9 research outputs found

    Author index for volumes 101–200

    Get PDF

    Closer to the solutions: iterative linear solvers

    Get PDF
    The solution of dense linear systems received much attention after the second world war, and by the end of the sixties, most of the problems associated with it had been solved. For a long time, Wilkinson's \The Algebraic Eigenvalue Problem" [107], other than the title suggests, became also the standard textbook for the solution of linear systems. When it became clear that partial dierential equations could be solved numerically, to a level of accuracy that was of interest for application areas (such as reservoir engineering, and reactor diusion modeling), there was a strong need for the fast solution of the discretized systems, and iterative methods became popular for these problems

    Computational Techniques for Optimal Control of Quantum System

    Get PDF
    The control of matter and energy at a fundamental level will be a cornerstone of new technologies for years to come. This idea is exemplified in a distilled form by controlling the dynamics of quantum mechanical systems via a time—dependent potential. The contributions detailed within this work focus on the computational aspects of formulating and solving quantum control problems efficiently. The accurate numerical computation of optimal controls of infinite—dimensional quantum control problems is a very difficult task that requires to take into account the features of the original infinite—dimensional problem. An important issue is the choice of the functional space where the minimization process is defined. A systematic comparison of L2— versus H1—based minimization shows that the choice of the appropriate functional space matters and has many consequences in the implementation of some optimization techniques. vi A matrix—free cascadic BFGS algorithm is introduced in the L2 and H1 settings and it is demonstrated that the choice of H1 over L2 results in a substantial performance and robustness increase. A comparison between optimal control resulting from function space minimization and the control obtained by minimization over Chebyshev and POD basis function coefficients is presented. A theoretical and computational framework is presented to obtain accurate controls for fast quantum state transitions that are needed in a host of applications such as nano electronic devices and quantum computing. This method is based on a reduced Hessian Krylov—Newton scheme applied to a norm—preserving discrete model of a dipole quantum control problem. The use of second—order numerical methods for solving the control problem is justified proving existence of optimal solutions and analyzing first— and second—order optimality conditions. Criteria for the discretization of the non—convex optimization problem and for the formulation of the Hessian are given to ensure accurate gradients and a symmetric Hessian. Robustness of the Newton approach is obtained using a globalization strategy with a robust line- search procedure. Results of numerical experiments demonstrate that the Newton approach presented in this dissertation is able to provide fast and accurate controls for high—energy state transitions. Control of bound—to—bound and bound—to—continuum transitions in open quantum systems and vector field control of two—dimensional systems is presented. An efficient space—time spectral discretization of the time—dependent Schrödinger equation and preconditioning strategy for a fast approximate solution with Krylov methods is outlined

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    A parallel Broyden approach to the Toeplitz inverse eigenproblem

    No full text

    Vol. 15, No. 1 (Full Issue)

    Get PDF
    corecore