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Abstract

The control of matter and energy at a fundamental level will be a cornerstone of

new technologies for years to come. This idea is exemplified in a distilled form

by controlling the dynamics of quantum mechanical systems via a time–dependent

potential. The contributions detailed within this work focus on the computational

aspects of formulating and solving quantum control problems efficiently.

The accurate numerical computation of optimal controls of infinite–dimensional

quantum control problems is a very difficult task that requires to take into account

the features of the original infinite–dimensional problem. An important issue is the

choice of the functional space where the minimization process is defined. A system-

atic comparison of L2– versus H1–based minimization shows that the choice of the

appropriate functional space matters and has many consequences in the implemen-

tation of some optimization techniques.
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A matrix–free cascadic BFGS algorithm is introduced in the L2 and H1 settings

and it is demonstrated that the choice of H1 over L2 results in a substantial per-

formance and robustness increase. A comparison between optimal control resulting

from function space minimization and the control obtained by minimization over

Chebyshev and POD basis function coefficients is presented.

A theoretical and computational framework is presented to obtain accurate con-

trols for fast quantum state transitions that are needed in a host of applications such

as nano electronic devices and quantum computing. This method is based on a re-

duced Hessian Krylov–Newton scheme applied to a norm–preserving discrete model

of a dipole quantum control problem. The use of second–order numerical methods

for solving the control problem is justified proving existence of optimal solutions

and analyzing first– and second–order optimality conditions. Criteria for the dis-

cretization of the non–convex optimization problem and for the formulation of the

Hessian are given to ensure accurate gradients and a symmetric Hessian. Robustness

of the Newton approach is obtained using a globalization strategy with a robust line-

search procedure. Results of numerical experiments demonstrate that the Newton

approach presented in this dissertation is able to provide fast and accurate controls

for high–energy state transitions.

Control of bound–to–bound and bound–to–continuum transitions in open quan-

tum systems and vector field control of two–dimensional systems is presented. An ef-

ficient space–time spectral discretization of the time–dependent Schrödinger equation

and preconditioning strategy for a fast approximate solution with Krylov methods

is outlined.
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Chapter 1

Introduction

Optimal control of quantum systems can be viewed as a specific instance of PDE–

constrained optimization. The optimization problem arises by formulating a cost

functional based on a quantum mechanical observable, such as the probability of

finding a particle in a particular state, which is to be minimized or maximized. An

equality constraint is added which requires the dynamics of the particle to satisfy the

appropriate evolution equation, such as the time–dependent Schrödinger equation or

the Gross–Pitaevskii equation. The equality constraint is enforced by Lagrange mul-

tiplier methods. The optimal control method is, of course, not the only approach for

controlling quantum mechanical systems. Quantum feedback control based on clas-

sical control theory[91] has many interesting applications and has been the subject

of much attention as well.

Quantum control is a challenging problem both theoretically and numerically as

the control problem is inherently nonlinear in nature. Even though the TDSE is a

linear equation, the control term appears in the Hamiltonian operator, usually in the

potential part, where it multiplies with the dependent variable, the quantum mechan-

ical wavefunction. Consequently, cost functionals which depend on the wavefunction
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Chapter 1. Introduction

are non-convex and globalization methods are needed to compute minima.

The current work is concerned specifically with the Lagrangian approach that was

first applied to the control of quantum systems in 1988 by Peirce, Dahleh, and Rabitz

[32] and moreover with the computational aspects of solving the first– and second–

order optimality conditions efficiently and accurately. The computational cost of

PDE–constrained optimization problems is that typically the PDE itself must be

solved a very large number of times. There are, therefore, two ways in which the

process can be expedited: one can try to make better use of the information obtained

from each PDE solve so that the total number of solves can be reduced and one can

choose a discretization which reduces the time of each PDE solve.

Chapter 2 is concerned with the choice of space of the control function with an

application to optimal splitting of a Bose–Einstein condensate. It is shown that the

standard L2 leads to discontinuities in the control at the final time which back–

propagate leading to a significant deterioration in convergence. An H1 space for-

mulation is introduced and a limited memory BFGS method is developed to use

H1 inner–product, giving globally time–continuous optimal controls and greatly im-

proved convergence behavior. Additionally a reduced space method is introduced

based on orthogonal polynomial expansion. This chapter is self–contained and was

originally published in Inverse Problems in 2008 [40].

Chapter 3 contains the first application of a Newton method for the solution of

an optimal quantum control problem. The implications of solving the discretized

optimality system versus solving the equations which arise by discretizing the cost

functional first and then taking variations afterward are considered as well. A novel

robust linesearch method, based on the underlying physics, and new theoretical anal-

ysis of the first– and second–order optimality conditions are presented. Chapter 3

is also self–contained and was published in SIAM Journal of Scientific Computing

2



Chapter 1. Introduction

in 2009 [84]. An additional article detailing the algorithm with accompanying codes

will be was appeared in Computer Physics Communications in 2010 [87].

Extension of the optimal control approach to open quantum systems is treated

in chapter 4. By adding a perfectly matched layer to the computational domain,

it becomes possible to accurately simulate loss of probability to the environment.

This makes the control problem more challenging still, particularly when a short

time horizon is desired. The results of chapters 2 and 3 demonstrate that to elicit a

change of state in a short interval, the norm of the control must be large, however,

when the system is open, an intense control field will cause the particle to delocalize

and leave the confining potential. To prevent this, inequality state constraints are

introduced which require the projection of the state onto the eigenspace of bound

states to satisfy a certain threshold. The inequality constraint introduces terms

of lower regularity and a semi–smooth Newton method is presented to solve the

second–order optimality conditions. It is also shown in chapter 4 that the standard

final–time cost of quantum control can be transformed into a family of equivalent

time–distributed costs by invoking the Ehrenfest Theorem. For the first time, the

Wirtinger calculus is applied to quantum control problems to demonstrate a simpler

way of deriving optimality conditions.

As a further application of the optimal control framework, control of particles

confined in multiple dimensions is considered in chapter 5. A lens-shaped quantum

dot is modeled in two dimensions using a conforming simplex mesh and spectral

element discretization. In the two–dimensional case, the control function is no longer

a scalar function of time, but rather vector–valued. It is observed that a control field

corresponding to a lateral electric field can induce transitions between bound states.

This is significant as this is the situation of quantum dot photodetectors subjected

to normally–incident light.

Chapter 6 develops an efficient space–time spectral discretization of the state

3



Chapter 1. Introduction

equation. The spectral discretization in time is motivated by two factors: the con-

trol which satisfies the first–order optimality system is a C∞ function on the open

time interval and the quantum dispersion relation indicates that the frequency of

oscillations in time are much higher than those in space. Therefore a spectral dis-

cretization is the ideal for approximating highly oscillatory smooth functions. A

space–time preconditioning strategy is detailed for rapidly solving the state equation

with an iterative Krylov solver. This preconditioner is shown to reduce the condition

number of the matrix to be inverted by as many as four orders of magnitude in the

test cases and reduces the number of Krylov solver iterations from over a thousand

to under ten.

The final chapter covers the directions of future work and extending the contri-

butions of chapters 2 through 6 to more efficient and faster algorithms for solving

quantum optimality systems.
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Chapter 2

Choice of control space

2.1 Introduction

Recent years have witnessed large interest in controlling quantum phenomena in a

variety of quantum systems through appropriate tailoring of external control fields.

For this purpose, each field of research has come up with its own strategies. For

instance, quantum-optical implementations in atoms benefit from the long atomic

coherence and adiabatic population transfer. In contrast, in quantum chemistry

direct feedback from experiments is the method of choice. Therefore, there exists

no clear consensus of how to optimally tailor the system’s control, and it is only

recently that optimal control theory has been recognized as a powerful framework

for investigating quantum control problems of various complexity [42, 11, 13, 34].

Along with this development, it has become clear that the numerical solution of

optimal control problems requires additional insight and care in the development of

solution strategies. It is the purpose of this paper to explore and remark upon some

important aspects and details in the development of computational techniques for

quantum control problems that are less known in the quantum control community.
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Chapter 2. Choice of control space

For a general discussion on computational techniques for control problems see [56].

To illustrate the challenge given by quantum control problems, we need to dis-

cuss their formulation in detail. These problems consist of an evolutionary quantum

system, described by Schrödinger-type equations, including a bilinear control mecha-

nism and a functional modeling the purpose of the control and the cost of its action.

Therefore the objective functional depends on the state configuration and features

describing the desired target as well as the control fields. The resulting task is

to minimize the objective subject to the constraint given by the dynamics equa-

tions. Therefore, we have an infinite dimensional optimization problem where the

constraint is represented by a time-dependent Schrödinger equation and a bilinear

control structure.

It turns out that quantum control problems possess very flat minima that are

sensitive to problems’ discretization parameters. Moreover, some of these local min-

ima appear to be a consequence of discretization and eventually disappear when

sufficiently fine mesh is used. This fact renders the accurate computation of op-

timal controls very difficult and requires to take into account the features of the

original infinite dimensional problem. As a benchmark for our discussion we con-

sider the Bose–Einstein condensates control problem [58] governed by the nonlinear

time-dependent Gross–Pitaevskii equation [48] with the objective to approach a final

target state by means of a smooth varying magnetic control field.

The bilinear control structure typical of quantum mechanical problems, the pres-

ence of nonlinear wavefunction evolution equations in complex Hilbert spaces, the

possibility of final observations only, make quantum control problems very difficult

to solve. This means that known optimal strategies may fail or not be able to provide

the expected performance. For this reason, we present a systematic investigation of

computational techniques with a focus on the choice of the functional space where the

minimization process is defined. Our interest is motivated by the fact that usually

6



Chapter 2. Choice of control space

quantum control problems (and corresponding gradients) are formulated and solved

on L2 spaces while the cost of the controls in the objective may be of H1 type, a

natural choice related to the regularity properties typical of quantum models.

Our present contribution to the field of computational techniques for quantum

control problems is to show that the choice of the appropriate minimization space

matters and has many consequences for the implementation and performance of the

optimization techniques considered in this paper.

In particular, we contribute on the following issues: 1) Discussion on the formula-

tion of the gradient in the L2 and H1 spaces. 2) Construction of a nonlinear conjugate

gradient (NCG) and of the standard and cascadic Broyden-Fletcher-Goldfarb-Shanno

(BFGS) schemes in the L2 and H1 spaces. 3) Discussion of the globalization step de-

pending on the accuracy of discretization. 4) Numerical performance of the L2- and

H1-based optimization with NCG and BFGS schemes and with the Newton method

resulting from an Hessian including only the regularization term. 5) Discussion on

reduced space minimization procedures (a natural choice in the physics community)

considered as alternative or complementary to the adjoint approach.

In the next section, we discuss the formulation of the optimal control of the trans-

port of Bose–Einstein condensates and consider two possible choices of the functional

space where necessary first-order optimality conditions are formulated, the L2 and

H1 spaces. For each of these two choices there results a coupled system of two non-

linear Schrödinger equations, with opposite time orientation, and an equation for

the control. These are the so-called state and adjoint equations and the optimality

condition. Sequential solution of these equations provides the gradient in the ap-

propriate space. The notion of the gradient is used in Section 2.3 where we define

the Hager–Zhang NCG scheme and the BFGS scheme in a general functional space.

The choice of line-search method is discussed and we investigate the influence of dis-

cretization errors on the globalization step. To formulate a cascadic BFGS scheme

7



Chapter 2. Choice of control space

we consider interpolating the BFGS state history along iterations thus obtaining an

improvement in efficiency with respect to the one-grid approach. This is the first

step towards the formulation of a multilevel BFGS scheme.

To solve the nonlinear optimality system, we proceed in Section 2.4 by introducing

a time-splitting spectral discretization [44, 45] adapted to the resulting state and

adjoint equations and use finite differences to discretize the optimality condition.

Thus we obtain second-order accuracy in time-discretization and spectral accuracy

in space.

In Section 2.5 results of numerical experiments are reported to compare the com-

putational performance of the solution strategies resulting from two distinct func-

tional analytical settings. The BFGS scheme can require twice as much CPU time

to reduce the cost functional to a specified value as the NCG scheme, however, with

similar computational effort the BFGS scheme may solve the control problem to a

degree of accuracy of at least one order of magnitude better than the NCG scheme

can do. Furthermore within each computational scheme, minimization in the H1-

based formulation allows to attain the same tolerance for the norm of the gradient in

one order of magnitude less of CPU time. In addition, we obtain that the H1-based

minimization is more robust with respect to changes of value of the weight of the cost

of the control. That is, we obtain a dramatic increase in performance and robustness

when we move from L2- to H1-based optimization. We also compare the H1- based

BFGS scheme with the Newton method resulting from an Hessian including only the

regularization term. We show that the former outperforms the latter and this fact

becomes even more evident as the discretization is refined and the nonlinearity of

the Gross–Pitaevskii equation increased.

An important aspect of quantum control problems is that they may possess many

local minima. This fact becomes evident comparing solutions obtained with the L2-

and the H1-based optimization. Now, a possible way to (statistically) explore the

8
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space of solutions is to construct reduced control spaces and for this purpose one

needs a robust and efficient optimization scheme like the cascadic H1-based BFGS

method that allows to consider a large range of problems and optimization param-

eters. The discussion on the construction of reduced control spaces is presented in

Section 2.6 where we consider direct minimization with polynomial basis functions

without the need of introducing the adjoint equation and optimization with an ex-

plicit construction of the gradient. A link between adjoint formulation and direct

minimization is given by discussing direct minimization on a POD basis determined

through the adjoint formulation. We obtain that the adjoint formulation is more ro-

bust and accurate and point out the limitation of the reduced control space approach

depending on the choice of parameters.

A section of conclusion completes the exposition of our work.

2.2 Quantum optimal control problems

Recently, quantum optimal control of transport of Bose–Einstein condensates in

magnetic microtraps was proposed [58] to solve the problem first considered in [54] for

a trapped-atom interferometer setup where a dilute Bose–Einstein condensate should

be split from a single to a double well ground state. A Bose–Einstein condensate is a

state of matter formed by bosons (e.g., helium-4, rubidium) cooled to temperatures

very near to absolute zero. Under such conditions, the atoms with magnetic spin

collapse into the lowest quantum state sharing the same wavefunction, and quantum

effects become apparent on a macroscopic scale. Coherent manipulation of this

wavefunction, as the splitting mentioned above, is one of the ultimate goals of modern

atom optics, and it is a promising approach towards full control of matter waves on

small scales; see [49, 50, 54, 55, 51], and references therein.

The mean-field dynamics of a coherent Bose–Einstein condensate is described by

9



Chapter 2. Choice of control space

the Gross–Pitaevskii equation [48]

i
∂

∂t
ψ(x, t) =

(
−1

2
∇2 + Vλ(x, t) + g |ψ(x, t)|2

)
ψ(x, t), (2.1)

where x ∈ Ω and t ∈ [0, T ], with g a coupling constant related to the scattering length

of the atoms, density, and transversal confinement. We set ~ = 1, and measure mass

in units of the atom mass and length in units of micrometers. We assume that the

quantum state wavefunction ψ(x, t) is normalized to one
∫

Ω
|ψ(x, t)|2dx = 1, t ≥ 0,

and therefore g in (2.1) incorporates the number of atoms NA. Alternatively as in,

e.g., [48], we could choose to normalize the wavefunction to NA in the condensates,

then g represents only the strength of interatomic interaction.

Notice that, in principle, the evolution of the Bose–Einstein condensate is defined

in unbounded spaces while the fact that V is a confinement potential results in a

wavefunction ψ whose support is localized in a bounded region. Therefore, with Ω

we represent a spatial domain that is large enough to represent the support of ψ

during evolution and we use periodic boundary conditions.

We consider confining potentials Vλ(x, t) = V (x, λ(t)) that are produced by mag-

netic microtraps whose variation is described by a control function λ(t). We assume

that λ(t) is real and single-valued. We treat the case typical in experimental settings

where the initial and final potential configuration are given, therefore we require

that λ(t) takes initial and final values of zero and one, respectively. These two ex-

tremal values correspond to the case where the potential Vλ(x, t) is convex and to

the case where it has a double well structure. Furthermore we require that Vλ is

spatially symmetric with respect to the origin of coordinates Vλ(x, t) = Vλ(−x, t)

and Vλ(x, ·) ∈ C2(Ω), and assume that Vλ is twice continuously differentiable in λ.

Suppose that initially the system is in the ground state ψ0 for the potential

V (x, λ)|λ=0. Upon varying λ(t) in the time interval t ∈ [0, T ] from zero to one, the

system will pass through a sequence of states and will end up in the final state ψ(T ).

10
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Our purpose is to determine an optimal time evolution of λ(t) that allows to channel

the system from the initial state ψ0 at time zero to a desired state ψd at final time

T . In accordance to [54], we assume ψd to be the ground state for the potential

V (x, λ)|λ=1 at time T . The ground state for a given potential V (x, λ) is defined as

the stationary state φ(x) with
∫

Ω
|φ(x)|2dx = 1 that minimizes the energy [43]

Eλ(φ) =

∫
Ω

(
1

2
|∇φ(x)|2 + Vλ(x) |φ(x)|2 +

g

2
|φ(x)|4

)
dx. (2.2)

We choose the control potential proposed in [60] to create condensates of trapped

atoms coupled with a radio-frequency fields. We have that

V (x, λ) = −λ
2 d2

8c
x2 +

1

c
x4, (2.3)

where c = 40 and d is a parameter corresponding to twice the distance of the two

minima in the double well potential. The stationary state wavefunctions for the

initial and final potentials are depicted for weak and strong nonlinearity in figure

2.1.
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Figure 2.1: Stationary solutions of the Gross-Pitaevskii equation for nonlinearity
strength g = 1 and g = 50 The initial state ψ0 is shown in solid line and the target
state ψd is represented by the dashed line.
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For our purpose, in order to define a well-defined control problem, we consider

the following cost functional [58]

J(ψ, λ) =
1

2

(
1−

∣∣〈ψd, ψ(T )〉
∣∣2)+

γ

2

∫ T

0

(
λ̇(t)

)2

dt (2.4)

with 〈u, v〉 =
∫

Ω
u(x)∗v(x) dx the usual inner product in complex spaces, where the

∗ denotes complex conjugate, and ‖u‖ = 〈u, u〉1/2.

The goal of the first term of the cost functional is to track the state ψ to a given

terminal state ψd at t = T . Exact tracking would result in
∣∣〈ψd, ψ(T )〉

∣∣2 = 1. This

choice of the form of the functional is different than the one given by 1
2
‖ψ(T )−ψd‖2

as used in, e.g., [8]. In fact, in (2.4), the final wavefunction is required to match

the desired target function only up to a global phase eiϕ T which cannot be specified.

That is, we are free to specify the target function up to a phase shift.

The second term in the cost functional represents H1 costs and aims at penalizing

fast varying confinement potentials that are more difficult to realize in real exper-

iments. This regularization term ensures existence of at least one optimal control.

The regularization parameter γ > 0 allows to vary the relative importance of the

objectives represented by the tracking and the cost of control.

The control problem under consideration is therefore to minimize J(ψ, λ) subject

to the condition that ψ(x, t) fulfills the Gross–Pitaevskii equation (2.1) with given

initial conditions.

To solve this problem we introduce the Lagrange function

L(ψ, p, λ) = J(ψ, λ) + <e
(
p
∣∣∣ iψ̇ − (−1

2
∇2 + Vλ + g|ψ|2

)
ψ

)
, (2.5)

with (u|v) =
∫ T

0

∫
Ω
u(x, t)∗ v(x, t)dx dt, and p(x, t) is the Lagrange multiplier.

By formally equating to zero the Frechét derivatives of L with respect to the

triple (ψ, p, λ), we obtain the following optimality system characterizing the solution

12
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to our optimal control problem. We have

i
∂ψ

∂t
=

(
−1

2
∇2 + Vλ + g|ψ|2

)
ψ (2.6)

i
∂p

∂t
=

(
−1

2
∇2 + Vλ + 2g|ψ|2

)
p+ g ψ2 p∗ (2.7)

γ
d2λ

dt2
= −<e〈ψ, ∂Vλ

∂λ
p〉 , (2.8)

which has to be solved together with the initial and terminal conditions

ψ(0) = ψ0 (2.9)

ip(T ) = −〈ψd, ψ(T )〉ψd (2.10)

λ(0) = 0 , λ(T ) = 1. (2.11)

Equation (2.10) follows from computing time integration by parts to determine the

Frechét derivative with respect to the variable ψ. Notice that while the state equation

(2.6) with initial condition ψ(0) = ψ0 evolves forward in time, the adjoint equation

(2.7) with terminal condition (2.10) is marching backwards. The control equation

(2.8) provides the optimality condition that determines the optimal control. Be-

cause of H1 regularization we have a natural setting to impose the required Dirichlet

boundary conditions on the control function, λ(0) = 0 and λ(T ) = 1.

We have that (2.6) is uniquely solvable for every λ ∈ H1(0, T ; R) such that Vλ is

a symmetric double well potential; see [61]. Thus, it is meaningful to introduce the

so-called reduced cost functional Ĵ : H1(0, T ; R)→ R given by

Ĵ(λ) = J(ψ(λ), λ), (2.12)

where ψ(λ) denotes the unique solution to (2.6) for given λ. One can show that the

gradient of Ĵ with respect to λ is given by

∇Ĵ(λ) = −γ d
2λ

dt2
−<e〈ψ, ∂Vλ

∂λ
p〉, (2.13)

13
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where ψ and p solve the state and the adjoint equations with given λ.

Now, the Taylor series of the reduced cost functional Ĵ(λ) in a Hilbert space is

Ĵ(λ+ εϕ) = Ĵ(λ) + ε
(
∇Ĵ(λ), ϕ

)
X

+
ε2

2

(
[∇2Ĵ(λ)]ϕ, ϕ

)
X

+O(ε3)

The actual gradient will depend on the choice of which inner product space we

use. If we choose the space X = L2(0, T ; R), we have the inner product (u, v) =∫ T
0
u(t)v(t)dt and the gradient is

∇Ĵ(λ) = −γ d
2λ

dt2
−<e〈ψ, ∂Vλ

∂λ
p〉 (2.14)

In the case of the X = H1(0, T ; R) formulation, we can determine the formula for

the gradient because the Taylor series must be identical term-by-term regardless of

the choice of X. Since we know the gradient in L2 given by (2.14), we can determine

the gradient in H1 by requiring(
∇ĴH1(λ), ϕ

)
H1

=
(
∇ĴL2(λ), ϕ

)
L2

Using the definition of the H1 inner product (u, v)H1 = (u′, v′)L2 , we have the relation(
∇Ĵ ′H1(λ), ϕ′

)
L2

=
(
∇ĴL2(λ), ϕ

)
L2

which must hold for all test functions ϕ. Integrating by parts shows that the H1 gra-

dient must satisfy the one-dimensional Poisson equation with homogeneous Dirichlet

conditions. That is,

d2

dt2
[∇Ĵ(λ)] = γ

d2λ

dt2
+ <e〈ψ, ∂Vλ

∂λ
p〉, (2.15)

with [∇Ĵ(λ)](0) = 0 and [∇Ĵ(λ)](T ) = 0. Two important differences between the

L2 and H1 formulations are immediately apparent. First, the L2 gradient does not

vanish at t = T and second, the H1 gradient possesses the same degree of smoothness

as λ, while the L2 gradient does not.
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2.3 Optimization methods in L2 and H1 spaces

We discuss the minimization of Ĵ(λ), representing the reduced cost functional

J(ψ(λ), λ), where ψ(λ) denotes the solution to the state equation (2.6). Denote with

g(λ) = ∇Ĵ(λ). In the following, we denote with X both the L2(0, T ; R) and the

H1(0, T ; R) spaces with corresponding inner product (·, ·)X and norm ‖ · ‖X . The

discussion below focuses on NCG and BFGS schemes in L2 and H1 spaces with

application to quantum control problems. In the numerical experiments section we

compare these schemes with the method of steepest descent with the H1 form of the

gradient. This scheme can be viewed as a Newton method where one only uses the

Hessian arising from the regularization term. For a discussion on these techniques

with an emphasis on implementation issues see [56].

We formulate the NCG scheme in a continuous setting. In the common NCG

variants, the basic idea is to avoid matrix operations and express the search directions

recursively as

dk+1 = −gk+1 + βk dk, (2.16)

for k = 1, 2, . . ., where k is the iteration index. We take d1 = −g1. In general, for

convergence it is required that dk is a descent direction for any k, i.e. (gk, dk)X < 0

holds.

The iterates for a minimum point are given by

λk+1 = λk + τk dk, (2.17)

where τk > 0 is a step length. The parameter βk is chosen so that (2.16)–(2.17)

reduces to the linear CG scheme if Ĵ is a strictly convex quadratic function and

τk is the exact one-dimensional minimizer of Ĵ along dk. Notice that linesearch is

important: In the first application of the NCG scheme on quantum control problems
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[66], a NCG method with a special rule concerning the value of step length results in

an algorithm that is not always robust and convergence slow-down can be observed.

We use the NCG scheme of Hager and Zhang [53] based on the formula

βk = βHZk :=
(σk, gk+1)X
(dk, yk)X

, σk = yk − 2dk
(yk, yk)X
(yk, dk)X

, (2.18)

where yk = gk+1 − gk. Our choice is motivated by results of numerical experiments.

In fact, the Hager-Zhang NCG formula results to be the most efficient among the

known [29] formulas.

Convergence of the proposed NCG scheme is established requiring that the step

length τk, satisfies the Armijo condition of sufficient decrease of Ĵ ’s value given by

Ĵ(λk + τkdk) ≤ Ĵ(λk) + δ τk (gk, dk)X (2.19)

together with the Wolfe condition

(g(λk + τkdk), dk)X > σ (gk, dk)X , (2.20)

where 0 < δ < σ < 1/2; see [29]. The last condition means that the graph of Ĵ

should not increase too fast beyond the minimum.

We implement the following NCG scheme

NCG Scheme Step 1. Given k = 1, λ1, d1 = −g1, if ‖g1‖X < tol then stop.

Step 2. Compute τk > 0 satisfying (2.19)–(2.20). Step 3. Let

λk+1 = λk + τk dk. Step 4. Compute gk+1 = ∇Ĵ(λk+1).

If ‖gk+1‖X < tolabs or ‖gk+1‖X < tolrel ‖g1‖X or k = kmax then stop.

Step 5. Compute βk by (2.18). Step 6. Let dk+1 = −gk+1 + βk dk. Step 7. Set

k = k + 1, goto Step 2.
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Time dependent quantum control problems represent a class of PDE-constrained

minimization problems where much less experience of computational optimization is

available. In the following, we discuss function space BFGS optimization that uses

only gradient information and whose performance is strictly depending on the choice

of the space where the optimization procedure is defined.

The BFGS algorithm is a quasi-Newton method which makes successive rank-two

updates to a matrix B such that it serves as an approximation to the true Hessian.

Typically, the BFGS scheme exhibits convergence rates superior to those of NCG

schemes at the expense of additional computational effort. The search direction at

the kth step is given by pk = −B−1
k gk. Just as with the HZ-NCG scheme, the

gradient is denoted gk = ∇Ĵ(λk) and the difference between two successive updates

of λ is sk = αkpk where αk is the step length. The difference between two successive

gradients is dented by yk = gk+1 − gk. The matrix B can be formed explicitly via

the well-known recurrence formula.

Bk+1 = Bk −
(Bksk)(Bksk)

>

s>k Bksk
+
yky

>
k

y>k sk
, (2.21)

To compute the search direction, it is necessary to invert the matrix B. We denote

its inverse as H = B−1. Using the Sherman-Morrison-Woodbury formula, we can

also establish a recurrence for H.

Hk+1 = Hk +
s>k yk + y>k Hkyk

(s>k yk)
2

(sks
>
k )− Hkyks

>
k + sky

>
k Hk

s>k yk
(2.22)

In the case where the control λ and the gradient of the objective function ∇Ĵ are

elements in a function space, it is not immediately obvious how to directly use this

formula since it requires forming outer products. To compute the search direction,

however, we only need the action of H on a vector g and it is not necessary to

construct the matrix. Supposing X is either L2(0, T ; R) or H1(0, T ; R) and that

x, y ∈ X, then we can denote the function space analog of the outer product as a
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dyadic operator x ⊗ y : X → X. The action of this operator on a third element

z ∈ X can be expressed in terms of the inner product (x⊗ y)z = (y, z)Xx. From the

recursion relation for H, we obtain the following sum formula for the search direction

pk = −H0gk −
k−1∑
j=0

cj[dj(sj, gk)Xsj − (zj, gk)Xsj − (sj, gk)Xzj] (2.23)

where cj = (sj, yj)
−1
X , dj = 1 + cj(yj, zj) and we also have a similar sum formula for

the term zk = Hkyk.

zk = H0yk +
k−1∑
j=0

cj {[dj(sj, yk)X − (zj, yk)X ]sj − (sj, yk)Xzj} . (2.24)

In the numerical implementation, these functions are approximated on a uniform

grid. The function space L2 or H1 inner product is in either case approximated by

a vector inner product with a weighting matrix. This can be written as (u, v)L2 ≈

u>Mv and (u, v)H1 ≈ u>Kv where the stiffness matrix K = D>MD. The finite

difference matrix D is Toeplitz tridiagonal for taking centered differences except for

the first and the last rows which use non-centered differences to account for the

boundary. The mass matrix M is diagonal and contains the quadrature weights

for the composite Simpson’s rule. If the PDE itself were to be discretized with a

higher order scheme, then it would be desirable to use correspondingly higher order

quadrature and differentiation rules for the inner products. In all numerical tests,

M was taken to be the identity matrix.

With both the NCG and BFGS schemes, the new control λk+1 is composed of a

linear combination of the original control and the gradients at every step. Unlike the

NCG formulas, the matrix-free BFGS formula requires progressively more compu-

tation for each optimization step, so it is important that the improved convergence

properties at least compensate for the increased computational effort. The BFGS

algorithm is given below.
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BFGS Scheme Step 1. Take a steepest descent step. Step 2. Let

yk = gk − gk−1 and sk = αkpk Step 3. if |(sk, yk)X | < ε or ||gk||X < tol stop.

Step 4. Compute new search direction pk = −Hkgk using (2.23). Step 5.

Perform linesearch to get new αk. If no descent step is found, stop. Step 6.

Increment k and go to Step 2.

Previous experience in quantum control computation [7] has demonstrated that

cascadic acceleration is an efficient method to accelerate convergence of NCG iter-

ation. In this paper, we show that this is also true in combination with a BFGS

algorithm.

The basic approach of the cascadic method is to begin with a coarse grid approxi-

mation to the optimal control problem, take a suitable number of optimization steps

and then interpolate on to a finer grid before proceeding.

In the case of NCG, the computation of the next state depends only on the

previous state and as such, one need only interpolate the current state and search

direction to proceed to the next level of refinement. In the matrix-free BFGS al-

gorithm, a history of vectors must be maintained. These are the sj vectors which

are the search steps themselves, the yj which are the differences between succes-

sive gradients, and also the zj vectors which are elements in the space spanned by

s0, ..., sj−1. The set of these vectors, which increases with successive BFGS steps,

must each be interpolated on to the next finest grid in the cascadic scheme. In all

of the numerical experiments, cubic splines are used rather than linear interpolation

because the latter is not suitable for use with the H1 norm.

We now discuss the linesearch algorithm. We are faced with the following diffi-

culty. First, using a large step length α at the beginning of a backtracking sweep

is dangerous. In fact, large control potentials may result that lead to highly oscil-

latory wave functions such that the cost functional and its gradient can cease to be
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Cascadic BFGS Scheme Step 1. If on the finest grid, proceed with BFGS

minimization until unable

to take another descent step otherwise go to Step 2.

Step 2. Letting the current state be λk, back up one iteration to the last

state from which a suitable search length was found.

Step 3. Interpolate the λk−1 and all of the history vectors sj, yj, and zj for

j = 0...k − 1.on to the next finer grid.

Step 4. Go to step 2, using the most recent s vector as a search direction.

physically meaningful or the discretization fineness is not accurate enough to resolve

all scales of the problem. As shown in Figure 2.2, spurious local minima may ap-

pear along the search direction. However, as minimization proceeds, the objective

becomes more flat and local minima are no longer present. Moreover, in our exper-

iments the global minimum along the search path always appears at a small step

length, as can be seen in Figure 2.2. Therefore starting with a large α requires many

backtrack evaluations and a backtrack algorithm may be trapped in some local min-

imum away from the global one. On the other hand, starting a backtracking sweep

with small α will be at the cost of an efficient linesearch process.

To overcome these difficulties we implement a robust bisection approach, that

uses approximate finite-differences derivatives of the objective function with respect

to the step length.

Although there were almost always multiple local minima along the search di-

rection, it appeared that the global minimum was always the nearest critical point

to the origin in every numerical experiment. We do not know of any explanation to

this phenomena at this time. As such, the bisection algorithm always attains the

global minimum along the search direction. The parameters m, δ used were chosen

based on empirical studies. One suitable pair of values was found to be δ = 0.01 and
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m = 1.1. We choose tolBLS = 10−6.

In the bisection scheme, the use of the numerical derivative of the linesearch

function φ(α) = Ĵ(λ + αp) instead of the functional derivative is motivated by

results given in [47] and the fact that, along a given search direction, it requires

fewer functional evaluations. In [47], it is shown that away from the global minimum

the numerical derivative remains consistent with the behavior of the functional along

the search direction while the functional derivative may be inconsistent, e.g., negative

for an increasing functional value. The difference between the two derivatives reflects

the difference between the discretize-then-optimize approach and the optimize-then-

discretize approach. This difference results in an error denoted by E(ε, ϕ) and defined

as follows

E(ε, ϕ) =

∣∣∣∣∣ Ĵ(λ+ εϕ)− Ĵ(λ− εϕ)

2ε
−
(
ϕ,∇Ĵ(λ)

)
X

∣∣∣∣∣ (2.25)

where ϕ represents the search direction. The behavior of this error with respect to α

and the mesh fineness is seen in the right panel of Figure 2.2. Notice that the search

direction in the bisection scheme is always provided by the functional gradient since

the quantum optimal control problem is well resolved in the vicinity of the minimizer

(see also [47]).

We remark that choosing ε sufficiently small, E(ε, ϕ) becomes independent on ε

and this error scales quadratically with the time-step size, δt. This is consistent with

the order of the split operator of the time-stepping scheme.

No restarting was used in either of the BFGS schemes, however, the HZ-NCG

scheme was restarted whenever (gk, gk−1) ≥ 0.1||gk||2. The stopping condition was

taken to be the first iteration in which the linesearch was unable to find a step length

which reduces the objective function.
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Bisection linesearch (BLS) algorithm

Step 1. Set αL = 0, αR = 0.

Step 2. If φ(αR) > φ(0) go to Step 4

Step 3. If φ(αR) < φ(0) set αR ← m (αR + δ) and go to Step 2.

Step 4. Set αM as the midpoint between αL and αR.

Step 5. If the distance between αL and αR is less than tolBLS quit.

Step 6. If φ′(αM) has the same sign as φ′(αL) set αL = αM otherwise

set αR = αM .

Step 7. Go to Step 4.

2.4 Discretization method

In this section, we discuss the discretization of (2.6) and (2.7) using a unconditionally

stable explicit second-order norm-preserving time-splitting spectral scheme (TSSP)

[45, 44]. These properties make the TSSP scheme particularly suitable for compu-

tation on a hierarchy of grids. To introduce the time-splitting technique and the

corresponding notation we discuss the discretization of the forward equation. For

the backward adjoint equation additional work is required to implement the time-

splitting method appropriately. This is due to the presence of the term g ψ2 p∗ in the

adjoint equation. This problem is discussed in detail below.

For ease of notation we take Ω = (−L/2, L/2) ⊂ R where L is large enough so that

the support of the state and adjoint variables are well within the domain. Assume

the interval (−L/2, L/2) is divided in N subintervals of size h = L/N . In all of the

numerical experiments, N = 128 was used and it was found that increased spatial

resolution did not contribute to increased performance as the time discretization

was always the limiting factor. Subinterval end-points are denoted by xj = (j −

1)h − L/2, j = 1, . . . , N , where we take N to be an integer power of 2. The point

xN+1 corresponds to x = L/2. Further we assume that the time interval (0, T )
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Figure 2.2: The cost functional along the search direction for successive descent steps
(left). Error E(ε, h) for different mesh fineness and different step length (right). We
use a 5-point centered difference of Ĵ with ε = 10−4 and a test function. We have
T = 7.5, g = 10, and γ = 10−7.

is divided in M subintervals thus the time step-size is given by δt = T/M . The

approximation to ψ(x, t) at xj for the time tm = mδt is denoted with ψmj . We set

µk = 2π
L
k. We assume that the function ψ is periodic in (−L/2, L/2) in the sense

that ψ(−L/2+) = ψ(L/2−).

For a given continuous periodic function ψ, consider the polynomial

INψ(x) =

N
2∑

k=−bN
2
−1c

ψ̃k e
iµkx, (2.26)

where

ψ̃k =
1

N

N∑
j=1

ψ(xj) e
−i µkxj with xj = (j − 1)h− L/2. (2.27)

The function INψ(x) is the N
2

-degree trigonometric interpolant of ψ at the nodes xj,

i.e.

INψ(xj) = ψ(xj) j = 1, . . . , N. (2.28)
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This polynomial is the discrete Fourier series of ψ.

The Fourier pseudospectral derivative of ψ is defined by DNψ = (INψ)′. That is,

DNψ(x) =

N
2∑

k=−(N2 −1)

ψ̃′k e
i µkx where ψ̃′k = iµkψ̃k.

Further, the Laplacian is given by

D2
Nψ(x) =

N
2∑

k=−(N2 −1)

ψ̃′′k e
iµkx where ψ̃′′k = −µ2

kψ̃k.

Now let H = H0 + V , where H0 = −1
2
∇2 is the free Hamiltonian and V =

Vλ + g|ψ|2 represents the effective potential including the magnetic confinement po-

tential. Next we illustrate the time-splitting spectral scheme for the Gross–Pitaevskii

equation written as follows; see [44] for more details.

i
∂ψ

∂t
= (H0 + V )ψ.

The time-splitting scheme for this equation can formally be written in the following

form

ψm+1 = e−i
δt
2
Vm+1

e−iδtH0e−i
δt
2
Vm ψm. (2.29)

From time tm to time tm+1 we have three steps. For a δt/2 time step we first solve

i
∂ψ

∂t
= V ψ.

For j = 1, . . . , N , we obtain

ψ+
j = exp

(
−i(Vλ(xj, tm) + g|ψmj |2) δt/2

)
ψmj . (2.30)

With this value, we compute a full time step for the equation i∂ψ
∂t

= H0 ψ obtaining

ψ++
j =

N
2∑

k=−(N2 −1)

ψ̃+
k e

(−iµ2
k δt/2) eiµkxj , j = 1, . . . , N, (2.31)
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where

ψ̃+
k =

1

N

N∑
j=1

ψ+
j e
−i µkxj .

The final step consists in another δt/2 time step of the evolution governed by V with

ψ++ as initial condition. Hence we have

ψm+1
j = exp

(
−i(Vλ(xj, tm+1) + g|ψ++

j |2) δt/2
)
ψ++
j , j = 1, . . . , N. (2.32)

Additional work is required to implement the time-splitting scheme for the adjoint

equation (2.7) because of the presence of the term g ψ2 p∗ that prevents a straight-

forward application of an exponential solution formula. We proceed as follows. The

adjoint equation can be written in the following form

i
∂

∂t
(pr + i pi) =

(
−1

2
∇2 + A

)
(pr + i pi) + (ar + i ai) (pr − i pi),

where p = pr + i pi, A = Vλ + 2g|ψ|2, and g ψ2 = ar + i ai. We focus on the first and

third step of the time-splitting formula and therefore we consider

d

dt
(pr + i pi) = −iA (pr + i pi)− i(ar + i ai) (pr − i pi).

This equation is equivalent to the following system of differential equations

ṗr = Api + (aipr − arpi) (2.33)

ṗi = −Apr − (arpr + aipi). (2.34)

We now introduce the Pauli matrices to write this system in a form suitable for

exponential representation. The Pauli matrices are

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , and σ3 =

 1 0

0 −1

 ,

and we write σ̄ = (σ1, σ2, σ3).
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Therefore the system (2.33)–(2.34) can be written as follows

d

dt

 pr

pi

 = i(ū · σ̄)

 pr

pi

 ,

where ū = (iar, A,−iai). We can now use the exponential representation to obtain pr

pi

 (t+ δt) = exp (i ū · σ̄ δt)

 pr

pi

 (t). (2.35)

Further, we use the fact that

exp (i ū · σ̄ δt) = cos (|ū| δt) I + i sin (|ū| δt) ū

|ū|
· σ̄

= cos (|ū| δt)

 1 0

0 1

+ sin (|ū| δt) 1

|ū|

 ai A− ar
−A− ar −ai

 ,

where |ū| =
√
a2
r + a2

i + A2. We can therefore use this formula in (2.35) and replace

δt with −δt/2 to obtain the (backward) time evolution of the adjoint variable for the

first and third step of the time-splitting procedure. Notice that in this case because

of the terms A and ar, ai, also the values of the wavefunction ψ at intermediate

half time-steps are required. For this purpose, the ψ function is also computed in

the backward evolution using (2.30)–(2.32) with δt replaced by −δt. This is possible

since the time-splitting scheme is time-reversible.

Evaluation of the gradient of the reduced cost functional is given by the following

∇Ĵ(λ)m = −γ λ
m+1 − 2λm + λm−1

δt2
−<e

N∑
j=1

h (pmj )∗
∂Vλ
∂λ
|λ=λm ψ

m
j .

The initial state ψ(x, 0) and the target state ψd(x) are obtained by solving the

stationary Gross-Pitaevksii equation −1
2
∇2ψ+V ψ+g|ψ|2ψ = 0 with λ equal to zero

or one respectively. The nonlinear problem is solved using Newton’s method.
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2.5 Numerical investigation

In this section we discuss the computational performance of the NCG scheme and

of the BFGS scheme corresponding to the L2 and H1 functional space formulation.

Results of numerical experiments show dramatic quantitative and qualitative differ-

ences concerning efficiency and robustness of the schemes discussed in this paper.

Efficiency is measured in terms of CPU time taking into account that the opti-

mization process may be stopped earlier because the scheme is not able to find an

appropriate minimizing direction. Robustness concerns the ability of the scheme to

provide a minimizing sequence also in the case of fast control, that is, short time

horizon T , large nonlinearity, i.e. large g, and less penalization, that is, small γ.

Some of the results that are discussed in this section are summarized in Figure 2.3

that shows a series of optimal control curves corresponding to different time horizons,

obtained by minimizing in the L2 and H1 spaces. We see that, as T becomes shorter,

a more oscillatory optimal control results. Much less oscillating solutions are obtained

with H1 space minimization. Indeed we see that with the same setting, the controls

obtained in the two functional space settings are different. These curves are obtained

with a regularization parameter γ = 10−4. More computational effort is required for

short time horizons. In all experiments we use N = 128.

The influence of the regularization parameter γ on the solution of the optimization

is shown in Figure 2.4 corresponding to L2 and H1 spaces. We see that γ plays an

important role in the L2-based optimization as it forces the solution to have a finite

H1 norm, while this will always be the case by construction with the H1-based

formulation. For either space, the optimal solution should approach the straight line

as γ →∞ so it is reasonable that the optimal control curve for γ = 1 is very similar

in both spaces. As γ is reduced however, the L2 and H1 solutions become quite

different. In the L2 space, the limit as γ → 0 small gives a control function λ(t)
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which has a steep gradient at t = T . On the other hand, since the H1-based scheme

produces λ ∈ H1 at every optimization step, the precise value of regularization term

is not essential to obtain a smooth control. Rather in this case the γ term only serves

to penalize highly oscillatory solutions. In the limit as γ → 0, the H1-based solution

approaches a smooth curve which gives a small cost functional. Since the theoretical

lower bound on J is γ
2T

(assume ψ(T ) = ψd and λ(t) = t/T which minimizes the H1

norm), the smallest value of the cost functional occurs when γ ≈ 0.

Figure 2.5 depicts how fast in terms of CPU time, the optimal control is attained

for various values of γ. Since the γ penalty term sets a lower bound on the objective

function, each curve will approach a different minimum value. For the H1-based min-

imization, the performance curves rapidly converge to the γ = 0 limit for decreasing

γ. Ultimately Figures 2.4 and 2.5 demonstrate that the H1-based minimization is

robust with respect to γ as the optimal control is always an H1 function even when

γ = 0.

The relative performance of the HZ-NCG, BFGS, and cascadic BFGS methods for

the H1-based minimization is depicted for long and short control times T in Figure

2.3 and for small and large nonlinearities in Figure 2.6. In each case, M = 3200 grid

points were used and γ = 10−4. Although the HZ-NCG method exhibits superior

convergence properties for an NCG scheme, it does not minimize the cost functional

as quickly as the BFGS methods do. When the nonlinearity becomes large or T

becomes shorter, the optimal control function becomes more highly oscillatory and

further away from the initial linear control function. Furthermore, the BFGS algo-

rithm reaches the minimum in less computational time than the HZ-NCG method,

and what is significant is that its advantage is greatest in the cases where the op-

timization problem is more difficult due to large nonlinearity or control time. The

cascadic BFGS approach does not attain a minimum as small as the regular BFGS

when the problem is easier. This is assumed to be due to the fact that interpolating
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the state vectors which form the action of the H matrix leads to a worse approx-

imation of H. However, in the difficult settings the cascadic BFGS method has a

significant performance increase.
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Figure 2.3: The optimal control function in the L2 and H1 settings for decreasing
time horizons. As T becomes smaller, λ becomes a more oscillating function.
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Figure 2.4: Dependence of the optimal control function on the regularization param-
eter γ for the L2 and H1 spaces. More oscillating controls are obtained with smaller
γ. M = 3200 time steps with g = 10 and T = 7.5.

Additional results are reported in the Tables 2.1 – 2.5 that allow a more detailed

discussion. Table 2.1 shows that, in the limiting case where the strength of the
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Figure 2.5: Effect of the regularization parameter, γ on the convergence in the L2

and H1 settings. Faster convergence is obtained with smaller γ.

nonlinearity is small, the accuracy of the gradient does indeed scale quadratically

with respect to the time step size. The numerical error of theH1 gradient is computed

using the same test function ϕ(t) = sin(4πt/T )e−t/T as before. The numerical error

of the H1 and L2 gradients was observed to be similar. This is reasonable as the time

discretization scheme has a quadratic error term, as do the numerical differentiation

and integration formulas used to compute the inner products. As the nonlinearity

becomes large, the quality of the gradient approximation deteriorates.

mesh g = 0.01 g = 1 g = 10 g = 100
400 1.9836× 10−4 5.7461× 10−3 3.7687× 10−2 5.7021× 100

800 5.1216× 10−5 1.4370× 10−3 1.2923× 10−2 5.5529× 10−2

1600 1.3005× 10−5 3.5915× 10−4 4.9711× 10−3 3.0740× 10−2

3200 3.2762× 10−6 8.9755× 10−5 2.1118× 10−3 1.7823× 10−2

6400 8.2191× 10−7 2.2427× 10−5 9.6235× 10−4 9.8638× 10−3

Table 2.1: Estimated numerical error of the gradient formula with X = H1 for T = 6
and γ = 10−4, for increasing mesh refinement and strength of the nonlinear term.

Tables 2.2 and 2.3 show the computational performance of the the HZ-NCG
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Figure 2.6: Reduction of cost function over CPU time using HZ-NCG, BFGS, and
cascadic BFGS. The cascadic scheme gives superior performance for shorter time
horizons.

mesh Ĵ ||∇Ĵ ||L2 iterations CPU time (sec)
400 2.9676× 10−3 4.4182× 10−2 81 1.6271× 102

800 1.6492× 10−3 2.113× 10−2 110 4.1789× 102

1600 1.8103× 10−3 1.1400× 10−2 155 1.1932× 103

3200 3.4755× 10−3 1.13815× 10−1 76 1.1985× 103

Table 2.2: Results with L2-based HZ-NCG minimization with g=10 and T=6.

scheme using the L2 and H1 space minimization, respectively. With the nonlinearity

strength g = 10 and final time T = 6, this is a difficult optimization problem, the

optimal control being far away from the original linear function. The CPU usage in

mesh Ĵ ||∇Ĵ ||L2 iterations CPU time (sec)
400 3.0295× 10−2 2.7397× 10−1 24 3.3911× 101

800 2.2888× 10−3 2.9977× 10−2 217 7.9421× 102

1600 1.1995× 10−3 1.8310× 10−2 153 1.1986× 103

3200 2.4388× 10−3 4.5315× 10−3 74 1.1883× 103

Table 2.3: Results with H1-based HZ-NCG minimization with g=10 and T=6.
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mesh Ĵ ||∇Ĵ ||L2 iterations CPU time (sec)
400 1.8922× 10−3 5.8348× 10−2 25 6.1990× 101

800 1.2472× 10−3 9.7978× 10−2 34 1.7211× 102

1600 3.5128× 10−4 1.3702× 10−2 105 9.6031× 102

3200 1.1394× 10−4 5.8215× 10−3 500 8.1292× 103

Table 2.4: Results with L2-based BFGS minimization with g=10 and T=6.

mesh Ĵmin ||∇Ĵmin||L2 iterations CPU time (sec)
400 1.6605× 10−2 1.4288× 10−1 15 3.8407× 101

800 5.5963× 10−4 4.5284× 10−2 62 2.8107× 102

1600 2.9634× 10−4 1.0733× 10−2 30 3.6334× 102

3200 1.0562× 10−4 3.6378× 10−3 37 9.6153× 102

Table 2.5: Results with H1-based BFGS minimization with g=10 and T=6.

both spaces is comparable. We see that, at convergence and similar computational

effort, the H1-based approach produces a smaller objective and substantially smaller

norm of the gradient on the finest mesh than the L2-based approach.

The advantage of the H1-based minimization on the L2-based scheme is more

evident in Tables 2.4 and 2.5 which show the performance of the BFGS scheme in the

L2 and H1 spaces, respectively. The L2-based BFGS method requires progressively

more iterations to reach the minimum, whereas the H1 approach requires fewer

iterations on the finest mesh, similar to NCG. Compared to the previous two tables,

the BFGS scheme provides at least one order of magnitude better results in terms of

the value of the objective and concerning CPU times.

The method of steepest descent with the H1 form of the gradient can alternately

be viewed as a Newton method where one only uses the Hessian arising from the

regularization term. Recall the original L2 formulation of the gradient in equation

(2.14). The exact Hessian of the regularization term is the operator γ∂2
t with the

appropriate boundary conditions. Applying the inverse of this Hessian would map
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Figure 2.7: Comparison of H1-BFGS with a scaled gradient method. Left plot is for
a coarsely discretized governing equation with 1000 time steps and the right plot is
for 4000 time steps. We have γ = 10−4, g = 10, and T = 6.

functions in the space H−1 into H1 as well. We see in figures 2.7 and 2.8, however,

that this does not compare favorably to the H1-BFGS method where we are approx-

imating a Hessian-like operator for the full problem and not just the regularization

term. In the BFGS method described above, the gradient is already in H1 so the

action of the BFGS operator B and its inverse H will map H1 back into itself.

2.6 A basis function approach

We have considered only minimization schemes which use the optimality conditions.

One might observe that the optimal control functions λ frequently resemble low-order

polynomials. Therefore, one could use the adjoint framework of this paper to explore

the space of control functions to determine their features and then start a procedure

to define a reduced space of the controls. In fact, a statistical approach [65] to
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Figure 2.8: Comparison of H1-BFGS with a scaled gradient method for weak and
strong nonlinearity. We have γ = 10−4, T = 6, and 2500 time steps.

quantum control problems interpreted as inverse problems would require to reduce

the dimensionality of the problem by writing the control function λ in terms of a

suitable series of basis functions. The problem is to determine what is a suitable basis

for this approach. Two possibilities are considered. On the one hand, based on the

regularity of the solution of the adjoint problem and on approximation properties of

known interpolation polynomials, we choose a polynomial basis function and perform

direct minimization on the coefficients of the polynomial expansion of the control

function. On the other hand, with the adjoint method we can compute a set of

optimal controls corresponding to different problem parameters and using the POD

[59] a reduced model in using POD expansion coefficients. Clearly, in both cases

the solution of the optimality system as described in the previous sections is an

essential step. We show that the range of validity of the reduced space approach

remains limited by the set of parameters used in the adjoint formulation in order to

construct the reduced POD basis.

Next, we discuss a polynomial basis functions approach. Let us assume that λ
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can be accurately represented in terms of Chebyshev polynomials. That is,

λ(t) =
t

T
+

Nk∑
k=1

akφk

(
1− 2t

T

)
, φk(·) = Tk−1(·)− Tk+1(·) (2.36)

where Tk(·) is the kth Chebyshev polynomial of the first kind. We can then attempt

to minimize the functional Ĵ(a) with respect to the coefficients a = (a1, . . . , aNk),

using any optimization toolbox. Much as choosing to minimize in the H1 space

before immediately give an update in the correct space, these basis functions are

inherently in H1 and vanish at the boundaries. It is also possible to define a gradient

of the objective function with respect to the expansion coefficients. The kth element

of the gradient is

[∇aĴ(a)]k =

T∫
0

γ
dλ

dt

dφk
dt

+ <e〈ψ, ∂Vλ
∂λ

p〉φkdt

In contrast to the previous sections, this gradient is defined on the space `2. In-

terestingly, although the optimal control obtained using the BFGS method above

may be well approximated by polynomials of order 20 or less in most situations, the

minimum obtained via basis search in the equivalent number of degrees of freedom

invariably produces a significantly different control. The basis minimization typically

does not produce quite as optimal a solution as the H1-based minimization and gives

a cost functional value typically 5 to 10 times larger. Figure 2.9 shows the model

problem where g = 50, T = 5, γ = 10−7 and the nonlinear Schrödinger equation is

solved over 4000 time steps.

As discussed at the beginning of this section, instead of assuming the optimal

control to be close to a low order polynomial that can be well approximated in a

polynomial basis, one can define a proper orthogonal decomposition (POD) of so-

lutions to determine a natural set of basis functions for the problem. In the case

of our model problem, it has been shown in Figure 2.3, that the control function

depends strongly on the time horizon and much less on, e.g., the optimization pa-

rameter. Therefore it is reasonable to construct a POD basis using the optimal
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Figure 2.9: Optimal control from basis minimization versus solution of the optimality
system. The right plot shows the amplitudes of the expansion coefficients of the
control obtained with the two methods.

controls obtained from different time horizons and scaling them to the time interval

corresponding to a desired T where further calculations are required. To describe

this procedure, let σj(t) = λj(t)−t/T . Given various control time horizons T1, ..., Tm,

with corresponding optimal controls σ1, ..., σm, the POD basis functions are obtained

from the eigenvalue decomposition of the correlation matrix A where

Ajk =

∫ T

0

σj(t)σk(t)dt, A = V >SV. (2.37)

The kth POD basis function is

φk(t) =
1
√
sk

m∑
j=1

Vjkσj(t), sk = Skk (2.38)

To construct a POD basis, we compute the optimal control functions for T = 5

through T = 10 at 0.5 intervals, obtaining eleven different optimal control functions

using H1-based BFGS on a 4000 point grid with γ = 10−7 and g = 10. It results

that, the POD eigenvalues decay exponentially as depicted in Figure 2.9. Now, we

can choose the first four POD functions to form a reduced-order model. We find

that the POD-based control solution for the problem with T = 6.75 and g = 10 and

γ = 10−7 requires 53.7 seconds and gives a cost functional of J = 2.2785× 10−5. In
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Figure 2.10: Natural logarithm of the eigenvalues of the POD correlation matrix
(left). The optimal control obtained using the first four POD functions.

contrast, the polynomial minimization with four basis functions reaches the minimum

J = 4.1595 × 10−3 in 78.1 seconds. Using eight polynomials gave a slightly better

minimum than the POD test with J = 7.4717 × 10−6 at the added expense 330.5

seconds of CPU time. Solving the optimality system with the same parameters we

obtain a minimum of J = 1.9456× 10−6 and requires 894.1 seconds of CPU time.

It appears that the ability of the POD basis to capture the critical behavior in

fewer terms is specific to the problem parameter set. For example, if we compute the

POD basis for a problem with nonlinearity g = 10 and then attempt with this basis

to find the optimal control when T = 6 and g = 50, the performance is significantly

worse. Although the CPU time is comparable, 64.5 seconds, the minimum is J =

6.0742×102. The polynomial bases, which have no problem-specific structure, yields

a minimum of J = 1.0245 × 10−2 in 79.9 seconds using four basis functions and

J = 1.4632 × 10−5 in 317.2 seconds using eight basis functions. The cascadic H1-

based BFGS scheme obtained a minimum of J = 4.2709 × 10−5 in 844.7 seconds of

CPU time. The magnitude of the POD coefficients and an optimal control obtained

though POD basis minimization appear in figure 2.10.
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The Krylov-Newton method

3.1 Introduction

The control of quantum electronic states in physical systems has a host of applica-

tions such as quantum computers [5], control of photochemical processes [36], and

semiconductor lasers [18, 30]. Quantum computers, in particular, have been the

subject of much research interest since they hold the promise of performing complex

calculations in polynomial time. In a quantum computer the classical logic states 0

and 1 are replaced by states of a quantum system. One such possibility is a two-level

system where the occupancy of the ground state could be analogous to the logical 0

and the first excited state represents logic state 1.

In most of the envisioned applications, it is important to define fast control mech-

anisms that cannot be constructed based on perturbation theory strategies or on a-

priori parameterized control fields. This fact motivates the increasing interest in the

optimal control theory framework [23] within which many recent successful results

for quantum control problems [7, 46, 9, 22, 25, 26, 27, 33, 34] have been obtained.

A pioneering work in this field was done by Peirce, Dahleh, and Rabitz [32] who in-
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vestigated the optimal dipole control of a diatomic molecule represented by a Morse

potential. The focus in this and in other early papers (see [11, 13]) was to validate

the ability of the optimal control framework to provide suitable quantum control

mechanisms. However, computational difficulties due to the structure of the optimal-

ity system with bilinear control and the non-convexity of the optimization problem

led to research focused more on finite-dimensional Schrödinger equations; see, e.g.,

[7, 9, 27, 34]. In this case, the computational schemes of choice have been the mono-

tonic iterative scheme [27, 34] and accelerated versions of the gradient scheme [7, 8].

These first-order schemes perform well for finite-level quantum systems and provide

acceptable results [26, 40] when applied to infinite-dimensional systems. However,

they cannot provide second-order convergence typical of the Newton method and

their convergence behavior may not be robust with respect to changes of values of

discretization and optimization parameters.

It is the purpose of this work to develop an accurate, efficient, and robust Newton

scheme for infinite-dimensional quantum systems in the most representative case of

a dipole control structure. We remark that, although the application of the Newton

scheme to solve constrained optimization problems is well known, its use for solv-

ing quantum control problems has been less successful. The reason for this fact is

manifold and will be illustrated in this paper. In particular, we discuss the accurate

construction of the gradient and the setting of the Hessian of the reduced optimiza-

tion problem. The former requires: 1) an appropriate discretization scheme that is

norm-preserving and second-order accurate also in the case of time-varying poten-

tial; 2) a discretize-before-optimize approach to avoid any inconsistency between the

optimality condition and its discrete approximation; 3) a gradient which is defined

in the same functional space where the control function is sought. This last point

is automatically fulfilled in a full Newton scheme. Point 2) results are necessary as

in our experience bilinear control problems have very flat minima and therefore are

prone to gradient inconsistency when using a optimize-before-discretize approach.
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The other important aspect for a successful development of the Newton scheme

for solving our problem is the construction (in the sense of application) of the Hessian.

For this purpose, we notice that a formal derivation of this operator, which does not

take into consideration the fact that quantum control problems are defined in com-

plex Hilbert spaces, results in non-symmetric Hessians and thus in non-converging

schemes; see a related discussion in [4]. For this purpose, we introduce a real-valued

matrix representation of complex variables and obtain the Hessian within this for-

malism. Together with this fact, we provide a new theoretical analysis of first- and

second-order optimality conditions giving criteria such that the Hessian becomes

positive definite in a neighborhood of the optimal solution. Because the theoretical

analysis is quite involved, for ease of reading we present this analysis at the end while

we recall the main results where needed.

The Newton scheme which results taking into consideration all issues mentioned

above still may lack of robustness because of non-convexity of the optimization prob-

lem. This fact appears less clearly with large values of the regularization parameter

and when considering large time intervals for the control. However, in application

we need controls that are fast and accurate, i.e. with less regularization. For this

purpose, we augment the Newton scheme with a robust linesearch algorithm which

exploits a priori estimates and uses continuation techniques to solve our problem

with small regularization. Results of numerical experiments demonstrate that the

resulting globalized Newton scheme is able to compute fast controls for high-energy

transitions with typical second-order convergence.

In the next section, we introduce a dipole quantum control problem and discuss

modeling issues concerning the objective and the governing equation. We employ the

optimal control framework by formulating a cost to minimize with the equality con-

straint that the particle dynamics satisfy the time-dependent Schrödinger equation

(TDSE). The cost functional is designed in such a way to avoid specification of the
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phase of the target function. Further, we review some properties of the TDSE, de-

fine the optimality system to be solved, and show that the constrained optimization

problem can not have a unique minimizer.

In Section 3.3, a second-order accurate discrete approximation to the Schrödinger

equation with dipole control potential is introduced which shares the unitarity for the

continuous TDSE. We use a real-valued matrix representation of complex variables

for the discretization of the governing equation and of the objective. Hence we

derive the discrete optimality system. From this we obtain the reduced objective and

correspondingly define the gradient and the reduced Hessian. With this setting, in

Section 3.4 we present all details of our Newton method that includes initialization

and globalization issues. In particular, we discuss a robust linesearch where the

unitarity of the TDSE is used to compute a maximum feasible step length for the

linesearch which also provides a useful criteria indicating when a unit step length is

feasible.

In Section 3.5, we investigate the ability of the optimal control framework to

provide fast and accurate controls for high-energy state transitions and validate our

Newton scheme. Results of numerical experiments show that with our approach

we are able to obtain controls for very short time intervals and to steer high-energy

transition while solving the optimality system to high accuracy, that is, to very small

values of the norm of the reduced gradient. In addition, we present a comparison

of the performance of the Newton scheme with that of a steepest descent algorithm

and of a nonlinear conjugate gradient method, showing that our Newton approach

outperforms gradient based schemes.

In the final section, we define our functional setting and discuss existence and

uniqueness of solution to the TDSE problem. We use these results to define the

reduced optimization problem and illustrate the optimality conditions. Then we

prove existence of optimal solutions and provide criteria such that the second-order
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sufficient optimality condition holds.

A section of conclusion completes the exposition of our work.

3.2 Model problem and optimal control frame-

work

We illustrate the model of a charged quantum particle subject to a stationary confin-

ing potential and a time-dependent electric control field [3]. A dipole approximation

of the electric field is considered and we formulate the control problem of steering

transitions of the particle among stationary states. In this section, we focus on the

physical properties of the model and on the formulation of the control problem, in-

cluding the main theoretical statements on the optimality system, while in the final

section we collect details of our functional analytic setting and present our proofs

of the existence of an optimal control solution including necessary and sufficient

optimality conditions.

The quantum state of a particle is described by a wavefunction ψ : Q → C that

is governed by the time-dependent Schrödinger equation (TDSE) as follows

i∂tψ(x, t) =
{
−∂2

x + V (x, t)
}
ψ(x, t), (x, t) ∈ Q = Ω× (0, T ), (3.1)

where Ω is the spatial domain and (0, T ) is the time interval, and we choose the

scaling of the Planck constant ~ = 1 and the mass m = 1/2. The potential V (x, t)

consists of a stationary part V0(x) and a time varying control part.

In the quantum mechanical framework, a dynamically stable system like an atom

or a molecule exists in the presence of a stationary confining potential, that is,

a potential with a ’well’ envelope [14]. In this case one considers the following
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eigenproblem

{
−∂2

x + V0(x)− λj
}
φj(x) = 0, j = 1, 2, ..., (3.2)

whose eigenfunctions represent the stationary states and the eigenvalues λj represent

the energy of the corresponding states. The time-evolution of these states is given

by ψj(x, t) = φj(x) exp(−iλjt). A representative stationary potential with various

applications in semiconductor nanostructures [19], define on Ω = (0, `), is the infinite

barrier well potential where V0(x) = 0 for x ∈ (0, `) and V0(0) = +∞ and V0(`) =

+∞. The infinite barrier condition is equivalent to homogeneous Dirichlet boundary

conditions for the wavefunction and thus we have λj = j2π2

`2
and φj(x) = sin(jπx/`).

Although the methodology in this work is not limited to the infinite quantum well

potential, in application it is important to consider this case to determine a control

function V (x, t) which allows transitions of a charged particle from one stationary

state to another of a quantum well over a short time interval. A physically meaningful

control mechanism is an electric control field modeling a laser pulse. Using the dipole

approximation the total potential results in the form V (x, t) = V0(x) + u(t)x, where

u : (0, T ) → R is the modulating control amplitude. Our approach generalizes to n

dimensions considering a vector-valued control u(t) ·x with x ∈ Rn and u : (0, T )→

Rn.

Next, we discuss some important properties of the solution to the TDSE and

report a few results from perturbation theory. We write <e(z) and =m(z) for the

real and imaginary part of a complex z ∈ C. Moreover, z∗ stands for the complex

conjugate of z and |z|C =
√
z∗z for its absolute value. For our discussion, we define

H = L2(Ω; C), the Hilbert space endowed with the inner product

(ϕ, ψ)H =

∫
Ω

ϕ(x)∗ψ(x) dx for ϕ, ψ ∈ H,
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and the induced norm ‖ϕ‖H for ϕ ∈ H. The Hilbert space V = H1
0 (Ω; C) is given by

V =

{
ϕ ∈ H

∣∣∣ ‖ϕ‖V =

(∫
Ω

|ϕ′(x)|2C dx
)1/2

<∞, ϕ = 0 on ∂Ω

}
,

supplied with the inner product (ϕ, ψ)V = (ϕ′, ψ′)H for ϕ, ψ ∈ V and the induced

norm ‖ϕ‖V. We also need the Hilbert space

W = L2(0, T ;H1
0 (Ω; C) ∩H2(Ω; C)) ∩H1(0, T ;L2(Ω; C)))

For more details on the above Lebesgue and Sobolev spaces and more weaker spaces

see the final section and, e.g., [1, 17].

Now, consider the TDSE with an initial state of the quantum system given by

ψ0(x) ∈ V at t = 0. One recognizes that the Schrödinger evolution operator is time-

reversible (non-dissipative) and therefore ψ cannot have better regularity than ψ0

[10]. We also see that with a time-varying potential there is no energy conserva-

tion. In fact we want to change the energy of the system. However, we have mass

conservation as stated by the following

Proposition

Let V (x, t) = V0(x) + u(t)x and ‖ψ0(·)‖H = 1, then we have ‖ψ(·, t)‖H = 1 for all

t ∈ [0, T ].

Proof. The time rate of change of the total probability is

∂t‖ψ‖2
H = (ψ, ψt)H + (ψt, ψ)H = 2<e(ψ, ψt)H = 2<e(ψ, iψxx − iu(t)xψ)H (3.3)

where

(ψ, iψxx− iu(t)xψ)H =

∫
Ω

ψ∗
(
iψxx− iu(t)xψ

)
dx = −i‖ψx‖2

H− iu(t)

∫
Ω

ψ∗xψ dx.
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Since x is a self-adjoint operator (in the sense that A : H→ H defined by (Aψ)(x) =

xψ(x) is a self-adjoint operator) with respect to the inner product, it means that we

are taking the real part of a purely imaginary quantity in (3.3). It follows that

∂t‖ψ‖2
H = 0 for all time and so ‖ψ(·, t)‖2

H = ‖ψ0‖2
H.

We now show that a spatially symmetric potential results in symmetric or anti-

symmetric eigenfunctions. Consider Ω = (0, `) and let `m = `/2.

Proposition

If the stationary Schrödinger equation has a symmetric potential, V0(`m + x) =

V0(`m−x), then the eigenfunctions must have even or odd parity with respect to `m.

Proof. Let P be the parity operator defined Pf(`m + x) = f(`m − x) and H0 =

−∂2
x + V0 be the stationary Hamiltonian with H0φj = λjφj. We have

PH0φj(`m + x) = λjφj(`m − x) = H0Pφj(`m + x) ⇒ [P , H0] = 0. (3.4)

Since the operators commute, φj must be an eigenfunction of the parity operator

Pφj = µjφj. Given that P2φj = φj, the parity eigenvalue must be µj = ±1.

Therefore, all eigenfunctions must be either symmetric φj(`m + x) = φj(`m − x) or

antisymmetric φj(`m + x) = −φj(`m − x).

An important result of perturbation theory is that in a long time horizon a

time-harmonic control u(t) is able to induce transition between two eigenstates if

its frequency equals the difference of energy of the two states [14]. Therefore, it is

relatively easy to control state transitions for long time intervals as we show in the

example below. However, the problem becomes very difficult if short time intervals
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are considered. Here short means that T ≈ 2π/ω and in this case the perturba-

tion theory is inapplicable and the control u(t) deviates greatly from an harmonic

function. In this case we use an optimal control approach.

To formulate the optimal control problem, we have to decide in which functional

space the control is sought. From the previous discussion, it appears that the control

space U = H1
0 (0, T ; R) is the most appropriate for dipole controls as it means that the

laser pulse cannot change instantaneously and it accommodates sinusoidal functions

for long time controls. In the optimal control framework, this choice means that the

objective of the optimization has a regularization term of the form ‖u‖2
U, where this

norm is induced by the following inner product

(u, v)U =

T∫
0

(u(t)v(t) + α u̇(t)v̇(t)) dt for u, v ∈ U,

with 0 < α� 1. Notice that with this norm the control is continuous since H1
0 (0, T )

is compactly embedded in C0([0, T ]) in one dimension. Use of smaller values of α

allows for controls with larger rates of change. We have that the control is zero at the

beginning and at the end of the time interval which is the maximum time-window

for the laser pulse.

Our control problem requires to finding a control u ∈ U such that a quantum

system initially in the state ψ0 evolves with (3.1) to a state ψ(·, T ) that is as close

as possible to a desired target configuration ψ̃. This aim is formulated by requiring

to minimize the objective given by the following cost functional

min
ψ∈W, u∈U

J(ψ, u) :=
1

2

(
1− ‖Pψ(·, T )‖2

H

)
+
γ

2
‖u‖2

U, (3.5)

under the constraint given by the TDSE, including the initial condition, denoted as

follows

e(ψ, u) := {∂t − iH(u)} ψ = 0, (3.6)
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where H(u) = −∂2
x +V0(x) + u(t)x and we introduce the projector Pψ = (ψ̃, ψ)H ψ̃.

The goal of the first term of the cost functional is to track the given terminal state

ψ̃ up to a global phase eiϕ T which cannot be specified. In the final section, we prove

existence of a unique solution to e(ψ, u) = 0 for a given u ∈ U and discuss the

differentiability properties of the operator e and of the objective J(ψ, u) as required

for the optimal control formulation.

Before we discuss the solution of this constrained optimization problem, we con-

sider the case of a control of sinusoidal type designed to drive our quantum model

from the first eigenstate φ1(x) = sin(πx/2) to the second one φ2(x) = sin(2πx/2)

where we choose ` = 2. We take a control of the form

u(t) = u0

[
sin(ωt)− sin(ωT )

t

T

]
, ω = λ2 − λ1, (3.7)

with λ2 − λ1 = 3π2/4 and the linear term is such that u(0) = 0 and u(T ) = 0. With

this control in (3.6) and ψ0 = φ1, we solve the forward problem and obtain ψ(·, T )

which is used in (3.5) together with ψ̃ = φ2 to determine J(ψ, u). Results with this

setting are reported in the two pictures of Figure 3.1. The left picture shows that
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Figure 3.1: Left : Values of the objective with nearly time-harmonic control with fixed
frequency ω = 3π2/4 and varying amplitude u0 for three different time horizons T .
Right : Values of the objective for fixed amplitude u0 = 1 and T = 8 for variable
frequency.

choosing ω = 3π2/4, smaller amplitudes are required in correspondence to larger
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time horizons in order to attain the minimum of the objective. However, with T = 1

we have ωT ≈ 2π and the objective does not change considerably as we increase

the amplitude. On the other hand, in the right picture we see that, choosing T

sufficiently large and a fixed amplitude, a clear minimum is obtained for ω = 3π2/4.

We show that a control suitable for fast state transition can be obtained by in the

optimal control formulation given by (3.5) and (3.6). To characterize the solution to

this problem, we introduce the following Lagrangian

L(ψ, u, p) = J(ψ, u) + <e
T∫

0

∫
Ω

p∗(x, t)e(ψ, u)(x, t) dxdt, (3.8)

where p is the Lagrange multiplier. We prove in the final section that any minima of

(3.5) and (3.6) corresponds to an extremal point of the Lagrangian; see also [23, 24].

Therefore, by taking the Frechét derivatives of L(ψ, u, p) with respect to the opti-

mization variables gives the following first-order optimality system that characterizes

the optimal solution, we have

{
i∂t + ∂2

x − V0(x)− u(t)x
}
ψ(x, t) = 0,{

i∂t + ∂2
x − V0(x)− u(t)x

}
p(x, t) = 0, (3.9)

−γ u+ γα ü+ <e
∫
Ω

p∗(x, t)xψ(x, t) dx = 0

This system consists of the state equation, the adjoint equation, and the optimality

condition, respectively, with homogeneous Dirichlet boundary conditions, and initial

and terminal conditions given by

ψ(x, 0) = ψ0(x),

p(x, T ) = i (ψ̃(·), ψ(·, T ))H ψ̃(x), (3.10)

u(0) = 0, u(T ) = 0.
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In the final section, we prove that there exists at least one solution to (3.9)-(3.10).

We also prove that if γ is sufficiently large and the projection ‖Pψ(T )‖2
H is suf-

ficiently small, then the second-order sufficient optimality condition holds and our

optimization problem is locally strictly convex.

Notice that the control is a function of time only, and the state and adjoint vari-

ables can be seen as implicit functions of the control. Therefore the dimensionality

of the optimization problem can be reduced significantly introducing a reduced cost

functional J̃(u) = J(ψ(u), u). In the final section we show that the corresponding

gradient is given by(
∇J̃(u)

)
(t) = γ u(t)− γα ü(t)−<e

∫
Ω

p∗(x, t)xψ(x, t) dx. (3.11)

Therefore we have that ∇J̃(u) ∈ H−1(0, T ; R) which is problematic with a gradient-

based approach because the gradient is not in the same space of the solution and

thus neither it provides an update to the control along the descent direction. It has

been shown [40], that this problem can be solved by using the Riesz representation

of the gradient in the H1
0 (0, T ) space as a means of Sobolev smoothing. Although we

will ultimately be working with a discrete optimality system, the idea of formulating

the gradient in a weighted `2 space follows analogously.

A main difficulty in the analysis and solution of our quantum control problem is

that it may admit multiple solutions (as most bilinear control problems). We prove

that this is the case in the following.

Proposition

Let the initial and target states be eigenfunctions and the stationary potential be

symmetric, then the reduced cost functional does not have a unique minimizer. In

particular, if u∗(t) is a minimizer, then so is −u∗(t) and consequently ∇J̃(u) is
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non-convex independently of regularization.

Proof. Let ψ(x, t) be a solution to the TDSE with symmetric stationary potential[
i∂t + ∂2

x − V0(x)− u(t)x
]
ψ(x, t) = 0

and [
i∂t + ∂2

x − V0(−x)− (−u(t)) (−x)
]
ψ(x, t) = 0.

This implies that if a control u(t) yields a solution ψ(x, t), then−u(t) yields a solution

which is spatially reversed ψ(−x, t). The projection of the final state onto the target

has the value (ψ̃(·), ψ(·, T ))H. Since ψ̃(x) is an eigenfunction, it has either even or

odd parity. The final value of the wavefunction ψ(x, T ) is given by the control u(t)

and Pψ(x, T ) is given by −u(t). The parity operator is self-adjoint on L2 (P = P∗),

by virtue of commuting with the self-adjoint Hamiltonian. This gives the relationship∣∣∣∣∣
∫
Ω

Pψ∗(x, T )ψ̃(x)dx

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
Ω

ψ∗(x, T )Pψ̃(x)dx

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
Ω

ψ∗(x, T )[±ψ̃(x)]dx

∣∣∣∣∣
2

The cost functional depends only on the magnitude of this projection, therefore

J̃(u) = J̃(−u). The consequence of the above non-uniqueness property is that the

cost functional cannot be globally convex, independently of how large the regular-

ization parameter may be.

3.3 Formulation of the discrete optimal control

problem

In a PDE-based optimization problem, there are two possible discretization proce-

dures. One is the optimize-before-discretize approach in which we discretize the

optimality system (3.9) choosing appropriate discretization schemes for the forward
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equation, for the adjoint equation, and for the optimality equation. The drawback

with this approach is the possible inconsistency between the discretized objective and

the reduced gradient given by the discrete optimality condition; see [12]. This means

discrepancy between the directional derivative (∇J̃(u), φ)H and its approximation

J̃(u+εφ)−J̃(u−εφ)
2ε

, which, however, can be controlled at the cost of increasing accuracy

of discretization by using finer meshes. The other drawback of the optimize-before-

discretize approach is that the Hessian may not be symmetric.

In our experience, gradient inconsistency is usually not negligible in the case of

hyperbolic- and Schrödinger-type equations with bilinear controls. For this reason,

we pursue the approach of discretize-before-optimize where the consistency between

the reduced objective and its gradient is guaranteed. The first step is to discretize

the state equation and the Lagrangian and then take derivatives to obtain first-

and second-order optimality conditions. The difficulty of this approach is that the

approximation scheme resulting for the adjoint equation may be numerically disad-

vantageous.

In any case, the discretization of the Schrödinger equation must be norm- preserv-

ing to ensure a discrete ∂t‖ψ(·, t)‖2
H = 0. This is essential, otherwise it happens that

we may compute a control which attains a minimum of the functional by violating

the underlying physical constraint. Moreover, we want a scheme that is second-order

accurate also with time-varying potentials.

We know that the classical Crank-Nicolson scheme is norm-preserving and un-

conditionally stable when solving the Schrödinger equation with stationary potential

[32]. However, in quantum control problems, the Hamiltonian between different time

steps is different, H(tk) 6= H(tk−1), and in this case the Crank-Nicolson scheme is

not norm-preserving. For this reason, we define a modified Crank-Nicolson (MCN)

method by first integrating numerically the semigroup operator and then using a

Padé approximant.
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Consider the semigroup operator ψ(δt) = exp (Θ(δt))ψ(0), where Θ(t) is given

by the Magnus expansion [21]. This is an infinite series representation for a time-

dependent Hamiltonian. In the case of a dipole control with H(t) = −∂2
x + V0(x) +

u(t)x, the Magnus expansion terminates after three terms.

Θ(t) = −i
t∫

0

H(τ)dτ +
1

2

t∫
0

 τ∫
0

H(σ)dσ,H(τ)

 dτ + · · · (3.12)

We choose to approximate Θ(t) by the first term in the expansion. The analysis of

a similar second-order truncation with a midpoint rule is carried out by Hochbruck

and Lubich in [20]; see also [38]. In our approach, we approximate the integral in the

first term of (3.12) with the trapezoidal rule. The choice of the trapezoidal rule over

the midpoint rule results in control and state variables that are defined on the same

time step. Since the Magnus formula and the integral are approximated to second

order, the overall scheme is second-order accurate also in the case when the potential

is time-dependent. In addition, we can prove that our scheme is unconditionally

stable.

Now, let Nt be the number of time steps of size δt = T
Nt

and Nx be the number of

intervals of the Ω discretization. The TDSE discretized by our MCN scheme results

in the following

ψk − ψk−1 = −iδt
4

[H(tk) +H(tk−1)][ψk + ψk−1] (3.13)

Spatial discretization of the Hamiltonian H(tk) is carried out using linear finite el-

ements on a uniform grid which results in a matrix Hk. We have that Hk = H>k ,

which is important for preserving unitarity of the time-stepping method. Let Ak =

δt
4

[Hk + Hk−1]. This gives the desirable property that Ak = A>k , which is consistent

with the infinite-dimensional Hamiltonian operator being Hermitian.

We notice an important fact: While we have no difficulty with the complex-

valued variable representation in gradient-based optimization approaches [40], the

52



Chapter 3. The Krylov-Newton method

real-valued matrix representation of complex variables is necessary for constructing

the Hessian; see [39]. Suppose z1, z2 ∈ C with z` = x` + i y` for ` = 1, 2. These can

be represented as vectors in R2 with Z` =
(
x`, y`

)>
. Notice that, considering

Z1 and Z2 as vectors in R2, it is not possible to use vector multiplication between

them which results equivalent to multiplication between the corresponding complex

variables. For this purpose, a matrix representation of one of the two vectors is

employed as follows.

Z1Z2 =

 x1 −y1

y1 x1

 x2

y2

 =

 x1x2 − y1y2

x1y2 + x2y1

 (3.14)

In this representation, complex conjugacy is performed via the transpose operation.

This representation is also valid for matrices and vectors and in such cases leads to

block systems. The spatially-discrete form of Equation (3.13) contains a term −iAk,

for which therefore a real-valued representation is needed. Including the left-hand

side terms, we obtain a block matrix Bk as follows

Bk =

 I Ak

−Ak I

 . (3.15)

This gives the following representation of the equality constraint

ek(y,u) = Bkyk −B>k yk−1, yk =

 <e[ψk]

=m[ψk]

 , (3.16)

where y is a compact notation for the set of state vectors at each time step y1, . . . ,yNt

and similarly for u.

Given a total number Nx of grid points, the wavefunction at each time step will

be a vector in CNx−2, therefore the state vector at each step will be in R2Nx−4. We

introduce the matrix operator S which corresponds, in matrix representation form,

to multiplication by i. We have that

S =

 0 −I

I 0

 , (ψ̃, ψ)H corresponds to

 ỹ>

ỹ>S

y (3.17)
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In this representation, we can rewrite the original cost functional in the form

J(y,u) =
1

2

1− y>Nt

(
ỹ −Sỹ

) ỹ>

ỹ>S

yNt

+
γ

2
u>Ku (3.18)

The matrix K is symmetric and positive definite and is a linear finite-element dis-

cretization of the Helmholtz operator I − α∂2
x. This means that the weighted inner

product u>Kv is a second-order approximation to (u, v)U.

We consider the Lagrangian

L(y,u,p) = J(y,u) +
Nt∑
k=1

p>k ek(y,u) (3.19)

Differentiating this Lagrangian with respect to its arguments and setting the deriva-

tives to zero gives the discrete first-order optimality system

Bkyk = B>k yk−1, (3.20)

B>k pk = Bk+1pk+1, (3.21)

γKu = f . (3.22)

The control vector u = (u1, . . . , uNt−1) has Nt − 1 elements as the control is set

to zero at the initial and final times. The elements of the vector f = (f1, . . . , fNt−1)

are given as

fj = p>j V(yj + yj−1) + p>j+1V(yj+1 + yj), V =
δt

4

 0 −X

X 0

 , (3.23)

where V is the discrete approximation of iδt
4
x and X = diag(x1, ..., xNx−1). The

initial and terminal conditions are as follows

y0 =

 <e[ψ0]

=m[ψ0]

 (3.24)

B>NtpNt =
(

ỹ −Sỹ
) ỹ>yNt

ỹ>SyNt

 (3.25)
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Notice that our modified Crank-Nicolson scheme results in a unitary time- step-

ping, while the resulting scheme for the adjoint equation is non-unitary. This situa-

tion is reversed in using the standard Crank-Nicolson scheme for the forward problem.

We emphasize that because the cost functional depends on the state variable, it is

essential to preserve the norm of the state variable.

Now, consider the reduced cost functional J̃(u) = J(y(u),u). The gradient of

this objective function is

∇J̃(u) = γKu− f (3.26)

Since the control itself has only Nt − 1 degrees of freedom and the state variable

has (Nt− 1)(Nx− 2) degrees of freedom, the matrix of the optimality system is very

large with [(2Nx − 3)(Nt − 1)]2 elements, albeit sparse. In contrast, the reduced

Hessian will be a full matrix with (Nt − 1)2 entries. Because of the structure of the

optimal control problem, applying the Hessian to a vector is not significantly more

expensive than computing the gradient, so the reduced Hessian approach is suitable

for use with a Krylov solver. The application of the Hessian is presented in 2. The

reduced Hessian is formulated following [6].

The equality constraint can be written as a block bidiagonal system where e(y,u)

is a matrix and y is a column-stacked vector. We have

∇2J̃(u) = Luu + e∗ue−>y Lyye−1
y eu − e>u e−>y Lyu − L>yue−1

y eu. (3.27)

Linearizing the system about a control u, the change in the state variable y due to

a change δu is δy = −ey
−1euδu. We have that

[∇2J(u)]δu = Luuδu + eu
>δp + Lyu

>δy, (3.28)

where δy = −ey
−1euδu and δp = −ey

−>[Lyyδy + Lyuδu]. We can write the lin-
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earized equality constraint with the following

ey =


B1

−B>1 B2

. . . . . .

−B>Nt−1 BNt

 , eu =



c1

c2 c2

. . . . . .

cNt−1 cNt−1

cNt


(3.29)

where ck = V(yk + yk−1). The application of ey
−1 and ey

−> follows the two-term

recursion form of the forward and adjoint equations given in (3.20) and (3.21). The

matrix Luu is given by γK and Lyu has the form

Lyu =



V>(p1 + p2) V>p2

V>p2 V>(p2 + p3) V>p3

. . . . . .

V>pNt−1 V>(pNt−1 + pNt)

V>pNt


(3.30)

It is the Lyy block that necessitates the real variable formulation, because the

Lagrangian is not analytic in ψ. Lyy is a block matrix of Nt−1×Nt−1 blocks, each of

size Nx−2×Nx−2. However, since the cost depends only on final-time observation,

these blocks are all zero except for the lowest right-most block. This block con-

tains the projection matrix of at least rank 2, i.e. P =
(

ỹ −Sỹ
)(

ỹ −Sỹ
)>

.

Writing this explicitly in real and imaginary parts, results in the matrix

P =

 ψrψ
>
r + ψiψ

>
i 0

0 ψrψ
>
r + ψiψ

>
i

 (3.31)

There is no way to form this operator utilizing the dyadic product of a complex-

valued vector with itself. Indeed, the fact that a rank-2 matrix is needed instead of

a rank-1 matrix indicates the lack of an equivalent complex representation.
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We have completed the formulation of the discrete optimal control problem that

has been tailored to guarantee a consistent gradient and an appropriate construction

of the Hessian.

3.4 A globalized Newton method

In this section, we discuss our globalized Newton approach focusing on two issues.

First, we discuss the problem of starting the Newton procedure which arises due to

the fact that, in a quantum control setting, the starting configuration and the target

are usually orthogonal functions. In particular, it is meaningful to require to reach

the target state exactly, which is possible if the weight of the regularization terms

goes to zero. However, in this case it is difficult to argue positive definiteness of

the Hessian. The second issue arises from the lack of convexity of our optimization

problem and the need of a robust and efficient linesearch procedure.

Our numerical experience shows that the initialization of the minimizing iteration

is a delicate step. Guessing an initial control to be nearly harmonic as in equation

(3.7) can be a viable strategy when ωT � 1. However, for short time intervals, a

more robust initialization is required. Clearly, an initial guess of a zero control does

not work. As the initial and target states are both eigenfunctions, they are orthogonal

and the projection onto the target will be zero in the absence of a non-zero control

function. Then the particle remains in the initial state and, Pψ = (ψ̃, ψ)H ψ̃ = 0

which makes the adjoint variable and consequently the gradient identically zero. We

have that the cost functional has a local maximum. If one were to modify the target

state to be some ψ̂ ∈ span(ψ0, ψ̃), then the projection onto the modified target will

be non-zero, which in turn gives a non-zero gradient.

An additional difficulty arises from the parity of the eigenstates. In particular, if

ψ0 and ψ̃ are either both even or both odd, then the integral term in (3.11) will vanish
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due to an antisymmetric integrand. For this reason, we recommend modifying the

target state to ψ̂ ∈ span(ψ0, ψ̃, xψ̃). Once a control is computed for the transition

ψ0 → ψ̂, it may be used as a starting guess for the transition ψ0 → ψ̃. This approach

mimics an homotopy method. For very fast controls and large energy transitions, we

use a sequence of intermediate targets ψ̂1, ψ̂2, ... which approach ψ̃ in L2.

The choice of regularization parameters plays an important role in the initializa-

tion as well. It is desirable to start having a large regularization, that gives faster

convergence in computing the Newton direction with symmlq. At the same time, a

large weight of the cost will compromise the goal of attaining the target as close as

possible. Therefore we employ successive reductions of the regularization parameter.

We have found that halving γ whenever ‖∇J̃(u)‖U reaches a given tolerance provides

robust convergence to optimal controls corresponding to very small regularization.

We start the discussion of our globalized Newton scheme giving the workflow

of the main Algorithm 1, followed by the illustration of the linesearch procedure

given by Algorithm 3. To improve readability, we use the notation of the continuous

formulation. Their discrete counterpart is discussed in the previous section.

Notice that in Algorithm 3 we anticipate the possible lack of positive definite-

ness, while still exploiting the symmetry of the Hessian, by using the Krylov-type

symmetric LQ method [31]. In our experience, symmlq consistently computes search

directions in less time than other Krylov methods, such as GMRES or BiCG. If the

Hessian has negative eigenvalues, symmlq may compute an ascent direction. Whether

the direction is an ascent or descent can be determined from the sign of its projection

onto the gradient. In the cases where δu is an ascent direction, −δu is a descent

direction and thus it is used instead.

We have shown in Proposition 3.2 that the objective is nonconvex and therefore

a linesearch is required to globalize the Newton method. Once a search direction d is
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Data: Given ψ0, ψ̃, γ, α, T , u = 0

Choose ψ̂;

while ||∇J̃(u)|| > tol do
Compute search direction δu with Algorithm 3;

Compute a∗ with Algorithm 4;

u← u + a∗δu;

end

ψ̂ ← ψ̃;

iter ← 0;

while iter < maxit do

while ‖∇J̃(u)‖ > tol do
Compute search direction δu with Algorithm 3 ;

Compute a∗ with Algorithm 4;

u← u + a∗δu;

end

γ ← γ/2;

iter ← iter + 1;

end

Algorithm 1: Complete minimization program

computed by the Krylov-Newton solver, the aim is to compute a step length a such

that it satisfies the strong Wolfe conditions (SWC) given by

J̃(u + ad) ≤ J̃(u) + c1ad
>∇J̃(u), 0 < c1 � 1, (3.32)

|d>∇J̃(u + ad)| ≤ c2|d>∇J̃(u)|, c1 < c2 < 1. (3.33)

When using a linesearch with a Newton-type method, it is often recommended that

one begins with a = 1; see, e.g., [29]. This is an excellent choice when the functional

is locally quadratic. However, in our optimization problem, the desired step length

can be orders of magnitude smaller which happens when the higher order derivatives
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Data: Given a control u, state variable y and adjoint variable p

Solve eyδy = −euδu ;

Solve ey
>δp = −[Lyyδy + Lyuδu] ;

[∇2J̃(u)] δu = Luuδu + eu
>δp + Lyu

>δy

Algorithm 2: Applying the reduced Hessian to a test vector δu

Data: Given a control u, make an initial guess of search direction

δu = −Luu
−1∇J̃(u)

Use Algorithm 2 to apply the Hessian, iteratively solve ∇2J̃(u)δu = −∇J̃(u)

with symmlq;

if δu>∇J̃(u) > 0 then
δu← −δu;

end

Algorithm 3: Computing the search direction

of J(u + ad) with respect to a are large compared to the first and second-order

derivatives.

We use our knowledge of the model to define the initial step length. In our case,

the tracking part of the cost functional is bounded between 0 and 1 for all controls

by virtue of the unitarity of the state equation; see Proposition 3.2. On the other

hand, the cost functional is bounded from below by the regularization term. This

amounts to a quadratic polynomial and we can write

J̃(u + ad) ≥ m2a
2 +m1a+m0,

where the coefficients are m0 = γ
2
u>Ku − J(u) ≤ 0, m1 = γu>Kd, and m2 =

γ
2
d>Kd. Since m0 ≤ 0, the equation m2a

2 +m1a+m0 = 0 admits real roots and we

can establish an upper bound on the maximum feasible step length as follows

amax =

√
m2

1 − 4m0m2 −m1

2m2

. (3.34)
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In addition, this upper bound provides a valuable metric in the sense that if amax �

1 occurs, it means that a locally quadratic model is not valid. We have the following

new result:

Proposition

For sufficiently small c1 > 0, there exits at least one step length a∗ which satisfies

the SWC condition in the interval (0, amax]

Proof. Because J̃(u +amax d) ≥ J̃(u) and d>∇J̃(u) < 0, by the intermediate value

theorem, there must be at least one value of a∗ ∈ (0, amax] such that J̃(u+a∗ d) < 0

and d>∇J̃(u + a∗ d) = 0.

In order to have a robust and efficient linesearch scheme we combine two methods.

First, we apply the Algorithm 4 that, for a given a descent direction d, computes the

maximum feasible step length. If a = 1 satisfies the SWC condition, it is accepted.

Otherwise, it is assumed that the functional is locally approximated by a cubic

polynomial and for this purpose we construct a cubic Hermite interpolant on [0, 1].

The minimum am of this polynomial function is tested for the SWC condition. If this

condition is not satisfied, we apply a more robust scheme represented by the bisection

method of Algorithm 5 given below. At the end a minimizer will be bracketed by

[0, aamax].

We have implemented a modified bisection method to compute a minimum of

a C2 function. For this purpose, we write a set of criteria which ensure that a

twice continuously differentiable function f(x) must have at least one local minimizer

x∗ ∈ (xl, xr). We have the following
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Proposition

Suppose that f is continuously differentiable. If f ′(xl) < 0 and f ′(xr) > 0, then

there must be at least one point in x̃ ∈ (xl, xr) such that x̃ is a local minimum.

Proposition

Suppose that f is continuously differentiable. If f ′(xl) < 0 and f(xr) > f(xl)

(f ′(xl) > 0, f(xr) < f(xl)), then there must be at least one point in x̃ ∈ (xl, xr) such

that x̃ is a local minimum.

These two propositions give the guideline for the formulation of the following

minimization algorithm. If for any reason, Algorithm 5 returns a critical point

a∗ which does not satisfy the SWC condition, then we can use the fact that for

sufficiently small value of c1 there exists a point that does satisfy the SWC and lies

between 0 and any critical point which does not. We can then use a∗ as an upper

bound and apply the bisection scheme on the interval (0, a∗).

3.5 Numerical Results

In this section, we are concerned with the evaluation of the optimal control for-

mulation for dipole control of a quantum system and with the investigation of the

computational performance of the proposed Newton scheme. We consider the cost for

state transitions for different choices of the regularization parameters and we compare

the convergence behavior of the Krylov-Newton scheme with that of gradient-type

schemes. We work in the discrete H1 space; see [40]. We focus on fast state tran-

sitions and we compare results with T ranging from very small to moderate values.

Unless otherwise stated, we take a spatial domain Ω = [0, 2] with Nx = 100 grid
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points and consider the time interval (0, T ) subdivided in Nt = 100 time steps.

In Figure 3.2, we report the values of the objective at the optimum of state

transition 1 → 2 for different values of the regularization parameters. We notice

that for a given γ, the objective value increases while increasing the value of α, that

is, penalizing highly varying controls. We see that our scheme can explore a large

range of values of γ such that good tracking of the target function can be guaranteed.

In Figure 3.2, we also plot the optimal controls corresponding to a given α for a range

of γ values. We notice that, as the weight of the cost reduces, the control acquires

more structure and we obtain an improved tracking.

10−6 10−5 10−4 10−3 10−2 10−110−3

10−2

10−1

100

!

J(
u"

)

 

 

#=1
#=3.15× 10−2

#=10−3

Figure 3.2: Left: The cost for the state transition 1→ 2 given an optimal control u∗

for different choices of the regularization parameters, γ and α. Right: The optimal
control for the state transition 1→ 2 as a function of time with α = 10−3 for a range
of fixed values of γ.

The results shown in Figure 3.2, suggest that the resulting optimal control are

not simple harmonic functions. This fact appears more clearly in the plot of Figure

3.3 where optimal controls for different state transitions are depicted.

In correspondence to the control of the transition 1 → 2, we provide in Figure

3.4 a picture of the corresponding time evolution of |ψ(x, t)|2. We can clearly see the

transition occurring for the state.
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Figure 3.3: Left: Optimal controls for transitions from the first state to the second,
the third, and the fifth states. Right: Optimal controls for transitions from the first
state to the fourth and the sixth states.

We remark that large differences are obtained between optimal controls corre-

sponding to different time horizons. In Figure 3.5, we see that as the terminal time

T increases from the very small value T = 0.75 to the moderate value T = 4, the

amplitude of the control decreases of two orders of magnitude and becomes less os-

cillating. This result points out the difficulty of solving for short terminal times.

Next, we investigate the computational performance of our optimal control solver.

We start with Table 3.1, where we compare the convergence behavior of the Krylov-

Newton (KN) scheme, of the steepest descent (SD) scheme, and of the nonlinear

conjugate gradient (NCG) scheme. We use the NCG method proposed by Hager

and Zhang [53] which in our case appears to be the most competitive among NCG

schemes.

For these experiments, we choose the initial state ψ0(x) = sin(πx) and the target

state is ψ̃(x) = 1√
2
[sin(πx)+sin(2πx)]. We take T = 1. The regularization parameters

are γ = 10−1 and α = 10−3. Results with this setting are reported in Table 3.1 that

provides the convergence history of the iterative schemes along nine iterations. We
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Figure 3.4: Optimal control transition of |ψ(x, t)|2 from first to second eigenstate.

can see that the Krylov-Newton scheme does not descend as rapidly in the first steps

followed by accelerate convergence in the subsequent steps thus outperforming the

SD scheme and the NCG scheme.

Table ?? gives the decrease of the norm of the gradient for the method of steepest

descent and the present Krylov-Newton method for successive iterations. For this

test, 400 time steps and 200 spatial grid points were used with T = 1, α = 10.2,

γ = 10−3, ψ0(x) = sin(πx), ψ̃(x) = 1√
10

[sin(πx) + 3 sin(2πx)]. The symmlq solver was

required to have a residual bounded by 10−12 for each Newton solve. For the first

few iterations the norm of the gradient is about the same for the two methods, but

ultimately, the Krylov-Newton method attains a gradient which is zero to machine

precision in just 8 steps. The steepest descent approach had not achieved this by the

50th iteration. These results indicate that the Krylov-Newton method is exhibiting

superlinear convergence.

A useful metric of computational performance of the schemes discussed here is a

comparison of CPU times to reduce the value of the norm ||∇J̃(u)||, representing the

error in solving the optimality condition. We consider the initial state as φ1(x) and

the target as ψ̃ = 1√
2
(φ1 + φ2), T = 1, and fixed regularization parameter α = 10−2.
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Figure 3.5: Left : The optimal control u for the state 1-to-2 transition with T = 0.75
in solid line. The dashed line is the optimal control, multiplied by factor of 5, for
T = 1 so that it can be shown on the same scale. Right : The optimal controls for
T = 2 and T = 4 with solid and dashed lines respectively.

We compare for two different values γ = 10−1 and γ = 10−4 to show the influence of

regularization on the convergence of the control problem. In Figure 3.6, we plot the

values of ||∇J̃(uk)|| for a sequence of iterations k = 1, 2, ..., as a function of CPU

time to illustrate the relative performance of the KN method compared to the NCG

scheme. In both cases, the Matlab Krylov solver, symmlq is used with a tolerance

of 10−5 and the Luu block is used as a preconditioner. The plots in Figure 3.6 show

that the NCG scheme provides comparable computational performance to the KN

scheme when choosing larger values of γ. However, as γ is taken smaller, the KN

method converges significantly faster to the optimal control solution.

66



Chapter 3. The Krylov-Newton method

10
0

10
1

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

CPU time (seconds)

||
∇

 J
(u

)|
|

 

 

HZ−NCG

Krylov−Newton

10
1

10
2

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

CPU time (seconds)

||
∇

 J
(u

)|
|

 

 

HZ−NCG

Krylov−Newton

Figure 3.6: Convergence results for γ = 10−1 (left) and γ = 10−4 (right) with the
KN scheme and the NCG scheme; α = 10−2.

3.6 Analysis of the dipole quantum

control problem

We present all details of our functional analytic setting and present our results on the

existence of an optimal control solution including necessary and sufficient optimality

conditions. For ease of presentation, in this section we repeat a few definitions

concerning functional spaces. To the best of our knowledge, this is the first systematic

and complete analysis of first- and second-order necessary and sufficient optimality

conditions for the dipole quantum control problem.

Let Ω = (0, `) be an open interval with ` > 0. Recall that for q ∈ [1,∞) the

Lebesgue space Lq(Ω; C) is defined as

Lq(Ω; C) =

{
ϕ : Ω→ C

∣∣∣ϕ measurable and ‖ϕ‖Lq(Ω;C) =

(∫
Ω

|ϕ(x)|qC dx
) 1

q

<∞
}
.

In particular, we set H = L2(Ω; C), which is a Hilbert space endowed with the inner

product

(ϕ, ψ)H =

∫
Ω

ϕ(x)∗ψ(x) dx for ϕ, ψ ∈ H
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and the induced norm ‖ϕ‖H for ϕ ∈ H. The Hilbert space V = H1
0 (Ω; C) is given by

V =

{
ϕ ∈ H

∣∣∣ ‖ϕ‖V =

(∫
Ω

|ϕ′(x)|2C dx
)1/2

<∞
}

supplied by the inner product

(ϕ, ψ)V = (ϕ′, ψ′)H for ϕ, ψ ∈ V

and the induced norm ‖ϕ‖V =
√

(ϕ, ϕ)V for ϕ ∈ V. For more details on Lebesgue

and Sobolev spaces we refer to [1, 17], for instance.

For T > 0 let Q = Ω × (0, T ). If Y is a Banach space, we define the Bochner

space L2(0, T ;Y ) as the space of all measurable functions ϕ : [0, T ]→ Y satisfying

‖ϕ‖L2(0,T ;Y ) =

(∫ T

0

‖ϕ(t)‖2
Y dt

)1/2

,

where we write ϕ(t) for the function on Y only; see, e.g., [1, 17]. Analogously, the

spaces H1
0 (0, T ;Y ) and H1(0, T ;Y ) are defined. In particular, we write L2(0, T ),

H1
0 (0, T ) or H1(0, T ) if Y = R.

Let us introduce the Hilbert space

W (0, T ) =

{
ϕ ∈ L2(0, T ; V)

∣∣∣ dϕ
dt
∈ L2(0, T ; V′)

}
,

where V′ = H−1(Ω; C) denotes the dual space of V = H1
0 (Ω; C). The space W (0, T )

is endowed with the inner product

(ϕ, ψ)W (0,T ) =

∫ T

0

(ϕt(t), ψt(t))V′ + (ϕ(t), ψ(t))V dt for ϕ, ψ ∈ W (0, T )

and the associated induced norm.

3.6.1 The state equation

Let u : (0, T )→ R be a given control input function. We suppose that our potential

V has the form

V (x, t) = V0(x) + u(t)x for (x, t) ∈ Q (3.35)
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where V0 : Ω → R is fixed. Then, the wave function ψ : Q → C is governed by the

time-dependent Schrödinger equation:

i ψt(x, t) = −ψxx(x, t) + V (x, t)ψ(x, t) for (x, t) ∈ Q, (3.36a)

ψ(0, t) = ψ(L, t) = 0 for t ∈ (0, T ), (3.36b)

ψ(x, 0) = ψ0(x) for x ∈ Ω, (3.36c)

where i is the imaginary unit and ψ0 : Ω → C is a given initial wave function

distribution. We say that ψ is a weak solution to (3.36) if ψ ∈ W (0, T ) holds with

ψ(0) = ψ0 in H and∫ T

0

(i ψt, ϕ)V′,V dt =

∫ T

0

∫
Ω

ψxϕ
∗
x + V ψϕ∗ dxdt for all ϕ ∈ L2(0, T ; V) (3.37)

is satisfied, where (· , ·)V′,V denotes the dual pairing between V and V′.

Proposition

Let ψ0 ∈ H, V0 ∈ L2(Ω) and V (x, t) = V0(x) + u(t)x for (x, t) ∈ Q. Then,

there exists a unique weak solution ψ to (3.35) satisfying ‖ψ(t)‖H = ‖ψ0‖H for all

t ∈ [0, T ]. If, in addition, ψ ∈ L∞(Ω) holds, then

‖ψ‖W (0,T ) ≤ C
(

1 + ‖u‖L∞(0,T )

)
. (3.38)

Proof. For the existence of a weak solution to (3.35) we refer the reader to [41]. From

(3.37) we infer that

(i ψt(t), ψ(t))V′,V =

∫
Ω

∣∣ψx(t)∣∣2C+V (· , t)
∣∣ψ(t)

∣∣2
C dx for almost all (f.a.a.) t ∈ (0, T ).

Recall that for ψ ∈ W (0, T ) we have

(i ψt(t), ψ(t))V′,V =
i

2

d

dt
‖ψ(t)‖2

H f.a.a. t ∈ (0, T ).
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see, e.g., [17]. By assumption, V (x, t) ∈ R f.a.a. (x, t) ∈ Q. Thus,

d

dt
‖ψ(t)‖2

H = −2i

∫
Ω

∣∣ψx(t)∣∣2C + V (· , t)
∣∣ψ(t)

∣∣2
C dx f.a.a. t ∈ (0, T ). (3.39)

The left-hand side of 3.39 is purely real, whereas the right-hand side of 3.39 is purely

imaginary. Thus, (3.39) can only be satisfied both sides are zero. Consequently,

‖ψ(t)‖2
H is constant, i.e.,

‖ψ(t)‖H = ‖ψ0‖H f.a.a. t ∈ [0, T ]. (3.40)

Moreover,

‖ψ‖2
L2(0,T ;V) = −

T∫
0

∫
Ω

(
V0(x) + u(t)x

)∣∣ψ(x, t)
∣∣2
C dxdt

≤
(
‖V0‖L∞(Ω) + ‖u‖L∞(0,T )

)
‖ψ‖2

L2(0,T ;H)

≤
(
‖V0‖L∞(Ω) + ‖u‖L∞(0,T )

)
‖ψ0‖2

H

and (3.38) imply (3.36a).

Next we introduce the control space U = H1
0 (0, T ) supplied with the inner product

(u, v)U =

T∫
0

u(t)v(t) + αu̇(t)v̇(t) dt for u, v ∈ U

with 0 < α � 1 and the induced norm ‖u‖U =
√

(u, u)U for u ∈ U. Use of small

values of α allows for controls with larger rate of changes. Since the aim of the

optimal control problem will be to drive a particle from one eigenstate to another, it

is required that the control is zero at the beginning and the end of the time interval.

Let us define the Hilbert spaces

Z = W (0, T )× U and Y = L2(0, T ; V)×H
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endowed with their natural product topology. We identify the dual Y′ of Y with

L2(0, T ; V′)×H.

To formulate the Schrödinger equation as an abstract operator equation we define

the nonlinear operator e = (e1, e2) : Z→ Y′ by

(e(z), ϕ)Y′,Y =

T∫
0

(
(i ψt, p)V′,V −

∫
Ω

ψxp
∗
x − V ψp∗ dx

)
dt+ (ψ(0)− ψ0, p0)H

for z = (ψ, u) ∈ Z and ϕ = (p, p0) ∈ Y. Recall that the potential V given by (3.35)

depends on the control u. For given u ∈ U the function ψ is a weak solution to (3.36)

if and only if e(ψ, u) = 0 in Y′.

Lemma

The operator e : Z → Y′ is twice Fréchet-differentiable and its Fréchet derivatives

at z̄ = (ψ̄, ū) ∈ Z are given by

(e′(z̄)z, ϕ)Y′,Y =

T∫
0

(
(i ψt, p)V′,V −

∫
Ω

ψxp
∗
x −

(
u(t)xψ̄ + (V0 + ū(t)x)ψ

)
p∗ dx

)
dt

+ (ψ(0), p0)H,

(e′′(z̄)(z, z̃), ϕ)Y′,Y =

T∫
0

∫
Ω

(
u(t)xψ̃ + ũ(t)xψ

)
p∗ dxdt

for any directions z = (ψ, u), z̃ = (ψ̃, ũ) ∈ Z and for ϕ = (p, p0) ∈ Y. In particular,

the second Fréchet derivative is Lipschitz-continuous on Z.

Proof. Let z̄ = (ψ̄, ū) ∈ Z be arbitrary. Then, by the Sobolev embedding theorem [1,

17] we have ū ∈ C([0, T ]) so that the claim follows by using standard arguments.

To ensure existence of Lagrange multiplier we will make use of the next result.
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Proposition

The linear operator eψ(z̄) : Z → Y′ is bijective for every x̄ ∈ Z, where eψ denotes

the partial Fréchet derivative of e with respect to ψ.

Proof. Let z̄ = (ψ̄, ū) ∈ Z be chosen arbitrary. The operator eψ(z̄) is bijective, if the

equation eψ(z̄)ψ = (F, φ0) possesses a unique solution ψ ∈ Z for any F ∈ L2(0, T ; V′)

and φ0 ∈ H. Thus, ψ solves

(i ψt(t), ϕ)V′,V + a(t;ψ, ϕ) = (F (t), ϕ)V′,V for all ϕ ∈ V, (3.41a)

ψ(· , 0) = φ0 in Ω, (3.41b)

where the time-dependent bilinear form a(t; · , ·) : V× V→ C is defined as

a(t;φ, ϕ) =

∫
Ω

φ′(x)ϕ′(x)∗+
(
V0(x)+ū(t)x

)
φ(x)ϕ(x)∗ dx for φ, ϕ ∈ V and t ∈ [0, T ].

Since ū ∈ H1(0, T ) holds and H1(0, T ) is continuously embedded in C([0, T ]), there

exists a constant c1 > 0 such that

|ū(t)| ≤ c1 ‖u‖U for all t ∈ [0, T ]. (3.42)

Moreover, V is embedded into L4(Ω; C). Thus, there exists a constant c2 > 0 satis-

fying ‖ϕ‖L4(Ω;C) ≤ c2 ‖ϕ‖V for all ϕ ∈ V. Hence,∣∣a(t;φ, ϕ)
∣∣ ≤ ‖φ‖V‖ϕ‖V +

(
‖V0‖L2(Ω) + c1 ‖u‖U

)
‖φ‖L4(Ω;C)‖ϕ‖L4(Ω;C)

≤
(

1 + c2

(
‖V0‖L2(Ω) + c1 ‖u‖U

))
‖φ‖V‖ϕ‖V for φ, ϕ ∈ V.

so that the bilinear form a is bounded. Using Agmon’s inequality [37]

‖ϕ‖L∞(Ω;C) ≤ c3 ‖ϕ‖1/2
H ‖ϕ‖

1/2
V for ϕ ∈ V

and Young’s inequality [2]

ab ≤ 1

εp
ap

p
+ εq

bq

q
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with a = c3(‖V0‖L2(Ω) + c1 ‖u‖U)‖ϕ‖H, b = ‖ϕ‖V, ε = 1, p = 4/3, q = 4 we find

a(t;ϕ, ϕ) ≥ ‖ϕ‖2
V −

(
‖V0‖L2(Ω) + c1 ‖u‖U

)
‖ϕ‖H‖ϕ‖L∞(Ω;C)

≥ ‖ϕ‖2
V − c3

(
‖V0‖L2(Ω) + c1 ‖u‖U

)
‖ϕ‖3/2

H ‖ϕ‖
1/2
V ≥ c4 ‖ϕ‖2

V − c5 ‖ϕ‖2
H,

where c4 = 3/4 and c4 = 3(c3(‖V0‖L2(Ω) + c1 ‖u‖U))4/3/4. Now the claim follows from

a complex variant of classical results for linear evolution problems; see, e.g., [15].

Remark

It follows from Proposition 3.6.1 that the operator e′(z̄) is surjective for every z̄ =

(ψ̄, ū) ∈ Z. This implies that every point z̄ is a regular point. ♦

Let z̄ = (ψ̄, ū) ∈ be arbitrary. By ker e′(z̄) ⊂ Z we denote the null space of the

operator e′(z̄). Suppose that z = (ψ, u) ∈ ker e′(z̄) is given. Then, ψ satisfies

i ψt(x, t) = −ψxx(x, t) +
(
V0(x) + ū(t)x

)
ψ(x, t)

+ u(t)xψ̄(x, t) f.a.a. (x, t) ∈ Q, (3.43a)

ψ(0, t) = ψ(L, t) = 0 f.a.a. t ∈ (0, T ), (3.43b)

ψ(x, 0) = 0 f.a.a. x ∈ Ω. (3.43c)

Multiplying (3.43a) by ψ(x, t)∗ and integrating over Ω imply that

1

2

d

dt
‖ψ(t)‖2

H + i ‖ψ(t)‖2
V

= i

∫
Ω

(
V0(x) + ū(t)x

)
|ψ(x, t)|2 + u(t)xψ̄(x, t)ψ(x, t)∗ dx.

(3.44)

The real part of (3.44) reads

1

2

d

dt
‖ψ(t)‖2

H = −u(t)

∫
Ω

x=m
(
ψ̄(x, t)ψ(x, t)∗

)
dx. (3.45)
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where we have used that V0(x) as well as u(t) are real-valued. We infer from (3.43)

and Young’s inequality [2] that

1

2

d

dt
‖ψ(t)‖2

H ≤ |u(t)|‖ψ̄(t)‖H‖ψ(t)‖H ≤
1

2

(
|u(t)|2‖ψ̄(t)‖2

H + ‖ψ(t)‖2
H

)
.

Using Gronwall’s inequality we find that

‖ψ(t)‖2
H ≤ et/2

(
‖ψ(0)‖2

H +
1

2

t∫
0

|u(s)|2‖ψ̄(s)‖2

H ds

)
(3.46)

Combining (3.42), (3.43c), and (3.46) we obtain

‖ψ(t)‖2
H ≤ c2 ‖u‖2

U f.a.a. t ∈ [0, T ]. (3.47)

with the constant c2 = c1e
T/2‖ψ̄‖2

L2(0,T ;H)/2.

Now we consider the imaginary part of (3.44). Using (3.47) Hölder’s and Young’s

inequality we find

‖ψ(t)‖2
V =

∫
Ω

(
V0(x) + ū(t)x

)
|ψ(x, t)|2 + u(t)x<e

(
ψ̄(x, t)ψ(x, t)∗

)
dx

≤
(
‖V0‖L∞(Ω) + |ū(t)|

)
‖ψ(t)‖2

H +
1

2

(
|u(t)|2 + ‖ψ̄(t)‖2

H‖ψ(t)‖2
H

)
≤ c2

(
‖V0‖L∞(Ω) + |ū(t)|

)
‖u‖2

U +
1

2

(
|u(t)|2 + c2‖ψ̄(t)‖2

H‖u‖
2
U

)
.

(3.48)

Estimate (3.48) implies

‖ψ‖2
L2(0,T ;V ≤

(
c2

(
T‖V0‖L∞(Ω) + ‖ū‖L1(0,T )

)
+

1

2
+
c2

2
‖ψ̄‖2

L2(0,T ;H

)
‖u‖2

U. (3.49)

Setting

c3 =

√
max

(
c2T, c2

(
T‖V0‖L∞(Ω) + ‖ū‖L1(0,T )

)
+

1

2
+
c2

2
‖ψ̄‖2

L2(0,T ;H

)
we conclude from (3.47) and (3.49) that

‖ψ‖L2(0,T ;H) + ‖ψ‖L2(0,T ;V) ≤ c3 ‖u‖U. (3.50)
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Proposition

Suppose that z̄ ∈ Z and that V0 ∈ L∞(Ω). Then,

‖ψ‖W (0,T ) ≤ Cker ‖u‖U for all z = (ψ, u) ∈ ker e′(z̄)

for a constant Cker > 0.

Proof. We have already derived an estimate in the L∞(0, T ; H) and the L2(0, T ; V)-

norms; see (3.50). Recall that

‖ψt‖L2(0,T ;V′) = sup
‖ϕ‖L2(0,T ;V)=1

T∫
0

(ψt(t), ϕ(t))V′,V dt.

Now, the proof follows directly from (3.43a) and (3.50).

3.6.2 The minimization problem

Given an initial wave function ψ0, we wish to find a control u ∈ U such that ψ(T ) ∈ H

is in some sense close to a given desired target wave function ψ̃ ∈ H. This is to

say that the aim of the optimal control problem is to minimize the cost functional

J : Z→ R given by

J(z) =
1

2

(
1− ‖Pψ(T )‖2

H

)
+
γ

2
‖u‖2

U, z = (ψ, u) ∈ Z, (3.51)

where the linear and bounded projection operator P : H→ H is defined as

Pφ = (ψ̃, φ)H ψ̃ for φ ∈ H

and γ > 0 is a regularization parameter.

Lemma
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The cost functional J is twice Fréchet-differentiable. Its Fréchet derivatives at z̄ =

(ψ̄, ū) ∈ Z are

J ′(z̄)z = −(Pψ̄(T ), Pψ(T ))H + γ (ū, u)U,

J ′′(z̄)(z, z̃) = −(Pψ̃(T ), Pψ(T ))H + γ (ũ, u)U

for any directions z = (ψ, u), z̃ = (ψ̃, ũ) ∈ Z and for ϕ = (p, p0) ∈ Y. In particular,

the second Fréchet derivative is Lipschitz-continuous on Z.

Proof. The claim follows by standard arguments so that the proof is omitted here.

The set of admissible solutions of the optimal control problem that will be intro-

duced now is given by

F(P) =
{
z ∈ Z

∣∣ e(z) = 0 in Y′
}
.

Then, the optimal control problems reads

min J(z) subject to (s.t.) z ∈ F(P). (P)

Theorem

There exists at least one optimal solution z◦ = (ψ◦, u◦) to (P).

Proof. By Proposition 3.6.1 the set F(P) is nonempty. Let {zn}n∈N, zn = (ψn, un),

be a minimizing sequence in F(P). Then, ‖un‖U is bounded. Recall that U is

(compactly) embedded into L∞(Ω); see [1, p. 144]. By (3.38) the sequence {ψn}n∈N

is bounded in W (0, T ). Thus, there exist a subsequence {znk}k∈N, znk = (ψnk , unk),
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and an element z◦ = (ψ◦, u◦) ∈ Z such that

ψnk ⇀ ψ◦ as k →∞ in W (0, T ), (3.52a)

unk ⇀ u◦ as k →∞ in U. (3.52b)

Since U is compactly embedded into C([0, T ]) we conclude from (3.52b) that

unk → u◦ as k →∞ in C([0, T ]). (3.53)

Combining znk ∈ F(P) for all k, (3.52a) and (3.53) we have

0 = lim
k→∞

(e(znk), ϕ)Y′,Y = (e(x◦), ϕ)Y′,Y for all ϕ ∈ Y.

Since the cost functional is weakly lower semicontinuous [35, p. 377] the claim follows

directly.

3.6.3 The reduced problem

Let u ∈ U be given. Then, by Proposition 3.6.1 there exists a unique weak solution

to (3.35). Thus, the solution operator S : U→ W (0, T ) is well-defined. Boundedness

of S follows from (3.38). We introduce the so-called reduced cost functional

J̃(u) = J(S(u), u) for u ∈ U

and the reduced problem

min J̃(u) s.t. u ∈ U (P̃)

which is, in contrast to (P), an unconstrained optimal control problem. If u◦ ∈ U is

a solution to (P̃), then z◦ = (S(u◦), u◦) solves (P).

From Lemmas 3.6.1 and 3.6.2 it follows that J̃ is twice continuously Fréchet-

differentiable. In particular, we have at ū ∈ U and

(J̃ ′(ū), u)U = (Jψ(S(ū), ū),S ′(ū)u)W (0,T ) + (Ju(S(ū), ū), u)U (3.54)
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for a direction u ∈ U. We derive from e(S(ū), ū) = 0 that

0 = eψ(S(ū), ū)S ′(ū)u+ eu(S(ū), ū)u

for a direction u ∈ U. By Proposition 3.6.1 the operator eψ(S(ū), ū) is invertible.

Thus, setting z̄ = (S(ū), ū) ∈ Z and ψ = S ′(ū)u ∈ W (0, T ) we derive

ψ = −eψ(z̄)−1eu(z̄)u. (3.55)

Inserting (3.55) into (3.54) we obtain

(J̃ ′(ū), u)U = −(Jψ(z̄), eψ(z̄)−1eu(z̄)u)W (0,T ) + (Ju(z̄), u)U

= (Ju(z̄), u)U − (eψ(z̄)−?Jψ(z̄), eu(z̄)u)Y′

= (Ju(z̄)− eu(z̄)?eψ(z̄)−?Jψ(z̄), u)U

(3.56)

for a direction u ∈ U, where eψ(z̄)−? : W (0, T ) → Y′ and eu(z̄)? : Y′ → U denote

the adjoint operators of eψ(z̄)−1 : Y′ → W (0, T ) and eu(z̄) : U → Y′, respectively,

satisfying

(eψ(z̄)−?ϕ,G)Y′ = (ϕ, eψ(z̄)−1G)W (0,T ) for all (ϕ,G) ∈ W (0, T )× Y′,

(eu(z̄)?F, v)Y′ = (F, eu(z̄)v)Y′ for all (F, v) ∈ Y′ × U.

It follows from (3.56) that the gradient of the reduced cost functional is given by

J̃ ′(ū) = Ju(z̄)− eu(z̄)?eψ(z̄)−?Jψ(z̄) in U.

3.6.4 Optimality conditions

Let u◦ ∈ U be a solution to (P̃). We write ψ◦ = S(u◦) and x◦ = (ψ◦, u◦). To

investigate first-order necessary optimality conditions for (P̃) or (P) we introduce

the Lagrange functional L : Z× Y→ R by

L(z, λ) = J(z) + <e (e(z), λ)Y′,Y for z = (ψ, u) ∈ Z and λ = (p, p0) ∈ Y.
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It follows from Proposition 3.6.1, Remark 3.6.1 that there exists a unique Lagrange

multiplier λ◦ = (p◦, p◦0) satisfying together with the optimal solution z◦ the system

Lψ(z◦, λ◦)z = 0 for all z ∈ Z, (3.57a)

Lu(z
◦, λ◦)u = 0 for all u ∈ U, (3.57b)

e(z◦) = 0 in Y′; (3.57c)

see, e.g., [24, 28]. We derive from (3.57a) that p◦ is a weak solution to

i p◦t (x, t) = −p◦xx(z, t) +
(
V0(x) + u◦(t)x

)
p◦(x, t) f.a.a. (x, t) ∈ Q, (3.58a)

p◦(0, t) = p◦(L, t) = 0 f.a.a. t ∈ (0, T ), (3.58b)

p◦(x, T ) = i
(
Pψ◦(T )

)
(x) f.a.a. x ∈ Ω, (3.58c)

in particular, p◦ lies in W (0, T ) and p◦0 = p◦(T ) ∈ H. Using (3.57b) we obtain that

u◦ ∈ U is a weak solution to

−αγü◦(t) + γu◦(t) = −<e
(∫

Ω

xψ◦(x, t)p◦(x, t)∗ dx

)
f.a.a. t ∈ (0, T ),

(3.59a)

u◦(0) = u◦(T ) = 0. (3.59b)

Finally, (3.57c) implies that ψ◦ satisfies the state equation (3.36) with control input

u = u◦.

Remark

Analogously to the proof of Proposition 3.6.1 we obtain that ‖p◦(t)‖H = ‖p◦(T )‖H

f.a.a. t ∈ [0, T ]. Thus, using (3.58c) we have ‖p◦‖L2(0,T ;H) =
√
T ‖Pψ◦(T )‖H. ♦

Notice that the gradient of the reduced cost functional is given by

J̃ ′(u◦) = Lu(z
◦, λ◦) in U.
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To investigate second-order sufficient optimality conditions we derive from Lem-

mas 3.6.1 and 3.6.2 that the second Fréchet derivative of the Lagrangian at an optimal

solution z◦ = (ψ◦, u◦) ∈ F(P) and at its associated dual variable λ◦ = (p◦, p◦0) ∈ Y

satisfies

Lzz(z
◦, λ◦)(z, z) = <e

T∫
0

∫
Ω

2u(t)xψ(x, t)p◦(x, t)∗ dxdt−‖Pψ(T )‖2
H +‖u‖2

U (3.60)

for any direction z = (ψ, u) ∈ Z.

Theorem

Suppose that z◦ = (ψ◦, u◦) ∈ F(P) is an optimal solution to (P) and that λ◦ =

(p◦, p◦0) ∈ Y is the associated dual variable. If γ is sufficiently large, if ‖p◦‖L2(0,T ;H)

is sufficiently small and if

‖Pψ(T )‖2
H ≤

γ

4
‖u‖2

U for all z ∈ ker e′(z◦), (3.61)

then the second-order sufficient optimality condition holds, i.e., there exists a con-

stant κ > 0 such that

Lzz(z
◦, λ◦)(z, z) ≥ κ ‖z‖2

Z for all z ∈ ker e′(z◦). (3.62)

Proof. We derive from (3.42), (3.50), Proposition 3.6.1, and (3.60) that

Lzz(z
◦, λ◦)(z, z) ≥ −‖u‖C([0,T ])‖ψ‖L2(0,T ;H)‖p

◦‖L2(0,T ;H) − ‖Pψ(T )‖2
H + γ ‖u‖2

U

≥ −c1‖u‖U‖ψ‖L2(0,T ;H)‖p
◦‖L2(0,T ;H) − ‖Pψ(T )‖2

H

+
γ

4
‖u‖2

U +
γ

2Cker
‖ψ‖2

W (0,T )

≥
(
γ

2
− c1

2
− c1c3

2
‖p◦‖L2(0,T ;H)

)
‖u‖2

U +
γ

2Cker
‖ψ‖2

W (0,T ).
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If

κ = min

(
γ

2Cker
,
γ

2
− c1

2
− c1c3

2
‖p◦‖L2(0,T ;H)

)
> 0 (3.63)

holds, then we obtain (3.62).

Remark

Utilizing Remark 3.6.4 we have the following sufficient condition for Theorem 3.6.4:

If

‖Pψ◦(T )‖H <
γ

2c1c3

√
T

nd γ > 2c1

hold, condition (3.63) is satisfied. ♦
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Data: Given a descent direction p and the function f(a) = J̃(u + ad) and

f ′(a) = d>∇J̃(u + ad)

Compute amax based on equation 3.34

if amax > 2 then

Evaluate f(1) and f ′(1) ;

if a = 1 satisfies SWC then
a∗ ← 1;

else

Construct cubic model on [0, 1] and compute its minimum am;

Evaluate f(am) and f ′(am)

if a = am satisfies SWC then
a∗ ← am;

else

if [0, am] brackets a minimum then
ar ← am;

else if [0, 1] brackets a minimum then
ar ← 1;

else
ar ← amax;

end

a∗ ← bisect(0, ar).

end

end

else

a∗ ← bisect(0, amax)

end

Algorithm 4: Linesearch algorithm
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Data: al and ar which bracket a minimum point. L = ar − al.

f(a) = J̃(u + ad) and f ′(a) = d>∇J̃(u + ad)

while L > tol do

Compute the midpoint am = 1
2
(al + ar) and evaluate f(am) and f ′(am)

if am satisfies SWC then
a∗ ← am ;

end

if f ′(al) < 0 and either f ′(ar) > 0 or f(ar) > f(al) then
ar ← am ;

else if f ′(al) > 0 and f ′(ar) < 0 or f(ar) < f(al) then
ar ← am ;

else
al ← am ;

end

L← (ar − al)
end

Algorithm 5: Bisection minimizer

Table 3.1: Convergence of the SD scheme, the NCG scheme, and the KN scheme to
reach the optimal cost J̃∗ = J̃(u∗).

Iteration J̃SD − J̃∗ J̃NCG − J̃∗ J̃KN − J̃∗

1 2.4969× 10−1 2.4969× 10−1 2.4969× 10−1

2 1.3070× 10−2 1.3070× 10−2 1.5346× 10−2

3 6.4184× 10−3 6.4184× 10−3 5.1099× 10−3

4 5.5337× 10−3 5.3438× 10−3 2.2381× 10−4

5 4.8170× 10−3 3.1011× 10−3 1.8383× 10−4

6 4.2081× 10−3 2.3384× 10−3 1.6253× 10−5

7 3.6768× 10−3 1.2475× 10−3 2.7534× 10−6

8 3.2177× 10−3 9.1869× 10−5 3.3921× 10−7

9 2.8141× 10−3 5.9258× 10−5 4.7022× 10−9
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Table 3.2: Convergence of the SD scheme and the KN scheme with respect to
||∇J̃(u)||

Iteration ||∇J̃SD(u)|| ||∇J̃KN(u)||
1 1.8615× 10−4 1.8615× 10−4

2 6.5263× 10−5 6.5263× 10−5

3 6.0031× 10−5 2.4732× 10−5

4 2.3535× 10−5 1.5557× 10−5

5 2.8106× 10−5 1.2316× 10−6

6 1.5703× 10−5 1.0977× 10−8

7 1.7062× 10−5 3.5480× 10−13

8 1.0322× 10−5 2.0009× 10−17

9 1.3312× 10−5 0

50 1.9114× 10−7 0
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Chapter 4

Control of open quantum systems

The principal aim of quantum control is to bring about a desired change in the state

of the system through the use of a control such as an electric or magnetic field.

Since non-relativistic quantum dynamics are described by the solution to the time-

dependent Schrödinger equation, a linear homogeneous partial differential equation,

any control function must appear within the Hamiltonian operator, giving the control

problem a bilinear structure. In the last twenty years there has been a increasing

body of literature on the application of the optimal control framework to quan-

tum mechanical problems with an emphasis on closed quantum systems and systems

with two or three states. Recently, Pechen[67] et. al. have investigated the control

landscapes for open quantum systems with two states and Roloff[68] have consid-

ered a number of approaches for the control of an open system with applications to

quantum bits and gates. This chapter considers optimal control of open quantum

systems with a single particle in the context of a PDE-constrained optimization to

obtain high-yield controls.

Quantum systems may be either open or closed. A closed quantum system is

understood to be isolated from its environment and exhibits conservation laws, such
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Chapter 4. Control of open quantum systems

as the a conserved total number of particles; this typically does not apply in open

systems. Even when the physical processes being modeled can not influence the

total number of particles, it may be advantageous to use an open system model

for computational efficiency. If one wishes to model the dynamics of an atom, for

example, there is the possibility of photoionization and dissociation which results

when a control field excites an electron to the point where it has sufficient energy to

escape its localized state about the nucleus. In such a situation, the electron does

not cease to exist, but it may computationally inefficient to model the atom and the

proportionally much larger domain which contains it. The open system approach

allows one to truncate the domain to only the region of interest and incorporate an

interaction between the system and an environment. In the case of photoionization,

a loss mechanism would be included in the model to characterize the escape of the

electron from the influence of the nuclear potential.

Semiconductor quantum wells are formed by the epitaxial growth of two or more

materials with different conduction or valence band energies. Considering electrons,

the structure will consist of a well layer sandwiched between barrier layers with a

larger conduction band energy. An electron may be confined within the well region if

it lacks the necessary energy to move about in the surrounding barrier region, how-

ever, the potential difference is finite, and an excitation may promote the electron to

a higher energy state where it may escape the well. Because such quantum wells typ-

ically have a width on the order of 30-150Å, while the thickness of the semiconductor

wafer is on the order of hundreds of microns, it is not computationally efficient to

model the entire structure, when one is only interested in transitions within the well

region.

There are varied approaches to modeling an open system. Since it is not possible

to completely discretize unbounded domains, typically one models the global system

as a local one interacting with an environment. Although matter is not created
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or destroyed, the total number of particles in the local system is no longer a fixed

constant as they may be lost to the environment by some escape mechanism. As

such open quantum systems exhibit two characteristics which are dissimilar to closed

systems. First, the semigroup operator is not unitary because the continuity equation

will contain sink or source terms which couple the local system to the environment.

Second, open systems no longer have a purely real point spectrum, but in general

have a real continuous spectrum and can also have discrete complex eigenvalues

called resonances.

To model the coupling of the local system to the environment, it is necessary to

introduce a loss mechanism such that ||ψ(·, t)|| is monotonically decreasing in time.

One approach is to truncate the computational domain and impose an absorbing

boundary condition. The fundamental idea is to impose a condition at the boundary

which either gives the exact or approximate behavior that would be exhibited if the

domain were to be extended indefinitely. The method of Jiang [71] accomplishes

this by formulating a convolution integral in time which relates the value of the

wavefunction to its derivative. When the potential is not asymptotically constant

and is varying in time, as is the case of the present work, this approach is does not

appear to be tractable. Instead we employ the method of complex exterior scaling,

which was first introduced by Simon[69]. Subsequently, it was shown that perfectly

matched layers[70] could be implemented based on this idea. The principle is to

deform the spatial coordinates from an interval on the real line to a contour in the

complex plane along which the wavefunction exhibits asymptotic decay. The domain

may then be truncated as outward propagating waves will be absorbed by the PML.

Here we consider as a model problem, a particle confined by the Morse potential.

The Morse potential is a one-dimensional model for, among other things, the poten-

tial energy of a diatomic molecule. Since it is possible dissociate a diatomic molecule

with sufficiently intense fields, it is a finite potential and therefore there exists both
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discrete and continuous spectrum. The discrete spectrum corresponds physically to

a bound state, which means that the diatomic molecule is bound together an will

not dissociate without provocation. The continuous spectrum corresponds to un-

bound states and indicate that the two atoms are no longer bound to one another

although may still influence each other’s behavior, they are free to move apart from

one another in this regime.

The Morse potential has the form

V (x) = V0(1− ea(xeq−x))2, 0 ≤ x <∞

where V0 is the depth of the potential well, x0 is called the equilibrium bond

distance and is the location of the minimum of the potential. The factor a determines

the width of the potential well and also the height at the origin x = 0.
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Figure 4.1: Sample Morse potential for the parameters V0 = 20, a = 1, and x0 = 1.
The red lines indicate the locations of the bound states.

The Morse potential is an interesting example as it is one of the few potentials

for which closed form expressions are known for the eigenfunctions and eigenvalues,

however, these expressions are complicated and are expressed in terms of Laguerre
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polynomials and Gamma functions. Instead of employing the analytical solutions, we

will rely here on high order spectral element methods for approximately computing

eigenpairs.

To form the PMLs with the method of complex exterior scaling, we deform the

spatial coordinate from the real line to a continuous contour C in the complex plane.

The complex-valued spatial coordinate becomes

Figure 4.2: Perfectly matched layer using the method of complex exterior scaling.

z(x) =

 x if 0 < x ≤ xp

x+ (x− xp)eiθ if xp < x < xmax
(4.1)

When using the complex coordinate, z(x) will replace x. The state equation

becomes

i∂tψ(z, t) = {−∂2
z + V (z) + u(t)z}ψ(z, t) (4.2)

In the undeformed region where x ≤ xp, this is exactly identical to the original

state equation, however, inside a PML layer, z → xiθ and ∂z → e−iθ∂x. The state

equation becomes
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i∂tψ(x, t) = {−e−i2θ∂2
x + V (xeiθ) + u(t)xeiθ}ψ(x, t) (4.3)

In general the potential term V (xeiθ) could be a cause for concern for transcenden-

tal V (x), however, the Morse potential rapidly approaches a constant for increasing

x and if the point xp is chosen be sufficiently large that V (x) ≈ V0, the state equation

in the PML reduces to

i∂tψ(x, t) = {−e−i2θ∂2
x + V0 + u(t)xeiθ}ψ(x, t) (4.4)

Since the deformation of the spatial coordinate is continuous, ψ(x, t) will also

be globally continuous, however, discontinuity in dz
dx

at the point xp will lead to a

discontinuity in ∂xψ at this points as well.

Now that we have an open quantum system, there are two sorts of objectives

one may consider for the control problem. In the presence of multiple bound states,

we can again try to compute a control which drives the state of the system between

bound states, with the added difficulty now that as the control amplitude becomes

large, there is the possibility of losing the particle to the environment via tunneling or

field-assisted thermionic emission [76]. In the finite potential case, there are finitely

many bound states which are represented by eigenfunction φ1, ..., φn and the cost

functional for maximizing the probability of finding a particle in a state k would

correspond to minimizing the term −‖Pkψ‖2, where Pk is the orthogonal projection

operator onto the kth eigenstate and its action is defined as

Pkψ(x, t) = φ(x)

∫
Ω

φ̄k(x)ψ(x, t)dΩ (4.5)

where φk(x) is the kth eigenfunction. If the eigenfunctions are bound states, they

may are real functions and φk(x) = φ̄k(x).
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An alternate objective might be to intentionally drive the particles apart by

inducing a transition from a bound state into the continuum. Ideally we would like

to avoid dealing with the complicated nature of the continuous spectrum since the

wavefunctions which satisfy Hψ = λψ where λ > V0 are not elements of L2 and we

will need a more sophisticated framework than that of Hilbert spaces to work with

them.

We do know that if the wavefunction is not localized in the confining potential,

part of it will reach the PML and be attenuated and the total probability ‖ψ(·, t)‖2

will become smaller than unity and since this is an observable quantity, we could

attempt to minimize it. Another reasonable choice is the use the fact that the bound

eigenfunctions span a subspace ΦB = {φ1, ..., φn} and we can define an orthogonal

projection onto ΦB with the operator

PBψ(x, t) =
n∑
k=1

φk(x)

∫
Ω

φ̄k(x)ψ(x, t)dΩ (4.6)

With this operator, we do not need to know the generalized eigenfunctions which

correspond to the continuous spectrum or how to properly normalize them; it suffices

to know that if φc is a such a function, that φc⊥ΦB. Since PB is an orthogonal

projector it follows that I − PB = PB⊥ . Thus if we want to drive the state of the

system into the continuum, that this can be achieved by minimizing the functional

‖PBψ‖2.

4.1 Regularity and discretization

An L2 control regularization term is most commonly used in the literature and al-

though the space L2 admits discontinuous controls, the standard problem formulation

only allows discontinuities at the end times t = 0, T . In a gradient-based optimiza-

tion scheme, the control function at any iteration is in the span of the the initial
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guess of the control and the gradient at each step. It has been proven by Degani

et al[83] that a piecewise constant optimal control is globally constant. This follows

from the fact that a bounded control yields a continuous gradient on the open in-

terval (0, T ). Discontinuities in the optimal control can and usually do occur at the

initial and final times. Their proposed solution is to write the control in a suitable

basis functions. Their motivation for time-discontinuous controls is that they can be

produced by laser pulse shapers. An important consequence of their proof, however,

is that the optimal control in L2 is, in fact a C∞([0, T ]).

Two commonly used methods for integrating the Schrödinger equation in time

are the Crank-Nicolson and Strang splitting methods as used in chapter 2. These are

both second-order accurate in time, but unitary provided the discretized Hamiltonian

is symmetric. These two schemes are, however, not commutative in the sense of

optimal control problems. By this, we mean that the discretized optimality system

is not the same as the optimality conditions of the discretized cost as was observed

for the Crank-Nicolson method in the preceding chapter.

In the current work, we consider arbitrarily high-order time integration via the

DG discretization; this method is detailed in appendix C. It has been shown [85, 86],

that DG time discretization of parabolic equations is indeed commutative in time.

This is convenient in the sense that we can simply discretize the optimality system

with DG in time and continuous Galerkin (CG) methods in space and not incur any

discretization error in the gradient and Hessian.

DG time discretization does not inherently preserve the spatial L2 norm of the

wavefunction as the Crank-Nicolson and Strang-Splitting methods do. A potential

consequence of this can be that an optimal control is computed which reduces the

cost functional in an aphysical way with numerical dissipation. This can be expected

with controls that are either very large or are too rapidly changing in time. It should

be remarked that this is mostly a problem for closed quantum systems which are
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inherently non-dissipative. In the lossy open system case, the loss to the environ-

ment tends to be the dominant mechanism and we generally do not need to worry

about numerical dissipation. For purposes of completeness we nonetheless present

an approach to restricting numerical dissipation.

One possible approach to preventing this behavior would be to carry out a nu-

merical analysis on the DG-discretized Schrödinger equation and establish appro-

priate constraints on the control function such that the state variable reasonably

satisfies conservation of probability. As an alternative, we provide a discretization-

independent strategy of imposing a constraint on the state itself. Ideally, the total

probability should be exactly 1 at all times, but this may be relaxed slightly with

the point-wise time constraint that 1 − ρ ≤ (ψ̄, ψ) ≤ 1 + ρ where ρ is chosen to be

small positive number.

This inequality constraint is introduced approximately by adding a penalty term

to the cost functional. Let

fmin(t) := min(0, (ψ̄, ψ)− 1 + ρ), fmax(t) := max(0, (ψ̄, ψ)− 1− ρ) (4.7)

Including these terms gives the cost functional

J(ψ, ψ̄, u) =

T∫
0

γ

2
u2 + (ψ̄,Aψ) +

c

2
[f 2

min + f 2
max]dt (4.8)

where c is chosen to be large and the formulation of the operator A is discussed in

appendix A.

We wish to minimize this cost functional over all ψ and u subject to the equality

constraint

(∂t + iH(u))ψ(x, t) = 0, ψ(x, 0) = ψ0(x)

The complex conjugate of the state equation must also hold by construction and so

for a real-valued Lagrangian, two Lagrange multipliers are necessary, although they
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are simply conjugates of one another. The Lagrangian is

L(ψ, ψ̄, u, p, p̄) = J(ψ, ψ̄, u) +

T∫
0

(p, (∂t + iH)ψ) + (p̄, (∂t − iH)ψ̄)dt (4.9)

Taking first variations with respect to the state and control and setting the re-

sulting equations to zero gives the first order optimality system. As a point of

comparison, we give here the equation for the Lagrange multiplier and the reduced

gradient for the reduced form J̃(u) = J(ψ(u), ψ̄(u), u) of the original cost functional

A.4 and the new cost A.19. The adjoint equation is

(∂t − iH)p = A∗ψ̄ + c[fmin + fmax]ψ̄, p(x, T ) = 0 (4.10)

and the corresponding reduced gradient is

∇J̃(u) = γu+ 2=[(PϕHuψ̄ −Hup, ψ)] (4.11)

It is interesting to note that although the two formulations produce completely dif-

ferent Lagrange multipliers, given a control u, the reduced gradient will be identical

and as with the cost itself, the reduced gradient is independent of the trajectory

function.

To take second variations, the Wirtinger calculus tells us to compute the Jacobian

of the Hermitian conjugate of the gradient. This gives rise to a Hermitian KKT

Hessian. Writing out the full second-order optimality conditions gives the following

system, where the blocks are specified in appendix B.

Lψψ Lψψ̄ Lψu 0 Lψp̄

Lψ̄ψ Lψ̄ψ̄ Lψ̄u Lψ̄p 0

Luψ Luψ Luu Lup Lup̄

0 Lpψ̄ Lpu 0 0

Lp̄ψ 0 Lp̄u 0 0





δψ

δψ̄

δu

δp

δp̄


= −



0

0

L†u

0

0


(4.12)
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Using the Schur reduction on the second-order optimality conditions, we can ex-

press find governing equations for the variation in state and adjoint variables and

also the action of the reduced Hessian on a test function. The differential change in

the wave function given a differential change in the control δu satisfies and inhomo-

geneous Schrödinger-like equation.

(∂t + iH)δψ = −iHuδuψ, δψ(x, 0) = 0, δψ(∂Ω, t) = 0 (4.13)

Much like the wave function itself, the variation of the wave function is identical

to the one obtained for the standard cost functional. The differential change in the

adjoint variable satisfies the PDE

(∂t − iH)δp = iHuδup+ (A∗ + c[fmax + fmin])δψ̄

+(A∗uδu+ 2c[χmax + χmin]<(ψ, δψ̄))ψ̄

p(x, T ) = 0, p(∂Ω, t) = 0

(4.14)

Where the characteristic functions are defined by

χmax =

 1 if (ψ̄, ψ) > 1 + ρ

0 else
χmin =

 1 if (ψ̄, ψ) < 1− ρ

0 else
(4.15)

The action of the reduced Hessian on a test function δu is most compactly expressed

as

[∇2J̃(u)]δu = γu+ 2<[(iHup−A†uψ̄, δψ) + i(Huψ, δp)] (4.16)

This allows the use of an iterative solver such as a Krylov method to approximately

compute the δu which satisfies the equation [∇2J̃(u)]δu = −∇J̃(u).

For the potential depicted in figure 4.1, an optimal control was computed for the

bound–to–bound and bound–to–continuum transition. Figure 4.1 shows the control

for driving the ground state to the first excited state in time T = 2 in the left panel.

In the right panel, the green curve shows the initial state and the blue the state at
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the final time. The surface of |ψ(x, t)|2 is shown in 4.1 and one may clearly see the

single mode of the ground state being split into the two modes of the excited state.

The problem of computing controls for a bound–to–continuum transition is, in

some sense, much easier than bound–to–bound, since there are infinitely many ac-

ceptable target states. Simply applying a sufficiently intense static field would even-

tually be sufficient to cause the state to leak out of the confining potential. Nonethe-

less, we consider the optimal control problem where we wish to minimize the pro-

jection onto the bound states at the final time and see a suitable control function in

the left panel of figure 4.1 and the corresponding final time behavior of the state in

the right panel. The sharp kink in the blue curve occurs at the PML boundary as

this region is highly lossy. The interface can also be seen clearly as the wavefunction

impinges on the PML at x = 10 in the space-time plot in figure 4.1.
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Figure 4.3: Left: Optimal control function u∗(t) which drives the ground state to the
first excited state. Right: Final time state behavior corresponding to the control.

One observation should be made regarding the use of high-order time discretiza-

tion for the optimal control problem. Although it is possible to capture more high

frequency oscillations with the discontinuous Galerkin schemes than it is with Crank-

Nicolson, there is an unfortunate consequence of high order methods. As the Hessian
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Figure 4.4: Space-time behavior of |ψ(x, t)|2 as it is driven by the optimal control.

of the optimality system is essentially an integro-differential operator, its spectral

radius will tend to be quite large for high-order discretizations. As such, the con-

vergence rate of Krylov methods to compute the Newton search direction will be

greatly diminished. From numerical experiments with DG time discretization, it

usually takes far longer to compute a single Newton step than it does to compute a

suitable minimizer with a NCG method with linesearches.
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Figure 4.5: Left: Optimal control function u∗(t) which drives the ground state to
the continuum. Right: Final time state behavior corresponding to the control.

Figure 4.6: Space-time behavior of |ψ(x, t)|2 as it is driven by the optimal control.
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Control of higher-dimensional

systems

In higher spatial dimensions, generally the control is not simply scalar valued am-

plitude, but is rather some vector valued function. Generalizing the dipole control

problem to the situation x ∈ Rn, the control will be a time–varying vector–valued

function u : [0, T ]→ Rn. This can be written as u(t) = [ u1(t) · · · un(t) ].

{i∂t + ∆− V0(x)− u(t) · x}ψ(x, t) = 0, ψ(x, t) = ψ0(x) (5.1)

A suitable cost functional in this situation is

J(ψ, ψ̄,u) = 1− (ψ̄,Pψ)T +
γ

2

n∑
j=1

‖uj‖2
H1

0
(5.2)

The spatial discretization is carried out by first partitioning the domain into a

simplex mesh and then using a nodal Galerkin approximation on each element.

Figure 5.3 shows the vector control function for driving the first state to the
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Figure 5.1: Simplex mesh for the quantum dot control problem. Grid points are
depicted for cubic trial functions.

second state in time T = 4. The time evolution of the level sets of |ψ(x, y, t)|2 are

plotted in the corresponding right panel.

The parity of the potential imposes some restrictions on the types of controls that

can induce certain state–to–state transitions. For the sample structure shown, the

first, third, and fourth states are all symmetric in the x-direction and the second state

is the only bound state which is anti-symmetric in the x direction. As a consequence,

it is not possible to drive a particle into the second state from any of the other bound

states without a control component in the x-direction. Moreover, one can generalized

this to the following proposition.

Proposition

Supposing a piecewise smooth control, the probability of a particle occupying the

second eigenstate can not be influenced by controls with only a y-component.
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Figure 5.2: The first four bound states of the lens-shaped quantum dot.

Proof. Let |r(t)|2 = |(ψ, φ2)|2 be the probability of finding the particle in second

state φ2 corresponding to eigenvalue λ2 and let ψ(0) have no projection onto φ2.

Then we can write

r(t) = (ψ, φ2)

ṙ(t) = (ψ̇, φ2) = −iλ2r(t)− iu(t)(ψ, yφ2)
(5.3)

If we evaluate r(0), we see that it is zero due to the orthogonality of the initial state

and the target state. Similarly, ṙ(0) = 0 because the first term is zero and in the

second term we have a the product of functions in the integrand are antisymmetric in

x, so the inner product is zero. Each time we differentiate, new terms are introduced
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Figure 5.3: Optimal control from for state 1→ 2 transition
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Figure 5.4: Optimal control from for state 1→ 2 transition

in the inner product, however, in every case, the resulting integrand is antisymmetric

in x and consequently r(k)(0) = 0 for all k. Since all coefficients in the Taylor series

are zero, it must be identically zero.

It is, however, possible to induce a transition from the first state to the second

state using a control which has only an x-component. This is shown in figure 5.4. This

would correspond to a state transition in a quantum dot that is induced by normally

incident light, as the electric field would then be polarized in the x-direction.
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Figure 5.5: Optimal control from for state 1→ 3 transition
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An efficient solver for quantum

control problems

In most of the literature involving numerical solution of the TDSE, various spatial dis-

cretizations ranging from second-order differences to full global spectral expansions

have been used, however, the typically low order methods such as Crank-Nicolson

or Strang splitting are used for the time discretization. This is somewhat counter-

intuitive when one considers the structure of the TDSE. If we simply consider the

evolution equation for a free particle, we have

i∂tψ(x, t) = −∆ψ(x, t) (6.1)

for which the solution on the infinite space-time domain has the form of the complex

exponential

ψ(x, t) ∼ exp(ik · x− iωt) (6.2)

Plugging this ansatz function into the TDSE gives us the relationship ω = k · k

which indicates that the frequency of oscillations in time scales as the square of the

frequency of oscillations in space and that the disparity becomes greater with higher
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spatial dimensions. As a consequence, it is quite reasonable to expect that the for

comparable order discretizations in space and time, a much finer grid will be needed

in time than in space. A very fine time grid in turn means needing a high number of

degrees of freedom for the control function in the optimal control problem and with

it slower convergence. Finally, it has been established [83] that the optimal control

should be a C∞ function. This motivates the use of a global spectral discretization

in time as it is well-known that a spectral discretization will provide an optimal

approximation to a smooth function with the fewest terms.

In the optimal control problem, we are concerned with a more general state equa-

tion than the free particle TDSE above. We are primarily interested in developing

efficient, spectrally-accurate solvers for equations of the form

i∂tψ(x, t) = {−∆ + V0(x) + u(t) · x}ψ(x, t), ψ(x, 0) = ψ0(x) (6.3)

For purposes of simple illustration, however, we consider a single spatial dimen-

sion and zero confining potential. We are interested in pure initial states so ψ0(x) will

be an eigenfunction of the stationary Hamiltonian operator H0 = −∂2
x +V0(x) which

satisfies the relationship H0φj(x) = λjφj(x). In the absence of a control function, the

solution to the TDSE is simply ψ(x, t) ∼ φj(x) exp(−iλjt). For reasons of efficient

Krylov methods to be discussed later, we carry out a change of dependent variable

such that the PDE we solve always has homogeneous initial and boundary conditions.

As a consequence, a forcing term is introduced. Let y = ψ(x, t) − φj(x) exp(−iλjt)

be the deviation between the controlled and uncontrolled solutions with the same

initial and boundary conditions. The PDE for the new variable is then

{i∂ty + ∂2
x − V0(x)− u(t)x}y(x, t) = u(t)xφj(x) exp(−iλjt), y(x, 0) = 0 (6.4)

105



Chapter 6. An efficient solver for quantum control problems

There exist numerous spectral methods which give sparse operators in modal or

nodal bases for special cases, however, since the above TDSE contains an arbitrary

time-dependent function u(t), it is reasonable to expect that any basis will lead to

full matrices.

Since full matrices are unavoidable, we instead consider a discretization with a

mind toward iterative system solvers so that no matrices need ever be explicitly con-

structed, but rather their action on given vectors can be performed rapidly. To solve

the optimality system, typically an enormous number of PDE solves is needed and

if the PDE solver itself is iterative, many matrix–vector products must be computed

and indeed the speed of this operation will dominate the CPU time. Given this fact,

a discretization based on fast transforms is ideal.

6.1 Chebyshev Pseudospectral Discretization

The Fast Fourier Transform (FFT) is, in many respects, the paradigm of a good

numerical method. The operation count scales as O(n log n), parallelizes well, and

it is numerically robust. On a finite non–periodic interval, however, trigonometric

functions no longer provide optimal approximations. Instead, we make use of the re-

lated basis consisting of Chebyshev polynomials of the first kind. These polynomials

are defined by the three-term recurrence

Tk+1(x) = 2xTk(x)− Tk−1(x), T0(x) = 1, T1(x) = x (6.5)

and also the trigonometric formula

Tk(x) = cos
(
k cos−1(x)

)
(6.6)

The space of algebraic polynomials of order n, Pn is spanned by the first n Chebyshev

polynomials as they are linearly independent, therefore every nth order polynomial
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has the modal expansion.

pn(x) ∈ Pn ⇒ pn(x) =
n∑
k=0

p̂kTk(x) (6.7)

Assuming the standard domain x ∈ [−1, 1], we can also define a nodal representation

of pn(x) based on its values at n+ 1 distinct points.

pn(x) =
n∑
j=0

pn(xj)`j(x) (6.8)

In this representation the `j(x) are the Lagrange polynomials which satisfy the condi-

tion `j(xk) = δjk. With appropriate choice of the nodal set {x0, x1, ..., x} it is possible

to construct a bijective mapping between the modal and nodal representations which

can be carried out numerically very quickly. We use the Chebyshev–Gauss–Lobatto

nodes for this set. These nodes are defined as

xj = cos

(
πj

N

)
, j = 0, ..., N (6.9)

and they are the critical points of T ′n(x) plus the end points ±1. The matrix which

transforms between the modal and nodal representations is the Chebyshev Vander-

monde matrix V , where Vjk = Tj(xk) = Tk(xj).

V


p̂0

...

p̂n

 =


pn(x0)

...

pn(xn)

 (6.10)

Unlike the Vandermonde matrix based on monomials at uniform grid points, a

classic example of an ill-conditioned matrix, the Chebyshev Vandermonde matrix is

very well-conditioned. It is never necessary to construct this matrix, however, as

the Fast Chebyshev Transform (FCT), allows conversion between modal and nodal

representations almost as quickly as the FFT on which it is based.
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Let F(ξ) be the FFT and F−1(ξ) be its inverse. Matlab gives very efficient

implementations of these algorithms in the functions fft and ifft respectively. The

FCT from nodal to modal representation is a fast algorithm which is analogous to

multiplication by V −1. Given a vector of nodal values z ∈ Cn+1, the FCT is a the

two–step process

w = F



z0

1
2
z1

...

1
2
zn−1

zn
1
2
zn−1

...

1
2
z1



, ẑ =


w0

...

wn

 (6.11)

The inverse operation (IFCT) is analogous to multiplication by V . Given the set

of Chebyshev expansion coefficients ẑ ∈ Cn+1, the nodal value as obtained from the

two–step process

w = F−1



ẑ0

...

ẑn−1

ẑn

ẑn−1

...

ẑ1


, z =



w0

2w1

...

2wn−1

wn


(6.12)

Both the FCT and IFCT can be performed on a number of vectors simultaneously

with no added difficulty in practice.
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For our model problem of dipole control, the state equation is defined on a tensor

product space–time domain, so we will use global pseudospectral discretizations in

space and time, however, in some applications, the geometry of the structure may

preclude a global expansion in space. Nonetheless, we present the method for con-

structing both first and second order difference operators in the nodal basis, where

the basis functions are the Lagrange polynomials based on the Chebyshev–Gauss–

Lobatto nodes.

Let D̂ be the modal differentiation operator and D be the nodal differentiation

operator. These two operators are similar, and the similarity matrix which relates

them is none other than the Chebyshev Vandermonde matrix T , where Tjk = Tk(xj).

D = TD̂T−1 (6.13)

The elements of the nodal differentiation matrix are the derivatives of the Lagrange

polynomials at each of the grid points

Dij = `′j(xi) (6.14)

The simplest first–order problem to solve is the boundary value problem on the

standard interval [−1, 1]

u′(x) = f(x), u(−1) = 0 (6.15)

Since the boundary condition is at the left endpoint, xn, one uses only the first

n equations to obtain the system
`′0(x0) `′1(x0) · · · `′n−1(x0)

`′0(x1) `′1(x1) · · · `′n−1(x1)
...

...
. . .

...

`′0(xn−1) `′1(xn−1) · · · `′n−1(xn−1)




u(x0)

u(x1)
...

u(xn−1)

 =


f(x0)

f(x1)
...

f(xn−1)

 (6.16)
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with the boundary condition u(xn) = 0. The reduced differentiation matrix can

be denoted as Dr. Unlike the original nodal differentiation matrix D, which was

rank one deficient, due to its null–space of constant–valued functions, the matrix Dr

is nonsingular and moreover, one may obtain an explicit formula for its inverse.

At this point, it should be mentioned that pseudospectral discretizations are

well–studied and has been reported that the spectral radius of differential operators

grows as O(n2) and O(n4) for first- and second–order operators respectively and tend

to have large extremal eigenvalues[89]. For this reason, Krylov solvers for PDEs

discretized with pseudospectral methods can be expected to exhibit extremely poor

convergence behavior in the absence of suitable preconditioning.

The earliest preconditioning strategies involved constructing finite difference ap-

proximations on the same grid and reasonably good results have been reported for

second–order operators, with relatively little literature on first–order operators, see

[89] and references therein.

Another approach based on the modal form of integration operators[88] was intro-

duced by Hesthaven[90]. The idea behind this method is that the modal integration

matrix B̂ is a sort of pseudo–inverse of the modal differentiation matrix D̂, however,

it is rank–deficient, a disastrous property for a preconditioner. Hesthaven addresses

this shortcoming by introducing some parametric modifications to B̂.

The principle of matrix preconditioning is that, when confronted with a problem

Ax = b, one would like to find a matrix M ≈ A−1, such that the the preconditioned

problem MAx = Mb can be solved more rapidly with an iterative solver. In the

case of Krylov solvers, the property that is sought is that MA has a clustered spec-

trum and, ideally, is as close to the identity as possible. To this end, we will use

preconditioning matrices which are the exact inverses of the first- and second–order

pseudospectral differentiation matrices with Dirichlet boundary conditions.
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To do so, first we decompose the modal differentiation matrix into the block

representation

D̂ =

 0 D̂r

0 0

 , D̂r =



1 0 3 0 5 0 · · ·

0 4 0 8 0 12

0 0 6 0 10 0

0 0 0 8 0 12

0 0 0 0 10 0

0 0 0 0 0 12
...

. . .


(6.17)

The matrix D̂ has a known inverse as it is obtained from the recurrence relation for

Chebyshev polynomials. Loosely following the notation of Coutsias, et al [88], the

matrix B̂r = D̂−1
r is a banded integration–type operator.

[B̂r]jk = [D̂−1
r ]jk =



1 if k = j = 1

1
2j

if k = j, j > 1

− 1
2j

if k = j + 2

0 otherwise

(6.18)

We can write out the reduced differentiation operator as the product

Dr = TaD̂rT
−1
b (6.19)

where the matrices Ta and T−1
b are n× n blocks of T and T−1 respectively.

T =

 Ta ∗

∗ ∗

 , PT−1 =

 T−1
b ∗

∗ ∗

 , P =

 0 I

1 0

 (6.20)

Where P is a permutation matrix that performs a shift. The Sherman–Morrison–

Woodbury (SMW) formula allows one to compute T−1
a and Tb based on knowledge
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of T and T−1. In general, supposing we have a block matrix M ∈ Rn×n of the form

M =

 A B

C D

 , A ∈ Rm×m, D ∈ Rp×p (6.21)

where n = m+ p, the block matrix may be split in the following way

M =

 A O

O D

+ UV, U =

 B O

O I

 , V =

 O I

C O

 (6.22)

With this choice of slipping, U ∈ Rn×2p and V ∈ R2p×n. Let the block–diagonal part

of of M be called Md so that M = Md + UV . Now we wish develop a formula for

M−1
d based on knowledge of how to apply M−1 to given vectors. The SMW formula

gives the inverse of Md as

M−1
d = M−1 +M−1U(I − VM−1U)−1VM−1 (6.23)

The SMW requires solving a reduced 2 × 2 system for the rank–2 correction.

The matrix which appears both in computing T−1
a and Tb is nonsingular and has a

determinant of 1
2n

.

Given that the reduced differentiation operator isDr = TaD̂rT
−1
b , its exact inverse

is

Br = D−1
r = (TaD̂rT

−1
b )−1 = TbB̂rT

−1
a (6.24)

In the case where M = T and n + 1 CGL points are used, we are trying to

obtain a formula for the action of T−1
a and we can obtain explicit forms of the terms

appearing in the SMW formula.
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T−1U =
1

2n



−(−1)n 1

2(−1)n −2

−2(−1)n 2

2(−1)n −2
...

...

2n− 1 (−1)n


, V T−1 =

 0 1

1 0

U>T−1 (6.25)

(I − V T−1U)−1 =

 1 (−1)n

(−1)n(1− 2n) 1

 (6.26)

To apply T−1
a to a vector x ∈ Cn, we append a zero element to the end to get

a vector in Cn+1, then apply the SMW formula for M−1
d and extract the first n

elements. The end result is T−1
a x.

Matters are slightly more complicated in determining the action of Tb since T−1
b is

not a diagonal block in T−1, but this is remedied via multiplication with a permuta-

tion matrix. Following the generic block labeling from above, we have a block matrix

decomposition PM = Md + UV , so the SMW formula for M−1
d in this situation is

M−1
d = M−1P> −M−1P>U(I − VM−1P>U)−1VM−1P> (6.27)

To determine the action of Tb, we have that M = T−1, and the terms appearing in

the analogous SMW formula again have explicit forms

TP>U =



−1
2n

1

−1
2n

1
...

...

−1
2n

1

2n−1
2n

1


, (V T )> =



1 2n−1
2n

−1 1
2n

1 −1
2n

−1 1
2n

...
...


(6.28)
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(I − V TP>U)−1 =

 1 2n

1−2n
2n

1

 (6.29)

We now have an exact formula for the inverse of the first derivative operator

with a homogeneous Dirichlet condition at the left boundary. The boundary value

problem can be solved using only matrix multiplication as u = Brf and no numerical

inversion of a matrix is needed. The solution requires one call each to FCT and IFCT

and a few sparse matrix multiplications.

Now we consider the second–order problem

u′′(x) = f(x), u(±1) = 0 (6.30)

and discretize again using the Chebyshev pseudospectral method. Writing out the

discretized system explicitly, we have


`′′1(x1) `′′2(x1) · · · `′′n−1(x1)

`′′1(x2) `′′2(x2) · · · `′′n−1(x2)
...

...
. . .

...

`′′1(xn−1) `′2(xn−1) · · · `′′n−1(xn−1)




u(x1)

u(x2)
...

u(xn−1)

 =


f(x1)

f(x2)
...

f(xn−1)

 (6.31)

with the boundary conditions u(x0) = u(xn) = 0. The full second–order pseudospec-

tral differentiation matrix is D2 = TD̂2T−1 and we aim to find expressions for the

interior (n − 1) × (n − 1), which we will denote as D
(2)
r and its inverse B

(2)
r . The

superscript in parenthesis is intended to distinguish these matrices from the square

of Dr and Br respectively. As before, we can express the reduced matrix as

D(2)
r = TaD̂

(2)
r T−1

b (6.32)

where the Ta, T
−1
b ∈ R(n−1)×(n−1) are different from the first–order case and are
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related to T and T−1 in the following way

T =


∗ ∗ ∗

Ta ∗ ∗

∗ ∗ ∗

 , T−1 =


∗ ∗ ∗

∗ ∗ ∗

∗ T−1
b ∗

 (6.33)

The matrix D̂
(2)
r is the upper right block of the matrix D̂2.

D̂2 = D̂D̂ =


0 0 D̂

(2)
r

0 0 0

0 0 0

 (6.34)

The block D̂
(2)
r has the exact inverse B̂

(2)
r for which the elements are

[B̂(2)
r ]jk =



1
4

if j = k = 1

1
4j(j+1)

if j = k 6= 1

1
2−2(j+1)2

if k = j + 2

1
4(j+1)(j+2)

if k = j + 4

0 otherwise

(6.35)

The exact inverse of D
(2)
r = TaD̂

(2)
r T−1

b is B
(2)
r = TbB̂

(2)
r T−1

a . As before, the SMW

formula allows one to determine the action of T−1
a and Tb in terms of T−1 and T with

help of the permutation matrix P . To obtain the desired diagonal block form, the

following permutations are used

PT =


Ta ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 , T−1P =


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ T−1
b

 (6.36)

To obtain the formula for The SMW formula for the inverse of the block diagonal

part is

M−1
d = T−1P−1 + T−1P−1U(I − V T−1P−1U)−1V T−1P−1 (6.37)
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For both computing T−1
a and Tb, we must solve a reduced 4×4 system. The matrix to

be inverted in both cases is guaranteed to be nonsingular and, in fact, its determinant

is 2
n2 . As before, constituent matrices can be written in exact form.

T−1P−1U =
1

n



(−1)n−1
2

−(1+(−1)n)
2

1
2

1
2

−2 0 −1 1

0 −2 1 1

−2 0 −1 1
...

...
...

...

n− 2 0 (−1)n−1 1

0 n− 1 (−1)n

2
1
2


(6.38)

(I − V T−1P−1U)−1 =


1 0 −(−1)n

2
1
2

0 1 (−1)n

2
1
2

(−1)n(n−2)
2

(−1)n(1− n) 1 0

2−n
2

1− n 0 1

 (6.39)

Unfortunately, we do not have a clean and simple expression for the 4× (n + 1)

matrix V T−1P−1 since it contains sums of cosine terms. Nonetheless, the matrix can

be numerically computed quickly by taking the FCT of the V matrix and permuting

the result column–wise.

The block T−1
b appears as the lower right block in T−1, so we modify the block

decomposition as follows

M =

 A B

C D

 =

 A 0

0 D

+

 I 0

0 C

 0 B

I 0

 (6.40)

which we denote as M = Md + UV again and if M = T−1P , then the D block is

T−1
b . To compute the inverse of this matrix Tb, we use the SMW formula to get

M−1
d = P>T + P>TU(I − V P>TU)−1V P>T (6.41)
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and extract the lower right block of size (n− 1)× (n− 1). We have explicit formulas

for the V P>T and (I − V P>TU)−1 matrices, but as with computing T−1
a , one of

the terms, P>TU , defies a concise representation due to sums of cosines. It can,

however, be quickly computed with the IFCT. The known terms are

(V P>T )> =



n−1
n

0 1 1

0 n−2
n
−1 1

−1
n

0 1 1

0 −2
n
−1 1

−1
n

0 1 1
...

...
...

...


(6.42)

(I − V P>TU)−1 =


1 0 1−n

2n
1−n
2n

0 1 n−2
2n

2−n
2n

n −n
2

1 0

n n
2

0 1

 (6.43)

6.2 Discretizing the TDSE and preconditioning

The pseudospectral method of the preceding section can now be applied to a dis-

cretizing the modified TDSE in equation 6.4. Discretizing in space and time on an

(nx + 1)× nt rectangular grid, one obtains the system

(iD(1)
r ⊗ I + I ⊗D(2)

r − V )y = vec(Fr) (6.44)

where y ∈ C(nx−1)(nt) is the column–stacked solution to the initial boundary value

problem on the interior grid points x1, ..., xnx−1 and t0, ..., tnt−1, I is the identity
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matrix of the appropriate size, V is a diagonal matrix containing the nodal values of

the stationary potential function V0(x, t) plus the dipole control u(t)x on the interior

points, Fr ∈ C(nx−1)×(nt−1) is the forcing function on the interior points, and D
(1)
r and

D
(2)
r are the pseudospectral discretizations of the first and second derivative operators

with row elimination corresponding to the homogeneous Dirichlet conditions.

We do not have an explicit formula for the two–dimensional operator appearing

in the left–hand–side of 6.44, nonetheless, we can make a sensible choice for a pre-

conditioner by, in a sense, integrating the system once in time and twice in space.

This is carried out by multiplying from the left with the operator B
(1)
r ⊗ B(2)

r . The

preconditioned system is

(iI ⊗B(2)
r +B(1)

r ⊗ I − [B(1)
r ⊗B(2)

r ]V0)y = vec(B(2)
r Fr[B

(1)
r ]>) (6.45)

While B
(1)
r ⊗ B

(2)
r is certainly not the optimal preconditioner as it is not the

inverse of the original matrix, we can expect favorable convergence behavior with

Krylov methods due to the more clustered spectrum. As an example, consider the

case where V = 0, nt = 60, and nx = 20. The eigenvalues of the original matrix,

iD
(1)
r ⊗ I+ I⊗D(2)

r , and the preconditioned matrix iI⊗B(2)
r +B

(1)
r ⊗ I are compared

in figure 6.2. The distribution of eigenvalues is mostly clustered along the real axis

without preconditioning as the second–order derivative matrix dominates the behav-

ior of the spectrum. In contrast, the preconditioned matrix exhibits more clustering

about the imaginary axis owing to the fact that the first–order integral is dominat-

ing the eigenvalue distribution. The preconditioned matrix shows better eigenvalue

clustering overall and this gives good reason to expect improved convergence with a

Krylov solver.

A better preconditioner for the space–time operator can be obtained by combining

spectral integration preconditioning in time and finite difference preconditioning in
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Figure 6.1: Left: σ(D
(1)
r ⊗ I + I ⊗D(2)

r ) for nx = 20, nt = 60.

Right: σ(iI ⊗B(2)
r +B

(1)
r ⊗ I) for nx = 20, nt = 60.

space. We begin by writing the operator in derivative form with a swapped (t, x)

ordering. The r subscript is dropped as it is implicit and instead we specify t or x

depending on which dimension the matrix operates.

(iIx ⊗D(1)
t +D(2)⊗It

x − V )y = vec(Fr) (6.46)

Now we precondition the system in time by multiplying through by Ix ⊗B(1)
t

(iIx ⊗ It +D(2)
x ⊗B

(1)
t − (Ix ⊗B(1)

t )V )y = vec(B
(1)
t Fr) (6.47)

The pseudospectral second derivative matrix D
(2)
x is approximated by a second–order

finite difference matrix D̃
(2)
x on the same CGL grid as described in [89]. The space–

time precondition matrix is then the block tridiagonal matrix

M = iIx ⊗ It + D̃(2)
x ⊗B

(1)
t

The potential term (Ix ⊗ B(1)
t )V can be safely neglected when forming the precon-

ditioner since it is lower order in space and time than the other part of the solution

operator. The preconditioner M can be used repeatedly for solving the modified
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Schrödinger equation as is needed for solving the optimal control problem. We can

further economize on speed by storing the LU factors of the preconditioner to a data

file to be used by a Krylov solver. The computational cost of solving systems with

the LU factors scales linearly with the number of spatial grid points and quadrati-

cally with the number of time grid points. With a sparse banded representation of

the operator B
(1)
r it should be possible to reduce the costs to scaling linearly with

the number of time grid points as well.

6.3 Numerical Results

Let the model problem be the dipole–driven square well on the domain (x, t) ∈

[0, 2]× [0, 2]. The sample control is the sinusoidal amplitude u(t) = 2 sin(3πt). Using

a pseudospectral discretization with nx+1 spatial grid points in space and nt+1 grid

points in time, aim to solve the modified TDSE 6.4 with three different approaches:

without preconditioning (none), with space–time integration preconditioning (B),

and with the hybrid preconditioning of finite–differences in space and integration in

time (hybrid). First we compare the condition number of the matrix approximation

to the solution as a function of nt and nx.

nt nx none B hybrid
10 10 7.6× 102 1.4× 102 1.1× 101

10 30 5.6× 104 1.4× 102 1.2× 101

10 50 4.3× 105 1.3× 102 1.2× 101

30 10 1.2× 103 1.3× 103 6.4× 101

30 30 6.0× 104 1.3× 103 1.3× 101

30 50 4.6× 105 1.3× 103 1.5× 101

50 10 2.3× 103 4.3× 103 7.2× 102

50 30 6.0× 104 4.3× 103 1.9× 101

50 50 4.6× 105 4.3× 103 2.2× 101

Table 6.1: Condition number of the matrix approximation to the solution operator.
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To compare performance of the three methods, we a approximately solve the

discretized equations using the GMRES method without restarting and record how

many iterations are required to reduce the residual to below 10−5.

nt nx none B hybrid
10 10 65 46 9
10 30 199 46 8
10 50 332 46 8
30 10 182 125 16
30 30 546 130 6
30 50 913 130 6
50 10 266 136 27
50 30 771 140 6
50 50 1289 140 6

Table 6.2: Number of GMRES iterations needed to reduce the residual to below
10−5.

The argument in favor of high–order methods in time and relatively low–order

methods in space is supported by plotting the relative magnitude of the space–time

Chebyshev expansion coefficients of a typical wavefunction controlled with sinusoidal

dipole potential.

Figure 6.3 demonstrates the typical behavior of numerous test cases. The expan-

sion coefficients in the spatial dimension decay very rapidly and only a few Chebyshev

polynomials in space are needed to accurately approximate the true wavefunction,

however, the expansion coefficients decay much more slowly in the temporal dimen-

sion, owing to the highly oscillatory behavior of the wavefunction in time. The initial

data is the ground state in a square quantum well.
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Figure 6.2: Normalized Chebyshev expansion coefficients of a time–harmonic dipole–
driven wavefunction.

6.4 A sparse spectral time discretization

This discretization and preconditioning strategy of the preceding sections is clearly

well–suited to resolving the highly oscillatory behavior in time and keeping the num-

ber of Krylov iterations needed to approximately solve the system quite modest.

Additionally, the solution operator can be applied rapidly via FCTs. The one draw-

back to discretization is that while the time needed to solve systems with the pre-

conditioner scales linearly with respect to the order in spatial discretization, it scales

quadratically with the order of the time discretization because the B
(
r1) matrix is

full.
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Ideally, a discretization would have a sparse banded preconditioner M so that the

cost of solving systems of the form Mx = b scales linearly with the order in space

and time. To that end, we finally suggest a modal Chebyshev Petrov–Galerkin basis

in time such that the temporal mass and stiffness matrices have minimal bandwidth.

The trial functions φk(t) should have a convenient representation in terms of Cheby-

shev polynomials and they must satisfy the homogeneous Dirichlet condition at the

initial time, i.e. φk(−1). Conversely, test functions ϕj(t) are desired to span a dual

space and satisfy a similar boundary condition at the final time, ϕj(+1) = 0. Such

a basis has been recently suggested by Shen and Wang [92].

φk(t) = ck(1− t)Tk(t)

ϕk(t) = ck(1 + t)Tk(t)
ck =

 1
2
√

2
if k = 0

1
2

if k ≥ 1
(6.48)

With the standard Chebyshev–weighted inner–product (u, v)w =
1∫
−1

u(t)v(t)(1 −

t2)−1/2dt, these trial and test functions give rise to a tridiagonal stiffness matrix

and pentadiagonal mass matrix.

(ϕj, φk)w =



1
2

if j = k 6= 1

1
4

if j = k = 1

−1
2
√

2
if j = 2, k = 0

−1
2
√

2
if j = 0, k = 2

−1
4

if j ≥ 1, k = j ± 2

0 else

(6.49)
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(ϕj, φ̇k)w =



1 if j = k

−1
2
√

2
if j = 1, k = 0

j
2

if k = j + 1

−j
2

if j ≥ 2, k = j − 1

0 else

(6.50)

If we choose the Chebyshev–Gauss points tk = cos( (2k+1)π
2(n+1)

) for k = 0..n in time,

then the discrete cosine transform can be used to transform between nodal and modal

representation. This can be carried out quickly via the Matlab functions dct and

idct for example.

124



Chapter 7

Current and future work

The ongoing and continuing work consists of two areas of focus: improving com-

putational method for quantum control problems and tackling more complicated

problems involving multiple particles and spin.

The challenge of designing faster algorithms for solving the quantum optimality

system, as mentioned in the introduction, is two-fold. PDE–constrained optimization

requires solving a very large number of PDEs to evaluate the cost at various points

in the search space and also to compute gradients and Newton search directions. To

reduce the computational time, one must either develop faster PDE solvers, make

better use of the information from each PDE solve, or ideally both.

The space–time spectral discretization of the TDSE discussed in chapter 6 relies

on the application of spectral approximations of differential and integral operations

through the use of Fast Fourier Transforms. The total number of transformations

between the nodal and modal representations could be reduced be applying the

matrices to blocks of vectors in parallel. This could be exploited by replacing the

standard Krylov solver with a block Krylov solver.
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In particular the Block GMRES algorithm[93, 94] is an attractive candidate for

solving the state equation as sets of Arnoldi vectors are added to the Krylov space

simultaneously and it is possible to choose an intelligent set of seed vectors to start

the algorithm. The nature of PDE–constrained optimization is such that we must

solve the state equation many times and often with input controls that are only

slightly perturbed from earlier iterations. This means one could store information

about the the state variable during the optimization process and use old solutions

to make guesses of new solutions. This could be a significant cost–saving measure

when performing a line–search.

Suppose that we have computed a search direction v and wish to find a step

length α which satisfies appropriate criteria, such as the Wolfe–Powell conditions.

To find the α, we must repeatedly solve a PDE of the form

{i∂t + ∂2
x − V0(x)− [u(t) + αv(t)]}ψ(x, t) = 0, ψ(x, 0) = ψ0(x) (7.1)

For small changes in α, we can expect small changes in ψ, which means if we take

a series of steps α = α0, α1, α2, ... and compute corresponding solutions ψ0, ψ1, ψ2, ...,

selected Arnoldi vectors used to compute the solutions could be recycled to decrease

the number of GMRES iterations needed to compute subsequent ψ.

Another approach would be to view the linesearch problem as a case of solving a

multiple shift system

(A+ αkB)x = b

for a number of values of αk. The structure of the quantum control problem is

attractive because the shift factor occurs in the lowest order term of the operator

A + αB in the sense that A contains all the derivative terms and B contains only

a variable coefficient. The solution of multiple shifted systems with Block–GMRES

is discussed in the general sense [94], but has also been used in applications such as

the solution of multiple Helmholtz equations of differing frequencies [95].

126



Chapter 7. Current and future work

Newton’s method for PDE–constrained optimization usually relies on a Krylov

solver which applies the Hessian to a sequence of vector iterates. As seen in chapter

3, application of the Hessian requires the solution of a state and adjoint equation

for each iterate. If the state equation is itself solved iteratively, then nested Krylov

methods are needed. In this situation is makes considerably more sense to use block

method for both the inner and outer loop to decrease computational work.

While we have demonstrated fast and efficient methods for a single particle,

many practical problems of interest involve multiple particles. Of particular interest

is controlling the state of a collection of fermions confined to a quantum well. The

idea follows from that of the control of a single particle in a straightforward way,

however, the dimensionality of the multiparticle system leads to many more degrees

of freedom even in a single spatial dimension.

For example, in one spatial dimension with N particles, ψ(x, t) denotes the multi-

electron wavefunction as a short-hand for ψ(x1, . . . , xN , t) and the Laplace operator

is ∆ = ∂2
x1

+ · · · ∂2
xN

. The time-dependent Schrödinger equation for N particles with

Coulomb interaction and dipole control field is then

i∂tψ(x, t) =

{
−∆ +

N∑
j=1

(
u(t)xj +

N∑
k 6=j

q

|xj − xk|

)}
ψ(x, t)

where q is the charge carried by an electron. The obvious question is how to devise

a formulation for an optimal control problem which is still tractable in the case of

multiple particles. One point to exploit is that using nodal discretizations of the

Hamiltonian, although the size of the matrix grows tremendously with number of

particles, the multi-particle Laplacian becomes progressively more diagonally domi-

nant. An investigation is needed to develop fast algorithms in particular for problems

with only a few particles, where approximations for many particle systems such as

Hartree Fock and multi-configurational methods may be very inaccurate, but the

dimensionality of the full problem is already unwieldy.
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Finally, spintronics holds great potential for significantly faster devices since only

the spin state of a particle is altered and it is not required to physically move a

charge. Incorporating spin effects leads to the Pauli equation

i~ψ̇ =

{
1

2m
(σ · (p− qA))2 + qφ

}
where m and q are the mass and charge of the particle, σ is the spin tensor, p is the

momentum operator, A is the magnetic vector potential, and φ is the electric scalar

potential. The wavefunction itself now takes values in C2.

From a control standpoint, time-dependent electric and magnetic fields are the

way in which the state of the system is altered, so some combination of A and

φ would be control functions, giving rise again to a multilinear control problem. A

particular problem of interest here would be that of computing a time-optimal control

for switching the spin state of a particle as this is fundamentally what is needed for

a single bit of memory. Then, continuing to interpret the spin of particles as logic

states, we will need to find control functions for switching simple logic devices either

quickly or with constraints on the amount of energy spent.
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Conclusions

The control of physical systems at the quantum scale is a challenging problem due

to its nonlinear structure, but holds much promise for the development of future

technologies. The computational cost of computing an optimal control tends to

become quite large due to the fact that the many PDE solves are needed to evaluate

the cost functional or solve first– and second–order optimality equations.

We observed that choice of function space for the control can have a significant

impact on the convergence of NCG and BFGS methods, that these methods could

be modified to utilize the corresponding inner products, and that convergence could

be expedited further by using cascadic implementations.

The first true Newton method applied to quantum optimal control was intro-

duced as well. It was illustrated that because the cost functional is not an analytic

function of the quantum mechanical wavefunction, difficulties in deriving the sec-

ond order optimality conditions can arise and one must either employ a real vari-

able formulation, or the Wirtinger calculus. It was shown that the approaches of

optimize–before–discretize and discretize–before–optimize can produce differing re-

sults and that a modification of the Crank–Nicolson method will restore unitarity
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for time–dependent potentials. A robust line–search method was presented based

on the underlying physics which guarantees that a point satisfying the strong Wolfe

conditions will always be found. It was also proven that the quantum cost functional

can not be made convex through regularization on the control terms via a parity

argument, thereby justifying the need for linesearches to globalize Newton’s method.

The optimal control framework was applied to the problem of inducing state–

to–state transitions in open quantum systems and higher dimensional problems. In

the case of the open system, perfectly matched layers were introduced to simulate

loss to the environment and inequality state constraints were imposed to restrict the

probability of particle loss. A semi–smooth Newton method was derived based on

the state constraints. An optimal control for the excitation of a particle in a two–

dimensional quantum dot from the ground state was computed for both scalar– and

vector–valued control fields.

Spectral discretizations of the TDSE in both space and time were proposed on

account of the highly oscillatory behavior of the wavefunction in time and the extreme

smoothness of the optimal control. Preconditioning strategies were given for fast

solution of the state equation with Krylov methods.

It was demonstrated that the standard final–time cost is actually equivalent to a

whole family of time–distributed costs. While these two formulations are identical in

principle, time–distributed costs may have interesting implications for the numerical

solution of optimality equations as it introduces new degrees of freedom into the

problem.

Finally directions of future work for further reducing the computational cost of

solving quantum optimal control problems through the use of block Krylov methods

and changes of dependent variable were proposed. Extension of the optimal control

framework to multiple particle systems and spin systems was proposed.
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Appendix A

An equivalent time-distributed

cost

Optimal control of quantum dynamics using the method of Lagrange multipliers

has been the subject of increasing interest over the last twenty years, beginning

with the landmark paper of Peirce, Dahleh, and Rabitz[32]. In their paper, the

authors formulate an cost functional based on the discrepancy between the quantum

mechanical wavefunction ψ onto a target state at a final time T . The form of the cost

originally followed the approach of optimal control of the heat equation in that the

absolute difference of the state variable and target at the final time was penalized.

J(ψ, u) =
1

2

∫
Ω

‖ψ(x, T )− ψf (x)|2dΩ +
γ

2
‖u‖2 (A.1)

where Ω is the spatial domain and ψf : Ω → C is some target state. This is a

computationally nice cost functional, however, it does exhibit the physically unde-

sirable feature of phase dependence. That is to say, assuming the normalization

‖ψ(·, t)‖Ω = 1 for all time t ∈ [0, T ] and ‖ψf‖Ω = 1, the cost functional can take any

value between 0 and 1 due to only a shift in the absolute phase of ψ, which is not a

physically observable quantity.
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An alternate cost functional was proposed [82] which makes use of a projection

operator. In quantum mechanics all observable quantities have an associated oper-

ator. The probability of finding a particle whose dynamics is represented by ψ in a

target state ϕ is given by the magnitude squared of the projection onto the target.

Let the projection operator P be defined as

Pψ(x, t) = ψf (x)

∫
Ω

ψ̄f (x)ψ(x, t)dΩ (A.2)

where ϕ̄ denotes the complex conjugate of ϕ. The cost functional which uses this

projector is

J(ψ, u) =
1

2
(1− ‖Pψ(·, T )‖2) +

γ

2
‖u‖2 (A.3)

For the remainder of this work, we refer to this as the standard cost functional owing

to its ubiquity in the literature.

The cost functional as written in the preceding section and in the existing litera-

ture is a function of the quantum wave function and the control function. Since the

wave function is complex-valued and the cost is real, J can not be an holomorphic

function of ψ and indeed depends on its complex conjugate ψ̄ as well. As such the

cost in not differentiable in the usual sense and there are two basic approaches to

taking variations. One option is write a real-variable formulation where the cost

is differentiated with respect to real and imaginary parts of the the wave function

separately[84]. The alternate approach employs the Wirtinger calculus[74], which

allows one to construct linear operators which extract the real or imaginary parts

of complex quantities or perform complex conjugation. This idea was first used by

Brandwood[72] to define a complex gradient of a cost and similarly the Hessian of

an unconstrained problem was introduced subsequently by van den Bos[73]. More

recently, a detailed exposition of the Wirtinger calculus was written by [78]. The

present work extends the Wirtinger calculus formulation to the constrained optimiza-

tion problem of quantum optimal control. Additional discussion of the Wirtinger
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calculus can be found in appendix D.

The key idea of the method is that by converting a final time cost to an equivalent

time-distributed cost. We begin with the standard cost functional

J(ψ, ψ̄, u) = 1− (ψ̄,Pψ)T +
γ

2

T∫
0

u2dt (A.4)

Proposition

There exists a linear operator A : Q → Q, such that the cost functional of (A.4)

may be equivalently written as

J(ψ, ψ̄, u) =

T∫
0

γ

2
u2 + (ψ̄,Aψ)dt (A.5)

Proof. Suppose that instead of P projecting a solution onto a time-independent final

target state ψ̂(x), that we were to choose a space-time trajectory ϕ(x, t) which has

the properties that ϕ(x, 0) = ψ0(x) and ϕ(x, T ) = ψf (x). For convenience, assume

that ϕ : Q → R, although the approach could be generalized to complex-valued

trajectories. Let the projection onto this trajectory be defined as

Pϕψ(x, t) = (ϕ, ψ)ϕ(x, t) (A.6)

In this case, we have that (ψ̄,Pϕψ)0 = 1 and (ψ̄,Pϕψ)T = (ψ̄,Pψ)T . By the Funda-

mental Theorem of Calculus, we have that

(ψ̄,Pϕψ)0 − (ψ̄,Pϕψ)T = −
T∫

0

d

dt
(ψ̄,Pϕψ)dt (A.7)
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The Ehrenfest theorem relates the time derivative of the expectation of an operator

to its commutation relation with the Hamiltonian.

d

dt
(ψ̄,Pϕψ) = i(ψ̄, [H,Pϕ]ψ) + (ψ̄, Ṗϕψ) (A.8)

Where the notation means

[H,Pϕ]ψ = HPϕψ − PϕHψ, Ṗϕψ = (ϕ̇, ψ)ϕ(x, t) + (ϕ, ψ)ϕ̇(x, t) (A.9)

Therefore, the operator may be formally defined as

A = i[Pϕ,H]− Ṗϕ (A.10)

For purposes of deriving optimality conditions, we also need the adjoint of this op-

erator. It is easy to see that the adjoint is A∗ = i[H,Pϕ]− Ṗϕ.

Proposition

The L1-norm of the control establishes an upper bound of the projection of the

solution onto a target state. Considering a time-dependent Hamiltonian of the form

H = H0 + u(t)v(x), with an initial eigenstate ψ0(x) The probability of finding the

particle in the target eigenstate ϕ(x) at the final time is bounded by the estimate

(ψ̄,Pψ)T ≤ 2‖u‖1|v|∞ (A.11)

Proof. Let the target state ϕ be and eigenfunction of H0 with eigenvalue λ. The

probability of finding the particle in state ϕ at a time T is

(ψ̄,Pψ)T = (ψ̄,Pψ)0 +

T∫
0

d

dt
(ψ̄,Pψ)dt (A.12)
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Appendix A. An equivalent time-distributed cost

The term (ψ̄,Pψ)0 is zero because ψ(x, 0) = ψ0(x) which is orthogonal to ϕ by virtue

of the fact that H0 = H∗0. The Ehrenfest theorem states that

d

dt
(ψ̄,Pψ) = i(ψ̄, [H,P ]ψ) + (ψ̄, Ṗψ) (A.13)

In this case (ψ̄, Ṗψ) = 0 because ϕ(x) is time-independent. Expanding the remaining

term gives

i(ψ̄, [H,P ]ψ) = i(ψ̄, (λ+ uv)ϕ)(ϕ, ψ)− i(ψ, (λ+ uv)ϕ)(ϕ, ψ̄) (A.14)

Note that this can be expressed as 2=[(ψ, (λ+ uv)ϕ)(ϕ, ψ̄)].

d

dt
(ψ̄,Pψ) = 2=[λ(ψ, ϕ)(ϕ, ψ̄)] + 2u(t)=[(ψ, vϕ)(ϕ, ψ̄)] (A.15)

The term (ψ, ϕ)(ϕ, ψ̄) = |(ψ, ϕ)| is purely real, so this vanishes leaving

d

dt
(ψ̄,Pψ) = 2u(t)=[(ψ, vϕ)(ϕ, ψ̄)] (A.16)

Taking absolute values∣∣∣∣ ddt(ψ̄,Pψ)

∣∣∣∣ ≤ 2|u(t)| · |(ψ, vϕ)(ϕ, ψ̄)| ≤ 2|u(t)| · |(ψ, vϕ)| ≤ 2|u(t)| · |v|∞ (A.17)

Finally

(ψ̄,Pψ)T =
∣∣(ψ̄,Pψ)T

∣∣ ≤ 2

T∫
0

|u(t)| · |v|∞dt = 2‖u‖1|v|∞ (A.18)

An L2 control regularization is added.

J(ψ, ψ̄, u) =

T∫
0

γ

2
u2 + (ψ̄,Aψ)dt (A.19)
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Hessian blocks for time-distributed

cost

In this appendix, we give the blocks of the KKT Hessian in the weak form which

arise from taking second variations.

〈δψ̄1, Lψψδψ
2〉 = −〈δψ̄1,Aδψ2〉 (B.1)

〈δψ̄1, Lψuδu
2〉 = −〈δψ̄1, (Auψ + iHup̄)δu

2〉 (B.2)

〈δψ̄1, Lψp̄δp̄
2〉 = −〈δψ̄1, (∂t + iH)δp̄2〉 (B.3)

〈δu1, Lψuδψ
2〉 =

T∫
0

δu1[i(p,Huδψ)− (ψ̄,Auδψ)]dt (B.4)

〈δu1, Luuδu
2〉 =

T∫
0

δu1[γδu2 − (ψ̄,A†uuψ) + i(p,Huuψ)− i(p̄,Huuψ̄)]dt (B.5)

〈δu1, Lupδp
2〉 = i

T∫
0

(δp,Huψ)dt (B.6)

〈δp1, Lp̄ψδψ
2〉 = 〈δp1, (∂t + iH)δψ2〉 (B.7)
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Appendix B. Hessian blocks for time-distributed cost

〈δp1, Lp̄uδu
2〉 = i〈δp1,Huψδu

2〉 (B.8)

All other blocks of the KKT Hessian are either complex conjugates of given blocks

or are identically zero.
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Appendix C

DG time discretization

A nodal discontinuous Galerkin scheme[80] is used for the time discretization. On

each time element, the solution is expanded in the Lagrange polynomials based on

the Legendre-Gauss nodes. These points are chosen an they diagonalize the temporal

mass matrix and give optimal order of integration.

The method is described here using only an ordinary differential equation with

variable to illustrate the concept, but generalizes to the system of ODEs produced

by discretizing the Schrödinger equation in space.

ẏ(t) + a(t)y = f(t), y(0) = y0, t ∈ [0, 1] (C.1)

We choose the Lagrange interpolating polynomials `1(t), ..., `n(t) which are based on

the Legendre-Gauss nodes as test and trial functions. The approximate solution to

the IVP expanded in this basis.

ỹ(t) =
n∑
k=1

ŷk`k(t) (C.2)

Substituting the expansion into the IVP gives

n∑
k=1

ŷk[ ˙̀
k(t) + a(t)`k(t)] = f(t) (C.3)
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Appendix C. DG time discretization

where the ŷk are the unknown coefficients that we need to compute. Now we multiply

the equation by a test function `j(t) and integrate by parts

n∑
k=1

ŷk[−( ˙̀
j, `k) + (`j, a`k) + `j(1)`k(1)− `j(0)`k(0)] = (`j, f) (C.4)

Now we want to enforce the initial condition. The requirement that y(0) = y0 can

be weakly enforced by requiring that y(0)`j(0) = y0`j(0) for all j.

y(0)`j(0) =
n∑
k=1

ŷk`j(0)`k(0) (C.5)

This term appears within the expansion above so it may be taken to the right hand

side (
n∑
k=1

ŷk[−( ˙̀
j, `k) + (`j, a`k) + φk(1)φj(1)]

)
= (`j, f) + y0`j(0) (C.6)

Let K ∈ Rn×n be the called the stiffness matrix with elements Kjk = −( ˙̀
j, `k),

S ∈ Rn×n is the matrix containing the surface terms from the right boundary with

elements Sjk = `j(1)`k(1), and A ∈ Rn×n containing the variable coefficient projected

on to the basis functions Ajk = (`j, a`k). Let f̂ ∈ Rn with elements f̂k = (φk, f) and

ĝ ∈ Rn be a vector for enforcing the initial condition with elements ĝj = y0`j(0).

The Galerkin Method can now be written as a linear system

(K + S + A)ŷ = f̂ + ĝ (C.7)

which we can solve for the vector of unknown coefficients a ∈ Rn.

This approach can then be used to construct a time-stepping method when the

time interval is subdivided and the solution on a given time interval is evaluated at

the final time and used to as initial data for the solution in the next time interval.

This is a discontinuous Galerkin method as the basis functions are not themselves

globally time continuous, but rather the surface terms are matched between elements

to weakly impose continuity of the solution.
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Appendix C. DG time discretization

Space-time discretization

The structure of the solution operator for the dipole driven-well, ∂t − i∂2
x + iu(t)x is

such that the numerical approximation is easily written in terms of a sum of tensor

products. On the kth time interval, the solution to the Schrödinger equation, or the

forced Schrödinger-like equation satisfies the system

[Mx ⊗ (Kt + S) + iKx ⊗Mt + iX ⊗ Uk]ŷk = f̂k + ĝk (C.8)

Where Mx, Kx are the mass and stiffness matrices for the spatial discretization, X

is the projection of the position operator x onto the spatial basis. Standard hp-nodal

Lagrange polynomial basis functions based on the Legendre-Gauss-Lobatto nodes

are used for the spatial discretization. Mt, Kt are the mass and stiffness matrices for

temporal discretization, S is the surface operator, and Uk is the control function in

the kth interval projected onto the Lagrange polynomials. The forcing and initial

conditions are incorporated into f̂k and ĝk as described above, but there is a different

initial condition for each mode of the spatial expansion.
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Appendix D

Complex representation

In the preceding work, it was observed that in quantum optimal control problems,

one aims to minimize a real valued cost functional which in some way depends on

the quantum mechanical wavefunction, which is a complex quantity. Since the cost

must be real, it means that J(ψ, u) must not only be a function of ψ, but also of

its complex conjugate ψ̄. This means that J can not be an analytic function of

ψ and indeed some care is needed in taking variations. The approach taken above

was to circumvent this difficulty by using the real matrix representation of complex

numbers. As alluded to earlier, there exists an alternate approach of dealing with

non-analytic functions and their derivatives; this is the Wirtinger calculus [74].

The idea of the Wirtinger calculus is quite simple. Suppose we have a real-valued

scalar function of of many complex variables f(z) where

z =
(
z1 z2 · · · zn

)
The fact that f ∈ R tells us that f must also depend on z̄, so really the function is

f(z, z̄). Assuming f to be smooth in z and z̄, it will have a Taylor series and the series

must also be real-valued. When f is differentiated with respect to z, the z̄ is treated

as constant and vice versa. Additionally, if f is real, it holds that fz̄ = f̄z. The
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Appendix D. Complex representation

main difference of the Wirtinger calculus is that the full KKT-Hessian will complex

Hermitian instead of real symmetric, although since the control is real-valued, the

reduced Hessian will be real symmetric. Taking first variations gives us the term

(
δz1, δz̄1

) fz

fz̄

 (D.1)

To take second variations we proceed as before but first take the complex conjugate

of the term in D.1.

(
δz̄1, δz1

) fzz fzz̄

fz̄z fz̄z̄

 δz2

δz̄2

 , fzz ≡ ∇z(∇zf)∗ (D.2)

The Hessian matrix in D.2 is Hermitian. When we formulate the cost functional for

a quantum control problem, we use this approach. Note that the inner products used

are taken to be the real inner products and conjugation is performed explicitly. This

is in contrast to the standard complex inner products of mathematical physics. The

primary motivation for using the real inner product is that we do not need to concern

ourselves with where in the expression the wavefunction appears to determine if it

should be treated as a constant or a variable when taking variations.
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