

already). The protection system must detect the fault signal before stage 

two, otherwise it would pose a great risk of causing bushfire. Therefore, 

the peak point here is a critical detection point and we should pay more 

attention to the fault signal in stage one. 

Figure 6.6 shows the fault current (blue curve) in stage one for test VT226 

(i.e. the segment before the first peak in Figure 6.2). The red curve in 

Figure 6.6 is the derivative of the current where there is a peak (red 

circled in Figure 6.6) located just before the current peak. In this paper, 

we call this circled peak ‘Boiling Point’ (BP) as the moisture contained in 

the branch turns into steam and leaves the branch at this time, which can 

be observed from the video recording. Before reaching BP, the fault 

current increases sharply while after BP, the current rises up slowly till 

reaching the first peak. In our model, we take BP as the critical point 

instead of the current peak. There are two reasons why we do so. Firstly, 

in many experimental tests, the power was cut off when the fault current 
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was still going up due to the protection system has been triggered before 

reaching current peak. In those cases, we are not able to get the peak 

point. On the other hand, BP is always earlier than first current peak, 

which means it is even safer if we could detect the fault signal at BP. 

 

 

Figure 6.6 Fault current in ignition stage one. 
 

In order to find BP, we need to fit a mathematic function of the fault 

current curve. We used a piecewise function to do the curve fitting: 

𝐼 =  
𝐼𝑡=0

1 + 𝑎(𝑒𝑏𝑡 − 1) + 𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒{[0, 𝑡 ≤ 𝐵𝑃], [𝑐(𝑒𝑑(𝑡−𝐵𝑃) − 1), 𝑡 > 𝐵𝑃]}
 

where 𝐼𝑡=0 is the initial current, 𝑎, 𝑏, 𝑐, 𝑑 are the fitting hyperparameters. 

We did curve fitting for all the test results of different species and 

recorded the time when moisture boiling occurs and the value of fault 

current at that time. The information at BP could provide a reference 

when we give each species a ranking number in terms of causing bushfire 

according to the following two rules: the earlier BP occurs, the bigger 

chance of causing fire as shorter time left for reaction; the smaller current 

at BP, the bigger chance of causing fire because it is harder to be detected 

by protection system.  
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b) Step two of detection 

In this step, rather than using fault current curve which was used in step 

one, we use spectrogram of fault signal (see Figure 6.5 for an example) as 

input to create a vegetation fault live detection model. Each spectrogram 

can be treated as a 2D image and CNN is one of the most promising 

techniques to deal with image detection. The first step in CNN is to get 

training samples and label these samples. In this study, we only have 

around 1000 test results available in total, which is not enough for 

training CNN; on the other hand, the whole image of spectrogram is too 

big for input of CNN. In order to get sufficient samples and to reduce the 

sample size, we split the full spectrogram into small sub-images using a 

sliding sample window. Figure 6.7 gives an example of this data 

augmentation process. The width of sample window is 12 pixels (i.e. ~1s) 

and the moving step is one pixel per sub-sample. By doing this, we can get 

around 64 sub-samples for test VT609. The sub-samples before ‘BP’ are 

labeled as ‘species name + fault type’ (e.g. ‘Desert Ash ph-e’ in Figure 6.7) 

and those after ‘BP’ are all labeled as ‘danger’ regardless of the species 

name. We did the similar procedure for all the available test results and 

next step is using the labeled samples to train a CNN model. 

 

 

Figure 6.7 Sample splitting and labeling. 
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Refer to the typical structure of CNN shown in Figure 6.4, in this paper, we 

created a CNN model indicated in Figure 6.8. As shown in Figure 6.8, the 

model contains 13 layers in total including one input layer, several 

convolution ramp pooling layers, fully connection layers and final output 

layer. Figure 6.9 gives detailed information of each layer including layer 

name, data type and data size. Through these layers, raw images get 

filtered, rectified and pooled to create a set of shrunken, feature-filtered 

images. These can be filtered and shrunken again and again. Each time, 

the features become larger and more complex and the images become 

more compact. The lower layers represent simple aspects of the image, 

such as edges and bright spots, while the higher layers can represent 

increasingly sophisticated aspects of the image, such as shapes and 

patterns. With respect of the configuration of the proposed CNN structure, 

we finalized using a total of 13 layers by experiments. In the experiments, 

we found that either less layers or more layers could lower the 

performance of the network, due to underfitting (too few layers) or 

overfitting (too many layers). As we all know, the tuning process of hyper-

parameters of the CNN are still based on experiment and experience, thus 

13 layers are a result of experiment in this study. Figure 6.10 gives an 

example of what the features look like after each layer using a subsample 

from Figure 6.7 (t=5s). Figure 6.10(a) is the raw sample image and Figure 

6.10(b) shows the feature maps after first convolutional calculation. 

Figure 6.10(c) gives the shrunken feature maps after ramp and pooling. 

Figure 6.10(d) indicates the deeper feature maps after second loop of 

convolution, ramp and pooling. Figure 6.10(e, f and g) demonstrates the 

outputs from fully connection layers, where Figure 6.10(g) is the final 

layer that outputs the corresponding category with highest possibility 

value (i.e. ‘Desert Ash ph-e’ in this example). 
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Figure 6.8 Proposed CNN structure. 

 

 

 

Figure 6.9 Details of the proposed CNN layers. 
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Figure 6.10 Visualization of CNN layers. 

 

 

 Validation Results 

In order to validate the proposed vegetation fault detection approach, we 

selected three typical species to test our models: Salix Species (Willow), 

Franxinus Angustifolia (Desert Ash) and Schinus Molle (Peppercorn).  
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Figure 6.11 Fire risk rankings of three typical species: Willow, Desert Ash and 
Peppercorn. 

 

Figure 6.11 shows the step one results of the chosen species, i.e. fire risk 

rankings. As we described in Section 6.3.1(a), we use the fault current and 

time at ‘BP’ to guide the ranking. In Figure 6.11, the BP current (BPI) and 

BP time (BPT) for different species and different fault types are scattered 

using different colors. In addition, corresponding covariance ellipses are 

plotted as well. It is noted that there are two types of fault (i.e. phase – 

phase and phase – earth), where the typical background current values 

are different (300A and 20A, respectively). In order to compare fire risks 

among different species and different fault types, in Figure 6.11, the y axis 

is BPI coefficient (i.e. BPI divided by background current) instead of the 

absolute value of fault current. From Figure 6.11, it can be observed that 

through this approach, we can separate the species and fault types and 

allocate fire risk ranking levels according to the discussion in Section 

6.3.1(a). It is worth noting that for Peppercorn, all experiment tests were 

terminated before BP as power protection system triggered. It means the 

fault current of Peppercorn rises sharply and it has a much bigger BPI 

than other two species (see Figure 6.12 for comparisons). Thus the 

Peppercorn should locate at the top of the plot in Figure 6.11 (orange 
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dashed ellipse). According to the discussion in Section 6.3.1(a): the earlier 

BP occurs and the smaller current at BP, the bigger chance of causing fire, 

we could give fire risk rankings of the species shown in Figure 6.11: 

Willow > Desert Ash > Peppercorn and ph – ph > ph – e. A summary of 

average fire probability of these three species in the experimental tests 

can be found in Table 6.1 from Marxsen’s report (Marxsen 2016), which is 

consistent with the rankings given by this paper (i.e. Willow: 100%, 

Desert Ash: 58%, Peppercorn: 0%). 

 

 

Figure 6.12 Comparison of fault current in ignition stage one between Willow 
(VT153) and Peppercorn (VT973). 

 

After getting the fire risk rankings, the next step is live vegetation 

detection using CNN. As discussed before, in this step, we use 

spectrogram of fault signal as input to predict which species is touching 

powerline when fault occurs. A CNN model was trained to do the 

prediction. Details of the model structure and data sampling have been 

discussed in previous sections (Figure 6.7~Figure 6.9). During the 

training process, 80% of all available samples were used as training set 

and the rest 20% were used for test purpose. Table 6.2 lists the prediction 

accuracy of the trained CNN for the selected three species. 
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Table 6.2 CNN prediction accuracy for Willow, Desert Ash, Peppercorn. 

Label Data group Accuracy 
Number of 
samples 

‘Dangerous’ 
Training 96.6% 62,507 

Test 93.2% 15,816 

‘Desert Ash ph-e’ 
Training 87.5% 25,213 

Test 85.4% 6,085 

‘Desert Ash ph-ph’ 
Training 93.4% 7,767 

Test 73.0% 1,482 

‘Peppercorn ph-e’ 
Training 97.4% 737 

Test 84.3% 481 

‘Peppercorn ph-ph’ 
Training 78.6% 14 

Test N/A 0 

‘Willow ph-e’ 
Training 82.0% 4,427 

Test 79.7% 1,394 

‘Willow ph-ph’ 
Training 75.8% 1,505 

Test 75.6% 364 

 

In Table 6.2, it is noted that for three species, 7 labels in total are used, 

which include one ‘Danger’ representing fault stages passing ‘BP’ for all 

species, the rest 6 labels represent fault stages before ‘BP’ (safe for now) 

for different species and different fault types. In this paper, the 

‘Dangerous’ is the priority to be detected because this situation is urgent, 

while other statuses are relatively safe. Therefore, the goal of the 

algorithm is to detect ‘Danger’ with high accuracy. From the prediction 

results listed in Table 6.2, we can find that good detection accuracy 

(greater than 93%) has been achieved for ‘Danger’ in both training set 

(96.6%) and test set (93.2%). It is worth noting that for the species and 

fault type detection, the accuracy is calculated as the following rule: 

incorrect results are defined as the species or fault types are incorrectly 

predicted, not including detected as ‘dangerous’ situation. For example, if 

the ‘Willow ph-e’ was predicted as ‘Desert Ash ph-e’ by our model, it is 

counted as incorrect results, and in this situation, it is very dangerous, 

because Willow has higher fire risk than Desert Ash. However, if the 
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‘Willow ph-e’ was predicted ‘Dangerous’, it will not be counted as 

incorrect results, because it is possible that the ‘Dangerous’ is caused by 

Willow and our model just gives an alert at an early stage which is not 

causing dangerous problem as before. Also, from the Table 6.2, one can 

notice that some training accuracy rates are relatively low (peppercorn 

and willow), and this is mainly because we are lack of enough samples 

(<2,000) for training the deep network. The accuracy rates would be 

improved once we collect more samples from the lab experiments. Figure 

6.13 gives such an example of CNN live detection results for ‘Willow ph-e’, 

where the bottom color bar indicates the detection results (blue: Willow 

ph-e fault stage one, black: Danger). From Figure 6.13, we can see that 

more than half samples from fault stage one were incorrectly classified as 

‘Danger’. As Willow is the most dangerous species (i.e. highest fire risk), it 

is acceptable to send a fire alarm when fault is in stage one (i.e. before 

‘BP’). It could bring mistake alert. However, from the aspect of safety, it is 

better than late or no alert. Therefore, this scenario does not pose a 

negative impact to the performance of our model. Figure 6.14 gives more 

live detection results for the other two species (Desert Ash and 

Peppercorn), which demonstrates the good performance of our CNN 

model.  

 

 

Figure 6.13 An example of live detection results for Willow ph-e. 
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Figure 6.14 Live detection results. 
 

 Noise impact 

The data used in above sections are from laboratory experimental test 

(i.e. the data are clean). However, the on-site measured data must contain 

noise and our model should take the noise signal into account. There are 

two steps in our model where step one is a static detection and step two is 

a live detection. In step one, we can use clean data obtained from lab test 

to give fire risk rankings of different species, while in step two, since it is 

live detection, noise in field test has to be considered. Figure 6.15 gives an 

example of extreme case where the fault current has large fluctuations 

after ‘BP’ (starting from t=30s). From the live detection results shown in 

the bottom image in Figure 6.15, we can find that those fluctuations affect 

the detection accuracy and result in detection errors (circled in bottom 

color bar). However, these narrow detection errors surrounded by 

correct results (black bars) are easily to be ignored, because we are 

looking at a continuous fault ignition process and those signals that 
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suddenly appear and exist no more than 1 second could be treated as 

wrong signals and therefore should be ignored.  

 

 

Figure 6.15 An example of extreme case with large current fluctuations after ‘BP’. 
 

Furthermore, since the network noise data are available on the DataVic 

website, we could add the noise signal and the fault signal together to 

represent the on-site signal which contains noise. Figure 6.16 shows the 

noise direct current curve and corresponding spectrogram graph. It is 

noticed from spectrogram that the noise is mainly composed of 50Hz 

signals which is reasonable as the utility frequency of powerline is 50Hz. 

In order to study the influence of noise to the CNN live detection model, 

we add the noise spectrogram with different levels of gain (1X, 2X, 5X) to 

the aforementioned extreme case (VT609 shown in Figure 6.15), and then 

test the detection model (trained with clean data) using the data with 

https://www.data.vic.gov.au/data/dataset/powerline-bushfire-safety-program-vegetation-conduction-ignition-test-report
https://www.data.vic.gov.au/data/dataset/powerline-bushfire-safety-program-vegetation-conduction-ignition-test-report
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noise. The comparisons of detection results are shown in Figure 6.17, 

where image (a) gives the detection result of the original signal, and the 

rest images indicate the results given by the same detection model with 

1X, 2X, 5X noise signal, respectively. In this study, detecting vegetation 

species correctly after powerline fault occurs and giving fire alert 

immediately when the fault process is passed ‘BP’ are the two important 

goals to cut powerline wildfire risk caused by vegetation conduction 

ignition. From the results shown in Figure 6.17(b, c, d), we can find that 

the noise signal makes the fire alert around 4 seconds late (i.e. ‘BP’ occurs 

at 13s, while continuous black bar starts from 17s). Although the noise 

causes 4 seconds delay, comparing to 64 seconds which is the traditional 

current limit safety device would take to react to fault, our model is much 

faster (17 seconds). On the other hand, we could retrain the model as long 

as we collected enough on-site test data (with noise) to achieve a better 

robustness performance of dealing with noise.  

 

 

Figure 6.16 Network noise current and spectrogram. 
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Figure 6.17 Live detection results of Desert Ash (VT609) with impacts of different 
gains of noise. 

 

 Conclusions 

A novel two-step vegetation detection model has been developed and 

proposed aiming to cut powerline wildfire risk caused by vegetation 

conduction ignition after powerline fault occurs. In step one, we focus on 

the fault current signal before the first peak and according to the 

information at the critical point (‘BP’), we give fire risk rankings of 

different vegetation species. In step two of the model, live detection is 

implemented using CNN with the fault signal spectrogram as input. The 

model will monitor the fault signal continuously and will give the fault 

species and fault type when fault occurs, providing powerline operators 

with reference of reacting to the fault according to the fire risk ranking of 

that species given in step one. The live detection model can also send a 

‘Danger’ alert to operators if the fault process has passed safe stage (i.e. 

over ‘BP’). The testing results on three typical species (Willow, Desert 

Ash, Peppercorn) of fire risk rankings are consistent with the average fire 

probabilities of these three species in the experimental tests reported in 

Marxsen’s paper (Marxsen 2016). With the limitation of experimental 
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training data, the live detection CNN model achieves accuracy of 85.3% 

93.2% for species detection and danger detection, respectively. Compared 

to the traditional current limit safety device, our model provides more 

detailed information during powerline vegetation fault process and 

makes corresponding actions within shorter time, thus supplies more 

accurate and faster protection to cut powerline wildfire risk caused by 

vegetation conduction ignition. Future research include collecting more 

test data for each species to further increase the model accuracy, bringing 

more types of species to do analysis, improving the performance of the 

model against on-site noise.  
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Conclusion 

This thesis focused on the development of novel multi-objective software 

platforms to assist engineering design and investigation, especially for 

simulation-based indoor environment problems, which always involve 

multiple evaluation criteria. In addition, this thesis aimed to develop new 

methods to reduce the computational cost associated with the design 

process. Also, development of new data analysis approach with the 

assistance of machine learning techniques to handle a large amount of 

data quickly and accurately was a part of this thesis. The main 

contributions from this thesis are: 

• A new design scheme was developed to achieve multi-objective 

optimization to help indoor ventilation system design, without 

having to use any weighting factors, and is capable to explore the 

whole design space, to provide multiple solutions. 

• Developed a response-adaptive sampling approach, which 

allocates the sampling points in an adaptive way to save 

computational resources in the CFD-assisted HVAC system design 

process. 

• A multi-fidelity surrogate model of CFD simulation was developed, 

which uses both high-fidelity results (fine meshing) and low-

fidelity results (coarse meshing), thus is able to save 

computational cost without sacrificing the simulation accuracy. 

• Developed a new data analysis approach using CNN to help find 

features from large amount of data collected from the lab and help 

reduce powerline wildfire risk caused by vegetation conduction 

ignition after powerline fault occurs. 
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 Details of the contributions 

 Multi-objective optimization of HVAC system in an 

office room using NSPSO 

Chapter 3 presents a CFD-assisted design procedure of the ventilation 

system in a typical office compartment. A multi-objective optimization 

platform has been proposed and developed by incorporating the 

Nondominated Sorting based Particle Swarm Optimization (NSPSO) 

algorithm with the Kriging method. To remedy the drawback of some 

previous studies, the NSPSO algorithm removes the necessity of using 

weighting factors in constructing the objective function and obtains the 

corresponding trade-off solutions (i.e. Pareto Front) for the given 

objective space. With the visualization of solutions in objective space, 

designers could easily pick up the most appropriate design solution 

according to their own judgments and preferences, rather than being 

struggled to decide the value of weighting factor in advance. 

Special attention is also taken to minimize the computational cost where 

considerably large training sample based on Computational Fluid 

Dynamics (CFD) simulations are usually required for the surrogate 

modelling. The Kriging method where the best linear unbiased value of 

the unobserved fields is estimated based on the known sampled data is 

adopted in the present study. One particular advantage of the Kriging 

method is its capability in achieving high prediction accuracy with a 

relatively small training sample size. Predictions from the Kriging method 

are compared and assessed with the CFD predictions. The comparison has 

shown that the Kriging method provides excellent accuracy in prediction 

with the maximum error of 5.12%. In addition, with the proposed 

adaptive sampling procedure, further reduction of the computational cost 

could be realized. Based on the given case study, the optimization 

platform achieves a saving of 46.6% of CPU time without sacrificing the 

accuracy of the optimal solution. 
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 Multi-fidelity surrogate algorithm for fire origin 

determination 

Chapter 4 demonstrates a reverse engineering solution to fire origin 

determination using CFD. A novel Multi-fidelity Kriging algorithm for fire 

forensic investigations was proposed in this chapter, which is capable to 

quantitatively determine the fire origin based on the soot deposition 

patterns that could be measured in the post-fire fire scene or predicted by 

means of numerical simulations. Aiming to develop an alternative 

methodology assisting the fire investigation, the proposed methodology 

does not involve expert interpretations and professional judgments in 

process, which could eliminate the inevitable subjective bias and human 

error in the determination process. A series of fire scenarios (i.e. totally 

41 cases) based on a single compartment fire situation was utilized for 

assessing the performance of the proposed Multi-fidelity Kriging 

algorithm. Soot deposition patterns on the compartment wall were 

predicted by the widely adopted fire CFD package - Fire Dynamics 

Simulator (FDS). The predicted soot deposition patterns on three vertical 

wall surfaces were extracted and parameterized into 4 parameters 

describing the boundary line of the pattern. Performance assessment 

shows the algorithm could capture the correlation between the high-

fidelity and low-fidelity simulation results and produce accurate 

predictions almost comparable to those made by all high-fidelity training 

samples. Taking 95% as the confidence interval, the prediction errors of 

using high-fidelity and multi-fidelity training data are of 0.89m and 

0.90m, respectively. More importantly, without scarifying the accuracy, 

the multi-fidelity Kriging algorithm managed to reduce the associated 

computational time for constructing the training sample by 58%.  

 Multi-objective optimization design of HST cabin 

ventilation system 

As a subsequent study of the research works described in chapter 3, a 

more complex ventilation system design was demonstrated in chapter 5, 

where a new design approach has been proposed by incorporating the 



 

148 
 

nondominated sorting based particle swarm optimization (NSPSO) 

algorithm with the Multi-fidelity Kriging method to searching the optimal 

design condition of the ventilation system in a fully occupied high-speed 

train (HST) cabin. The advantage of NSPSO is the capability to provide 

multiple trade-off solutions in one simulation run and to give a clear 

visualization of solutions in both design space and objective space. 

Another benefit of adopting NSPSO is that users can easily select 

alternative solutions according to their experience and preference, rather 

than struggling to choose appropriate weightings at the beginning of 

traditional design process.  

In order to validate the proposed approach, a high-resolution 

computational model of Chinese CRH2 train cabin was created with 

ANSYS Fluent package, where the fine 3D-scanned thermal manikin 

models were used to improve the computational accuracy. To address the 

time-consuming problem in CFD simulations, especially when we 

introduced the high resolution computational thermal manikin model, a 

Multi-fidelity Kriging surrogate was also developed in this study. The 

simulation results demonstrate that the proposed new design procedure 

is capable to save up to 35.61% of the total computational time compared 

to the traditional single objective approach, while maintaining an 

acceptable predictive error. 

 A new method to cut powerline wildfire risk caused 

by vegetation conduction ignition using CNN 

Chapter 6 presents a new data analysis method using CNN to find data 

features from big data. A novel two-step vegetation detection model has 

been developed and proposed aiming to cut powerline wildfire risk 

caused by vegetation conduction ignition after powerline fault occurs. In 

step one, we focus on the fault current signal before the first peak and 

according to the information at the critical point (‘BP’), we give fire risk 

rankings of different vegetation species. In step two of the model, live 

detection is implemented using CNN with the fault signal spectrogram as 

input. The model will monitor the fault signal continuously and will give 

the fault species and fault type when a fault occurs, providing powerline 
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operators with reference of reacting to the fault according to the fire risk 

ranking of that species given in step one. The live detection model can 

also send a ‘Danger’ alert to operators if the fault process has passed safe 

stage (i.e. over ‘BP’). The testing results on three typical species (Willow, 

Desert Ash, Peppercorn) of fire risk rankings are consistent with the 

average fire probabilities of these three species in the experimental tests 

reported in Marxsen’s paper (Marxsen 2016). With the limitation of 

experimental training data, the live detection CNN model achieves 

accuracy of 85.3% 93.2% for species detection and danger detection, 

respectively. Compared to the traditional current limit safety device, our 

model provides more detailed information during powerline vegetation 

fault process and makes corresponding actions within a shorter time, thus 

supplies more accurate and faster protection to cut powerline wildfire 

risk caused by vegetation conduction ignition. 

 Future works  

 CFD-assisted fire origin determination 

In Chapter 4, as a preliminary validation of the proposed approach, the 

authors built a single compartment fire model, which is a relatively simple 

geometry model. Prediction of fire origin in complex geometries (e.g. 

multi-compartments) is subject to on-going research work. In addition, in 

chapter 4, we used a lightly sooting fuel - propane as the burning material 

in the CFD model, where the level of soot concentration is 10-5 kg/m2. 

However, in reality, most of the building fires involve burning heavily 

sooting materials such as foamed furniture and natural or synthetic 

carpets. Using propone as the primary fuel in this study representing a 

conservative assumption in terms of soot deposition on the wall. In 

practical building fires, it is expected to have more rigorous soot 

depositions on the walls. In addition, more scenarios with post-flashover 

fire will be studied in the future as all the study cases described in chapter 

4 were pre-flashover. 
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 CFD-assisted ventilation system design 

In this thesis, we used single room compartment (Chapter 3) and high-

speed train cabin (Chapter 5) as test beds and validate the proposed 

methodology to help multi-objective indoor ventilation system design. In 

the future, other applications such as multiple office compartments and 

aeroplane cabin also need to be tested. In addition, in order to further 

validate the proposed multi-objective optimization and multi-fidelity 

surrogate methods, different locations of diffusers, different angle of 

supply air and cabin environment in different seasons need to be 

considered as well. Also, the application of the multi-objective 

optimization framework consisting of the NSPSO and Kriging methods to 

assist outdoor ventilation system, such as wind energy system design, is 

also worth of investigating. Subject to financial support, doing 

experimental test to further validate the computational models is also 

within our future scopes. 

 CNN-assisted vegetation detection 

Future research regarding the CNN-assisted vegetation detection includes 

collecting more test data for each species to further increase the model 

accuracy, bringing more types of species to do analysis, improving the 

performance of the model against on-site noise. 
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