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1 Introduction

The solution of dense linear systems received much attention after the second
world war, and by the end of the sixties, most of the problems associated with it
had been solved. For a long time, Wilkinson's \The Algebraic Eigenvalue Prob-
lem" [107], other than the title suggests, became also the standard textbook for
the solution of linear systems. When it became clear that partial di�erential
equations could be solved numerically, to a level of accuracy that was of interest
for application areas (such as reservoir engineering, and reactor di�usion mod-
eling), there was a strong need for the fast solution of the discretized systems,
and iterative methods became popular for these problems.

Although, roughly speaking, the successive overrelaxation methods and the
�rst Krylov subspace methods were developed in the same period of time, the
class of Successive Overrelaxation methods became the methods of choice, since
they required a small amount of computer storage. These methods were quite
well understood by the work of Young [108], and the theory was covered in great
detail in Varga's book [102]. This book was the source of reference for iterative
methods for a long time.

It may seem evident that iterative methods gained in importance as scien-
ti�c modeling led to larger linear problems, since direct methods are often too
expensive in terms of computer memory and CPU-time requirements. However,
the convergence behavior of iterative methods depends very much on (often a

priori unknown) properties of the linear system, which means that one has to
consider the origin of the problem. Since large linear systems may arise from var-
ious sources, for instance, data �tting problems, discretization of PDE's, Markov
chains, or tomography, these properties may also vary widely. This means that
one has to study the usefulness of iterative schemes for each class of problems
separately and one can hardly rely on expertise gained from other classes. Most
often preconditioning is required to obtain or improve convergence. Only for
some classes of problems the e�ects of preconditioning are well understood; for
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most problems it remains largely a matter of trial and error. In our �nal section
we will give some hints on preconditioning as well as pointers to literature.
Also the (sparsity) structure of the matrix is important for the decision between
algorithms: special algorithms can often be designed for special structures, e.g.,
Toeplitz matrices, banded matrices, red-black ordering, p-cyclic matrices, etc.
Some important matrix properties can be easily deduced from the originating
problem, for instance, symmetry and positive de�niteness. Iterative methods
that rely on these properties, such as the Lanczos method and the conjugate
gradient method, have therefore the most widespread use.

The conjugate gradient method, and the method of Lanczos, were �rst viewed
as exact projection methods, and since their behavior in �nite precision arith-
metic was not in agreement with that point of view, they were initially considered
with suspicion. Through work of Reid [79], it became clear that these methods,
if used as iterative techniques, could be used to advantage for many classes of lin-
ear systems. With preconditioning [21], these methods could be made even more
e�cient. Among the �rst popular preconditioned methods was ICCG [69, 63].

In the period after 1975, we have seen that symmetric positive de�nite sparse
systems were usually solved by preconditioned CG methods, when very large,
and by sparse direct solvers if moderately large. For inde�nite symmetric sparse
systems special variants were proposed, like MINRES, and SYMMLQ [74]. How-
ever, for very large unsymmetric systems, the SOR methods, and the method of
Chebyshev [102, 54, 53], nicely tuned by Manteu�el [68], were still the methods
of choice. Due to several poorly understood numerical problems, the two-sided
Lanczos method, and a special variant Bi-CG [41], were not so popular at that
time, but slowly more robust variants of Krylov subspace methods, with longer
recursion formulas, entered the �eld. We mention GENCG [32], FOM [84], OR-
THOMIN [103], ORTHODIR and ORTHORES [62].

In the mid-eighties we see the start of the popularity of Krylov subspace
methods for large unsymmetric systems, and many new powerful and robust
methods were proposed. The past 10 years have formed a very lively area of
research for these methods, but we believe that by now this has come more or less
to an end. We are now facing other challenging problems for the solution of very
large sparse problems. For large linear systems, associated with 3-dimensional
modeling, the iterative methods are often the only means we have for solution.

Of course, for structured and rather regular problems the multigrid methods
have usually a better rate of convergence, but even from the CFD community
we see an increasing attention to iterative schemes. We believe that it is not
fruitful to see the two classes of methods as competitive, they may be combined,
where depending on the point of view, multigrid is used as a preconditioner, or
the iterative scheme as a smoother. We will not further discuss multigrid in our
paper; it deserves separate attention. An excellent introduction to multigrid and
the related multilevel methods, in the context of solving linear systems stemming
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from certain classes of problems, can be found in [61].

In the next section we will highlight the Krylov subspace methods as the
source of one of the most important developments in the period 1985-1995. In
subsequent sections, we will discuss a number of new variants.
For ease of presentation we restrict ourselves to real-valued problems. Matrices
will be denoted by capitals (A, B, ...), vectors are represented in lower case (x,
y, ...), and scalars are represented by Greek symbols (�, �, ...). Unless stated
di�erently, matrices will be of order n: A 2 IRn�n, and vectors will have length
n.

2 Krylov subspace methods: the basics

The past ten years have led to well-established and popular methods, that all lead
to the construction of approximate solutions in the so-called Krylov subspace.
Given a linear system Ax = b, with a large, usually sparse, unsymmmetric
nonsingular matrix A, then the standard Richardson iteration

xk = (I �A)xk�1 + b

generates approximate solutions in shifted Krylov subspaces

x0 +Kk(A; r0) = x0 + fr0; Ar0; : : : ; Ak�1r0g;

with r0 = b� Ax0, for some given initial vector x0.
The Krylov subspace projection methods fall in three di�erent classes:

1. The Ritz-Galerkin approach: Construct the xk for which the residual is
orthogonal to the current subspace: b�Axk ? Kk(A; r0).

2. The minimum residual approach: Identify the xk for which the Euclidean
norm kb� Axkk2 is minimal over Kk(A; r0).

3. The Petrov-Galerkin approach: Find an xk so that the residual b�Axk is
orthogonal to some other suitable k-dimensional subspace.

The Ritz-Galerkin approach leads to such popular and well-known methods
as Conjugate Gradients, the Lanczos method, FOM, and GENCG. The minimum
residual approach leads to methods like GMRES, MINRES, and ORTHODIR.
If we select the k-dimensional subspace in the third approach as Kk(AT ; s0),
then we obtain the Bi-CG, and QMR methods. More recently, hybrids of the
three approaches have been proposed, like CGS, Bi-CGSTAB, BiCGSTAB(`),
TFQMR, FGMRES, and GMRESR.

Most of these methods have been proposed in the last ten years. GMRES,
proposed in 1986 by Saad and Schultz [84], is the most robust of them, but, in
terms of work per iteration step it is also the most expensive. Bi-CG, which
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was suggested by Fletcher in 1977 [41], is a relatively inexpensive alternative,
but it has problems with respect to convergence: the so-called breakdown situ-
ations. This aspect has received much attention in the past period. Parlett et
al [75] introduced the notion of look-ahead, in order to overcome breakdowns,
and this was further perfected by Freund and Nachtigal [45], and by Brezinski
and Redivio-Zaglia [12]. The theory for this look-ahead technique was linked to
the theory of Pad�e approximations by Gutknecht [59]. Other contributions to
overcome speci�c breakdown situations were made by Bank and Chan [9], and
Fischer [39]. We will discuss these approaches in our section on QMR.
The hybrids were developed primarily in the second half of the last 10 years;
the �rst of these was CGS, published in 1989 by Sonneveld [89], and followed by
Bi-CGSTAB, by van der Vorst in 1992 [98], and others. The hybrid variants of
GMRES: Flexible GMRES and GMRESR, in which GMRES is combined with
some other iteration scheme, have only been proposed very recently.

A nice overview of Krylov subspace methods, with focus on Lanczos-based
methods, is given in [44]. Simple algorithms and unsophisticated software for
some of these methods is provided in [10]. Iterative methods with much atten-
tion to various forms of preconditioning have been described in [5]. Recently a
book on iterative methods was published also by Saad [83]; it is very algorithm
oriented, with, of course, a focus on GMRES and preconditioning techniques,
like threshold ILU, ILU with pivoting, and incomplete LQ factorizations.
An annotated entrance to the vast literature on preconditioned iterative methods
is given in [14].

2.1 Working with the Krylov subspace

In order to identify optimal approximate solutions in the Krylov subspace we
need a suitable basis for this subspace, one that can be extended in a mean-
ingful way for subspaces of increasing dimension. The obvious basis r0, Ar0,
: : :, Ai�1r0, for Ki(A; r0), is not very attractive from a numerical point of view,
since the vectors Ajr0 point more and more in the direction of the dominant
eigenvector for increasing j (the power method!), and hence the basis vectors
become dependent in �nite precision arithmetic.

Instead of the standard basis one usually prefers an orthonormal basis, and
Arnoldi [1] suggested computing this basis as follows. Start with v1 � r0=kr0k2.
Assume that we have already an orthonormal basis v1, : : :, vj for Kj(A; r0),
then this basis is expanded by computing t = Avj , and by orthonormalizing this
vector t with respect to v1, : : :, vj. In principle the orthonormalization process
can be carried out in di�erent ways, but the most commonly used approach is to
do this by a modi�ed Gram-Schmidt procedure [53]. This leads to an algorithm
for the creation of an orthonormal basis for Km(A; r0), as in Fig 1.

It is easily veri�ed that v1, : : :, vm form an orthonormal basis for Km(A; r0)
(that is, if the construction does not terminate at a vector t = 0). The or-
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v1 = r0=kr0k2;
for j = 1; ::;m� 1

t = Avj;
for i = 1; :::; j

hi;j = vTi t;
t = t� hi;jvi;

end;
hj+1;j = ktk2;
vj+1 = t=hj+1;j;

end

Figure 1. Arnoldi's method with modi�ed Gram{Schmidt orthogonalization

thogonalization leads to relations between the vj, that can be formulated in a
compact algebraic form. Let Vj denote the matrix with columns v1 up to vj,
then it follows that

AVm�1 = VmHm;m�1:

The m by m � 1 matrix Hm;m�1 is upper Hessenberg, and its elements hi;j are
de�ned by the Arnoldi algorithm.

From a computational point of view, this construction is composed from three
basic elements: a matrix vector product with A, innerproducts, and updates.
We see that this orthogonalization becomes increasingly expensive for increasing
dimension of the subspace, since the computation of each hi;j requires an inner
product and a vector update.

Note that if A is symmetric, then so is Hm�1;m�1 = V T
m�1AVm�1, so that in

this situationHm�1;m�1 is tridiagonal. This means that in the orthogonalization
process, each new vector has to be orthogonalized with respect to the previous
two vectors only, since all other innerproducts vanish. The resulting three term
recurrence relation for the basis vectors of Km(A; r0) is known as the Lanczos

method and some very elegant methods are derived from it. In the symmetric case
the orthogonalization process involves constant arithmetical costs per iteration
step: one matrix vector product, two innerproducts, and two vector updates.
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3 The Ritz-Galerkin approach: FOM and CG

Let us assume, for simplicity, that x0 = 0, and hence r0 = b. The Ritz-Galerkin
conditions imply that rk ?Kk(A; r0), and this is equivalent to

V T
k (b� Axk) = 0:

Since b = r0 = kr0k2v1, it follows that V T
k b = kr0k2e1 with e1 the �rst canonical

unit vector in IRk. With xk = Vky we obtain

V T
k AVky = kr0k2e1:

This system can be interpreted as the system Ax = b projected onto Kk(A; r0).
Obviously we have to construct the k � k matrix V T

k AVk, but this is, as we
have seen, readily available from the orthogonalization process:

V T
k AVk = Hk;k;

so that the xk for which rk ? Kk(A; r0) can be easily computed by �rst solving
Hk;ky = kr0k2e1, and forming xk = Vky. This algorithm is known as FOM or
GENCG.

Note that for some j � n� 1 the construction of the orthogonal basis must
terminate. In that case we have that AVj+1 = Vj+1Hj+1;j+1. Let y be the
solution of the reduced system Hj+1;j+1y = kr0ke1, and xj+1 = Vj+1y. Then it
follows that xj+1 = x, i.e., we have arrived at the exact solution, since

Axj+1 � b = AVj+1y � b = Vj+1Hj+1;j+1y � b

= kr0kVj+1e1 � b = 0

(we have assumed that x0 = 0).

When A is symmetric, then Hk;k reduces to a tridiagonal matrix Tk;k, and the
resulting method is known as the Lanczos method [65]. In clever implementa-
tions, it is possible to avoid storing all the vectors vj. When A is in addition pos-
itive de�nite then we obtain, at least formally, the Conjugate Gradient method.
In commonly used implementations of this method, one implicitly forms an LU
factorization for Tk;k and this leads to very elegant short recurrencies for the xj
and the corresponding rj . The positive de�niteness is necessary to guarantee the
existence of the LU factorization, but it allows also for another useful interpre-
tation. From the fact that ri ? Ki(A; r0), it follows that A(xi�x) ? Ki(A; r0),
or xi � x ?A Ki(A; r0). The latter observation expresses the fact that the error
is A�orthogonal to the Krylov subspace and this is equivalent to the important
observation that kxi�xkA is minimal1 For an overview of the history of CG and
main contributions on this subject, see [51].

1The A�norm is de�ned by kyk2
A
= (y; y)A � (y; Ay), and we need the positive de�niteness

of A in order to get a proper innerproduct (�; �)A.
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The local convergence behavior of CG, and especially the occurrence of super-
linear convergence, was �rst explained in a qualitative sense in [21], and later
in a quantitative sense in [94]. In both papers it was linked to the convergence
of eigenvalues (Ritz values) of Ti;i towards eigenvalues of A, for increasing i.
The global convergence can be bounded with expressions that involve condition
numbers, for details see for instance [21, 53, 2]. In [2] the situation is analysed
where the eigenvalues of A are in disjunct intervals.

4 The minimum residual approach

The creation of an orthogonal basis for the Krylov subspace, with basis vectors
v1, : : :, vi+1, leads to

AVi = Vi+1Hi+1;i; (4:1)

where Vi is the matrix with columns v1 to vi. We look for an xi 2 Ki(A; r0),
that is xi = Viy, for which kb � Axik2 is minimal. This norm can be rewritten
as

kb� Axik2 = kb� AViyk2 = k jjr0jj2Vi+1e1 � Vi+1Hi+1;iyk2:
Now we exploit the fact that Vi+1 is an orthonormal transformation with respect
to the Krylov subspace Ki+1(A; r0):

kb� Axik2 = kkr0k2e1 �Hi+1;iyk2;

and this �nal norm can simply be minimized by solving the minimumnorm least
squares problem for the i+ 1 by i matrix Hi+1;i and right-hand side jjr0jj2e1.

In GMRES [84] this is done e�ciently with Givens rotations, that annihilate
the subdiagonal elements in the upper Hessenberg matrix Hi+1;i.
Note that when A is Hermitian (but not necessarily positive de�nite), the upper
Hessenberg matrixHi+1;i reduces to a tridiagional system. This simpli�ed struc-
ture can be exploited in order to avoid storage of all the basis vectors for the
Krylov subspace, in a way similar as has been pointed out for CG. The resulting
method is known as MINRES [74].

In order to avoid excessive storage requirements and computational costs for
the orthogonalization, GMRES is usually restarted after each m iteration steps.
This algorithm is referred to as GMRES(m); the not-restarted version is often
called `full' GMRES. There is no simple rule to determine a suitable value for
m; the speed of convergence may vary drastically for nearby values of m.

There is an interesting and simple relation between the Ritz-Galerkin ap-
proach (FOM and CG) and the minimum residual approach (GMRES and MIN-
RES). In GMRES the projected system matrix Hi+1;i is transformed by Givens
rotations to an upper triangular matrix (with last row equal to zero). So, in
fact, the major di�erence between FOM and GMRES is that in FOM the last
((i+1)-th row is simply discarded, while in GMRES this row is rotated to a zero
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vector. Let us characterize the Givens rotation, acting on rows i and i + 1, in
order to zero the element in position (i + 1; i), by the sine si and the cosine ci.
Let us further denote the residuals for FOM with an superscript F and those for
GMRES with superscript G. Then we have the following relation between FOM
and GMRES:
If ck 6= 0 then the FOM and the GMRES residuals are related by

krFk k2 =
krGk k2q

1� (krGk k2=krGk�1k2)2
; (4:2)

([23]: theorem 3.1). From this relation we see that when GMRES has a signi�cant
reduction at step k, in the norm of the residual (i.e., sk is small, and ck � 1),
then FOM gives about the same result as GMRES. On the other hand when
FOM has a breakdown (ck = 0), then GMRES does not lead to an improvement
in the same iteration step. Because of these relations we can link the convergence
behaviour of GMRES with the convergence of Ritz values (the eigenvalues of the
"FOM" part of the upper Hessenberg matrix). This has been exploited in [100],
for the analysis and explanation of local e�ects in the convergence behaviour of
GMRES.

There are various di�erent implementations of FOM and GMRES. Among
those equivalent to GMRES are: Orthomin [103], Orthodir [62], GENCR [33],
and Axelsson's method [3]. These methods are often more expensive than GM-
RES per iteration step. Orthomin continues to be popular, since this variant
can be easily truncated (Orthomin(s)), in contrast to GMRES. The truncated
and restarted versions of these algorithms are not necessarily mathematically
equivalent.
Methods that are mathematically equivalent to FOM are: Orthores [62] and
GENCG [19, 106]. In these methods the approximate solutions are constructed
such that they lead to orthogonal residuals (which form a basis for the Krylov
subspace; analogously to the CG method). A good overview of all these methods
and their relations is given in [83].

The GMRES method and FOM are closely related to vector extrapolation
methods, when the latter are applied to linearly generated vector sequences. For
a discussion on this, as well as for implementations for these matrix free methods,
see [85].

4.1 Inner-outer iteration schemes

Although GMRES is optimal, in the sense that it leads to a minimal residual
solution over the Krylov subspace, it has the disadvantage that this goes with
increasing computational costs per iteration step. Of course, with a suitable
preconditioner one can hope to reduce the dimension of the required Krylov
subspace to acceptable values, but in many cases such preconditioners have not
been identi�ed.
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The preconditioner K�1 is generally viewed as an approximation for the
inverse of the matrix A of the system Ax = b to be solved. Instead of an optimal
update direction A�1r, we compute the direction p = K�1r. That is, we solve
p from Kp = r, and K is constructed in such a way that this is easy to do.
An attractive idea is to try to get better approximations for A�1r, and there
are two related approaches to accomplish this. One is to try to improve the
preconditioner with updates from the Krylov subspace. This has been suggested
�rst by Eirola and Nevanlinna [31]. Their approach leads to iterative methods
that are related to Broyden's method [13], which is a Newton type of method.
The Broyden method can be obtained from this update-approach if we do not
restrict ourselves to Krylov subspaces. See [104] for a discussion on the relation
of these methods.

The updated preconditioners can not be applied immediately to GMRES,
since the preconditioned operator now changes from step to step, and we are not
forming a regular Krylov subspace, but rather a subset of a higher dimensional
Krylov subspace. However, we can still minimize the residual over this subset.

The idea of variable preconditioning has been exploited in this sense, by
di�erent authors. Axelsson and Vassilevski [7] have proposed a Generalized
Conjugate Gradient method with variable preconditioning, Saad [81, 83] has
proposed a scheme very similar to GMRES, called Flexible GMRES (FGMRES),
and Van der Vorst and Vuik have published a GMRESR scheme. FGMRES has
received most attention, presumably because it is so easy to implement: only
the update directions in GMRES have to be preconditioned, and each update
may be preconditioned di�erently. This means that only one line in the GMRES
algorithm has to be adapted. The price to be paid is that the method is no longer
robust; it may break down. The GENCG and GMRESR schemes are slightly
more expensive in terms of memory requirements and in computational overhead
per iteration step. The main di�erence between the two schemes is that GENCG
in [7] works with Gram-Schmidt orthogonalization, whereas GMRESR makes it
possible to use Modi�ed Gram-Schmidt. This may give GMRESR an advantage
in actual computations. In exact arithmetic GMRESR and GENCG should
produce the same results for the same preconditioners. Another advantage of
GMRESR over Algorithm 1 in [7] is that only one matrix vector product is used
per iteration step in GMRESR; GENCG needs two matrix vector products per
step.

In GMRESR the residual vectors are preconditioned and if this gives a further
reduction then GMRESR does not break down. This gives slightly more control
over the method in comparison with FGMRES. In most cases though the results
are about the same, but the e�cient scheme for FGMRES has an advantage.

We will briey discuss the GMRESR method. In [101] it has been shown how
the GMRES-method, or more precisely, the GCR-method, can be combined with
other iterative schemes. The iteration steps of GMRES (or GCR) are called outer
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iteration steps, while the iteration steps of the preconditioning iterative method
are referred to as inner iterations. The combined method is called GMRES?,
where ? stands for any given iterative scheme; in the case of GMRES as the
inner iteration method, the combined scheme is called GMRESR[101]. It was
shown in [26, 25], that GMRESR can be implemented in a way that avoids
about 30% of the overhead in the outerloop, which makes the method about as
expensive per outer iteration step as FGMRES.

The GMRES? algorithm can be described as in Fig. 2.

x0 is an initial guess; r0 = b�Ax0;
for i = 0; 1; 2; 3; :::

Let z(m) be the approximate solution
of Az = ri, obtained after m steps of
an iterative method.
c = Az(m) (often available from the

iteration method)
for k = 0; :::; i� 1

� = cTk c
c = c� �ck
z(m) = z(m) � �uk

ci = c=kck2; ui = z(m)=kck2
xi+1 = xi + (cTi ri)ui
ri+1 = ri � (cTi ri)ci
if xi+1 is accurate enough then quit

end

Figure 2. The GMRES? algorithm

A su�cient condition to avoid breakdown in this method (kck2 = 0) is that
the norm of the residual at the end of an inner iteration is smaller than the
norm of the right-hand side residual: kAz(m) � rik2 < krik2. This can easily
be controlled during the inner iteration process. If stagnation occurs, i.e. no
progress at all is made in the inner iteration, then it is suggested in [101] to do
one (or more) steps of the LSQR method, which guarantees a reduction (but
this reduction is often very small).

The idea behind these exible iteration schemes is that we explore parts of
high-dimensional Krylov subspaces, hopefully determining essentially the same
approximate solution that full GMRES would �nd over the entire subspace, but
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at much lower computational costs. For the inner iteration we may select any
appropriate solver, for instance, one cycle of GMRES(m), since then we have
also locally an optimal method, or some other iteration scheme, like for instance
Bi-CGSTAB.

In [26] it is proposed to keep the Krylov subspace, that is built in the inner
iteration, orthogonal with respect to the Krylov basis vectors generated in the
outer iteration. Under various circumstances this helps to avoid inspection of
already investigated parts of Krylov subspaces in future inner iterations. The
procedure works as follows. In the outer iteration process the vectors c0, ..., ci�1
build an orthogonal basis for the Krylov subspace. Let Ci be the n by i matrix
with columns c0, ..., ci�1. Then the inner iteration process at outer iteration i
is carried out with the operator Ai instead of A, and Ai is de�ned as

Ai = (I �CiC
T
i )A: (4:3)

Of course, I �CiC
T
i can be stored as a product of Householder transformations,

which makes the updates more e�cient. It is easily veri�ed that Aiz ? c0; :::; ci�1
for all z, so that the inner iteration process takes place in a subspace orthogonal
to these vectors. The additional costs, per iteration of the inner iteration process,
are i inner products and i vector updates. In order to save on these costs, one
should realize that it is not necessary to orthogonalize with respect to all previous
c-vectors, and that \less e�ective" directions may be dropped, or combined with
others. In [72, 8, 26] suggestions are made for such strategies. Of course, these
strategies are only attractive in cases where we see too little residual reducing
e�ect in the inner iteration process in comparison with the outer iterations of
GMRES?.

Note that if we carry out the preconditioning by doing a few iterations of
some other iteration process, then we have inner-outer iteration schemes; these
have been discussed earlier in [52]. It is di�cult to analyse their convergence
behavior and in a �rst attempt it is wise to look at the analysis for simpli�ed
schemes. We will give the avor of this analysis and the type of results [52].

We consider a simpli�ed inner-outer iteration scheme associated with the
standard iteration for the splitting A = M � N , as given in Fig. 3; the inner
iterations are carried out with M .
With ek � x� xk, it follows that

ek+1 = (I �M�1A)ek �M�1qk;

and

kek+1k � kI �M�1Akkekk+ kM�1qkk
� (kI �M�1Ak+ �kkM�1kkAk)kekk:

Hence
kekk
ke0k �

�kI �M�1Ak+ �
�k
;
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while
kqkk2
krkk2

< �k do

rk = b� Axk
Solve Mz = ri approximately) �zk

(qk �M �zk � rk)
xk+1 = xk + �zk
if xk+1 is accurate enough then quit

end

Figure 3. A simpli�ed Inner-Outer iteration scheme

with � � max�kkM�1kkAk, so that the convergence is largely determined by
the norm of I �M�1A, if �k is small enough.
It can be shown that for �k = �k, for a �xed 0 < � < 1:

lim sup
k!1

�kekk
ke0k

� 1

k

= kI �M�1Ak;

so that essentially the convergence rate for the splitting A = M �N , with exact
inversion ofM , is restored. A similar analysis can be carried out in relation with
Chebyshev acceleration, see [52, 49]. In [49] the question is studied how � can
be chosen so that the total amount of work is minimized.

For an application of inner-outer iterations for Stokes problems, see the in-
exact Uzawa scheme, proposed in [36]; for Navier-Stokes related problems, see
[55].

5 The Petrov-Galerkin approach: Bi-CG

For unsymmetric systems we can, in general, not reduce the matrix A to a
symmetric system in a lower-dimensional subspace, by orthogonal projections.
The reason is that we can not create an orthogonal basis for the Krylov subspace
by a 3-term recurrence relation [38]. We can, however, try to obtain a suitable
non-orthogonal basis with a 3-term recurrence, by requiring that this basis is
orthogonal with respect to some other basis.
We start by constructing an arbitrary basis for the Krylov subspace:

hi+1;ivi+1 = Avi �
iX

j=1

hj;ivj ; (5:1)
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which can be rewritten in matrix notation as AVi = Vi+1Hi+1;i. The coe�cients
hi+1;i de�ne the norm of vi+1, and a natural choice would be to select them such
that kvi+1k2 = 1. In Bi-CG implementations, a popular choice is to select hi+1;i
such that kvi+1k2 = kri+1k2.

Clearly, we can not use Vi for the projection, but suppose we have a Wi for
which WT

i Vi = Di (an i by i diagonal matrix with diagonal entries di), and for
which WT

i vi+1 = 0.
Then

W T
i AVi = DiHi;i; (5:2)

and now our goal is to �nd a Wi for which Hi;i is tridiagonal. This means that
V T
i ATWi should be tridiagonal too. This last expression has a similar structure

as the right-hand side in (5.2), with only Wi and Vi reversed. This suggests to
generate the wi with AT .
We start with an arbitrary w1 6= 0, such that wT1 v1 6= 0. Then we generate v2
with (5.1), and orthogonalize it with respect to w1, which means that h1;1 =
wT1 Av1=(w

T
1 v1). Since wT1 Av1 = (ATw1)Tv1, this implies that w2, generated

with
h2;1w2 = ATw1 � h1;1w1;

is also orthogonal to v1.
This can be continued, and we see that we can create bi-orthogonal basis sets
fvjg, and fwjg, by making the new vi orthogonal to w1 up to wi�1, and then by
generating wi with the same recurrence coe�cients, but with AT instead of A.
Now we have that WT

i AVi = DiHi;i, and also that V T
i ATWi = DiHi;i. This im-

plies thatDiHi;i is symmetric, and hence Hi;i is a tridiagonal matrix, which gives
us the desired 3-term recurrence relation for the vj 's, and the wj's. Note that
v1; : : : ; vi form a basis for Ki(A; v1),and w1, : : :, wi form a basis for Ki(AT ;w1).

We may proceed in a similar way as in the symmetric case:

AVi = Vi+1Ti+1;i; (5:3)

but here we use the matrixWi = [w1; w2; :::; wi] for the projection of the system

WT
i (b �Axi) = 0;

or
WT
i AViy �WT

i b = 0:

Using (5.3), we �nd that yi satis�es

Ti;iy = kr0k2e1;
and xi = Viy. The resulting method is known as the Bi-Lanczos method [65].

We have assumed that di 6= 0, that is wTi vi 6= 0. The generation of the bi-
orthogonal basis breaks down if for some i the value of wTi vi = 0, this is referred
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to in literature as a serious breakdown. Likewise, when wTi vi � 0, we have a near-
breakdown. The way to get around this di�culty is the so-called Look-ahead
strategy, which comes down to taking a number of successive basis vectors for
the Krylov subspace together and to make them blockwise bi-orthogonal. This
has been worked out in detail in [75, 45, 46, 47].

Another way to avoid breakdown is to restart as soon as a diagonal element
gets small. Of course, this strategy looks surprisingly simple, but one should
realise that at a restart the Krylov subspace, that has been built up so far, is
thrown away, and this destroys the possibility of faster (i.e., superlinear) conver-
gence.

We can try to construct an LU-decomposition, without pivoting, of Ti;i. If
this decomposition exists, then, similar to CG, it can be updated from iteration
to iteration and this leads to a recursive update of the solution vector, which
avoids saving all intermediate r and w vectors. This variant of Bi-Lanczos is
usually called Bi-Conjugate Gradients, or for short Bi-CG [41]. In Bi-CG, the
di are chosen such that vi = ri�1, similarly to CG.

Of course one can in general not be certain that an LU decomposition (with-
out pivoting) of the tridiagonal matrix Ti;i exists, and this may lead also to
breakdown (a breakdown of the second kind), of the Bi-CG algorithm. Note
that this breakdown can be avoided in the Bi-Lanczos formulation of the iter-
ative solution scheme, e.g., by making an LU-decomposition with 2 by 2 block
diagonal elements [9]. It is also avoided in the QMR approach (see Section 5.1).

Note that for symmetric matrices Bi-Lanczos generates the same solution as
Lanczos, provided thatw1 = r0, and under the same condition Bi-CG delivers the
same iterands as CG for positive de�nite matrices. However, the Bi-orthogonal
variants do so at the cost of two matrix vector operations per iteration step.
For a computational scheme for Bi-CG, without provisions for breakdown, see
[10].

5.1 QMR

The QMR method [47] relates to Bi-CG in a similar way as MINRES relates to
CG. We start with the recurrence relations for the vj:

AVi = Vi+1Ti+1;i:

We would like to identify the xi, with xi 2 Ki(A; r0), or xi = Viy, for which

kb�Axik2 = kb�AViyk2 = kb� Vi+1Ti+1;iyjj2
is minimal, but the problem is that Vi+1 is not orthogonal. However, we pretend
that the columns of Vi+1 are orthogonal. Then

kb� Axik2 = kVi+1(kr0k2e1 � Ti+1;iy)k2 = k(kr0k2e1 � Ti+1;iy)k2;
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and in [47] it is suggested to solve the projected miniminum norm least squares
problem k(kr0k2e1 � Ti+1;iy)k2. The minimum value of this norm is called the

quasi residual and will be denoted by jjrQi jj2.
Since, in general, the columns of Vi+1 are not orthogonal, the computed xi = Viy
does not solve the minimum residual problem, and therefore this approach is
referred to as a Quasi-minimum residual approach [47]. It can be shown that

the norm of the residual rQMR
i of QMR can be be bounded in terms of the quasi

residual
jjrQMR

i jj2 �
p
i + 1 jjrQi jj2:

The sketched approach leads to the simplest form of the QMR method. A more
general form arises if the least squares problem is replaced by a weighted least
squares problem [47]. No strategies are yet known for optimal weights.

In [47] the QMRmethod is carried out on top of a look-ahead variant of the bi-
orthogonal Lanczos method, which makes the method more robust. Experiments
indicate that although QMR has a much smoother convergence behaviour than
Bi-CG, it is not essentially faster than Bi-CG. This is con�rmed explicitly by the
following relation for the Bi-CG residual rBk and the quasi residual rQ

k (in exact
arithmetic):

krBk k2 =
krQk k2q

1� (krQk k2=krQk�1k2)2
;

see [23]: Theorem 4.1. This relation, which is similar to the relation for GMRES
and FOM, shows that when QMR gives a signi�cant reduction at step k, then
Bi-CG and QMR have arrived at residuals of about the same norm (provided,
of course, that the same set of starting vectors has been used).

It is tempting to compare QMR with GMRES, but this is di�cult. GMRES
really minimizes the 2-norm of the residual, but at the cost of increasing the work
of keeping all residuals orthogonal and increasing demands for memory space.
QMR does not minimize this norm, but often it has a convergence comparable to
GMRES, at a cost of twice the amount of matrix vector products per iteration
step. However, the generation of the basis vectors in QMR is relatively cheap
and the memory requirements are limited and modest. In view of the relation
between GMRES and FOM, it will be no surprise that there is a similar relation
between QMR and Bi-CG, for details of this see [47]. This relation expresses
that at a signi�cant local error reduction of QMR, Bi-CG and QMR have arrived
almost at the same residual vector (similar to GMRES and FOM). However,
QMR is preferred to Bi-CG in all cases because of its much smoother convergence
behaviour, and also because QMR removes one break-down condition (even when
implemented without look-ahead). Several variants of QMR, or rather Bi-CG,
have been proposed, which increase the e�ectiveness of this class of methods in
certain circumstances.

In a recent paper, Zhou and Walker [110] have shown that the Quasi-Minimum
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Residual approach can be followed for other methods, such as CGS and Bi-
CGSTAB, as well. The main idea is that in these methods the approximate
solution is updated as

xi+1 = xi + �ipi;

and the corresponding residual is updated as

ri+1 = ri � �iApi:

This means that APi =WiRi+1, with Wi a lower bidiagonal matrix. The xi are
combinations of the pi, so that we can try to �nd the combination Piyi for which
kb�APiyik2 is minimal. If we insert the expression for APi, and ignore the fact
that the ri are not orthogonal, then we can minimize the norm of the residual
in a quasi-minimum least squares sense, similar to QMR.

5.2 CGS

It is well known that the bi-conjugate gradient residual vector can be written as
rj (= �jvj) = Pj(A)r0, and, likewise, the so-called shadow residual r̂j (= �jwj)
can be written as r̂j = Pj(AT )r̂0. Because of the bi-orthogonality relation we
have that

(rj ; r̂i) = (Pj(A)r0; Pi(A
T )r̂0)

= (Pi(A)Pj(A)r0; r̂0) = 0;

for i < j. The iteration parameters for bi-conjugate gradients are computed from
innerproducts like the above. Sonneveld [89] observed that we can also construct
the vectors ~rj = P 2

j (A)r0, using only the latter form of the innerproduct for
recovering the bi-conjugate gradients parameters (which implicitly de�ne the
polynomial Pj). By doing so, the computation of the vectors r̂j can be avoided
and so can the multiplication by the matrix AT .

The resulting CGS [89] method works in general very well for many unsym-
metric linear problems. It converges often much faster than BI-CG (about twice
as fast in some cases) and has the advantage that fewer vectors are stored than
in GMRES. These three methods have been compared in many studies (see, e.g.,
[78, 15, 76, 71]).
CGS, however, usually shows a very irregular convergence behaviour. This be-
haviour can even lead to cancellation and a \spoiled" solution [98]; see also
Section 5.3. Freund [48] suggested a squared variant of QMR, which was called
TFQMR. His experiments show that TFQMR is not necessarily faster than CGS,
but it has certainly a much smoother convergence behavior.

5.3 How serious is irregular convergence?

By very irregular convergence we refer to the situation where successive residual
vectors in the iterative process di�er in orders of magnitude in norm, and some
of these residuals may even be much larger in norm than the starting residual.
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We will give an indication why this is a point of concern, even if eventually
the (updated) residual satis�es a given tolerance. For more details we refer to
Sleijpen et al [86, 87].

We say that an algorithm is accurate for a certain problem if the updated

residual rj and the true residual b � Axj are of comparable size for the j's of
interest.

In most iteration schemes the approximation for the solution and the corre-
sponding residual are updated independently:

xj+1 = xj +wj+1

rj+1 = rj �Awj+1:

In �nite precision arithmetic, there will at least be a discrepancy between the
two updated quantities due to the multiplication by A. We can account for that
by writing

rj+1 = rj �Awj+1 ��Awj+1 for each j; (5:4)

where �A is an n � n matrix for which j�Aj � nA � jAj: nA is the maximum
number of non-zero matrix entries per row of A, jBj � (jbijj) if B = (bij), � is
the relative machine precision, the inequality � refers to element-wise �.

Note that we have ignored the �nite precision errors due to the vector addi-
tions. In this case (i.e. situation (5.4) whenever we update the approximation),
we have that

rk � (b�Axk) =
kX
j=1

�Awj =
kX
j=1

�A(ej�1 � ej); (5:5)

where the perturbation matrix �A may depend on j and ej is the approximation
error in the jth approximation: ej � x� xj. Hence,

jkrkk � kb�Axkkj � 2k nA � kjAjk max
j
kejk

� 2k nA � kjAjk
A�1 max

j
krjk: (5.6)

Except for the factor k, the �rst upper{bound appears to be rather sharp. We
see that approximations with large approximation errors may ultimately lead to
an inaccurate result. Such large local approximation errors are typical for CGS;
Van der Vorst[98] describes an example of the resulting numerical inaccuracy.
If there are a number of approximations with comparable large approximation
errors, then their multiplicity may replace the factor k; otherwise it will be
only the largest approximation error that makes up virtually the bound for the
deviation.

A more rigorous analysis, leading to essentially the same results, has been
given by Greenbaum [56]. She also includes the errors introduced by the multi-
plication and subtraction in ri+1 = ri��iAwi. However, the qualitative results
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of this analysis are the same, since in general the errors in the matrix vector
product dominate.

5.4 Bi-CGSTAB

Bi-CGSTAB [98] is based on the following observation. Instead of squaring the
Bi-CG polynomial, we can construct other iteration methods, by which xi are
generated so that ri = ~Pi(A)Pi(A)r0 with other ith degree polynomials ~P . An
obvious possibility is to take for ~Pj a polynomial of the form

Qi(x) = (1� !1x)(1� !2x):::(1� !ix); (5:7)

and to select suitable constants !j . This expression leads to an almost trivial
recurrence relation for the Qi. In Bi-CGSTAB !j in the jth iteration step is
chosen as to minimize rj, with respect to !j, for residuals that can be written
as rj = Qj(A)Pj(A)r0.
Bi-CGSTAB needs two innerproducts more per iteration than CGS.

Bi-CGSTAB can be viewed as the product of Bi-CG and GMRES(1), or
rather GCR(1). Of course, other product methods can be formulated as well,
and this will be the subject of the next subsection.

5.4.1 Variants of Bi-CGSTAB

Because of the local minimization, Bi-CGSTAB displays a much smoother con-
vergence behavior than CGS, and more surprisingly it often also converges
(slightly) faster. One weak point in Bi-CGSTAB is that there is a break-down
if !j = 0. One may also expect negative e�ects when !j is small. As soon as
the GCR(1) step in Bi-CGSTAB (nearly) stagnates, then the BiCG part in the
next iteration step cannot (or can only poorly) be constructed. Another dubious
aspect of Bi-CGSTAB is that the factor Qk has only real roots by construction.
It is well-known that optimal reduction polynomials for matrices with complex
eigenvalues may have complex roots as well. If, for instance, the matrix A is real
skew-symmetric, then GCR(1) stagnates forever, whereas a method like GCR(2)
(or GMRES(2)), in which we minimize over two combined successive search di-
rections, may lead to convergence, and this is mainly due to the fact that then
complex eigenvalue components in the error can be e�ectively reduced.

This point of view was taken in [60] for the construction of the Bi-CGSTAB2
method. In the odd-numbered iteration steps the Q-polynomial is expanded by
a linear factor, as in Bi-CGSTAB, but in the even-numbered steps this linear
factor is discarded, and the Q-polynomial from the previous even-numbered step
is expanded by a quadratic 1��kA��kA2. For this construction the information
from the odd-numbered step is required. It was anticipated that the introduc-
tion of quadratic factors in Q might help to improve convergence for systems
with complex eigenvalues, and, indeed, some improvement has been observed in
practical situations (see also [77]).
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In [88], another and even simpler approach was taken to arrive at the desired
even-numbered steps, without the necessity of the construction of the interme-
diate Bi-CGSTAB-type step in the odd-numbered steps. In this approach the
polynomial Q is constructed straight-away as a product of quadratic factors. In
fact, it is shown in [88] that the polynomialQ can also be constructed as the prod-
uct of `-degree factors, without the construction of the intermediate lower degree
factors. The main idea is that ` successive Bi-CG steps are carried out, where for
the sake of an AT -free construction the already available part of Q is expanded
by simple powers of A. This means that after the Bi-CG part of the algorithm,
vectors from the Krylov subspace s; As;A2s; :::; A`s, with s = Pk(A)Qk�`(A)r0
are available, and it is then relatively easy to minimize the residual over that
particular Krylov subspace. There are variants of this approach in which more
stable bases for the Krylov subspaces are generated [87], but for low values of
` a standard basis satis�es, together with a minimum norm solution obtained
through solving the associated normal equations (which requires the solution of
an ` by ` system. In most cases Bi-CGSTAB(2) will already give nice results for
problems where Bi-CGSTAB may fail.

5.5 Other product methods

In the paper by Sonneveld [89], it was made clear that we can construct product
methods for which rk = Hk(A)Pk(A)r0, in which Pk denotes the Bi-CG iteration
polynomial, and Hk is any other arbitrary monic polynomial of exact degree k,
and he showed that this can be done with the same number of matrix vector
multiplications as in k steps of Bi-CG. CGS and the Bi-CGSTAB methods are
special instances of these hybrid Bi-CG schemes, but other product methods
have been proposed as well.

In [42] it was suggested to take for Hk Bi-CG-like polynomials in an attempt
to keep attractive convergence aspects of CGS, while avoiding the irregular con-
vergence behavior. One idea is to take for Hk the Bi-CG polynomial obtained
with a di�erent starting vector w1, which can be done for virtually no additional
costs in Bi-CG; this leads to a generalized CGS process. Another idea is to take
for Hk the product of Pk�1 and a suitable �xed �rst degree factor. The idea is
that the zeros of Pk and Pk�1 do not coincide, so that it is likely that a zero of
Pk�1 will be close to a local maximum of Pk. This avoids the squaring e�ects in
CGS, while it maintains the desired squaring e�ects in converged eigendirections.
Both ideas are easily implemented in an existing CGS code.

In [109] it is suggested to generate Hk by a three term recurrence relation.
This leads to an expression for rk of the form

rk = tk�1 � �k�1yk�1 � �k�1Atk�1;

where tk�1 and yk�1 are auxiliary vectors in the hybrid Bi-CG iteration process,
and �k�1 and �k�1 represent the coe�cients in a Bi-CG like three term recurrence
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for Hk. The idea suggested in [109] is to minimize the Euclidean norm of rk as a
function of �k�1 and �k�1, and this leads to product methods which, according
to given examples, can compete with CGS and Bi-CGSTAB methods. It is not
clear whether these generalized product methods o�er an advantage over the
higher order Bi-CGSTAB(`) methods.

6 Preconditioning

In order to improve the speed of convergence of iterative methods, one applies
usually some form of preconditioning. Many di�erent preconditioners have been
suggested over the years, each of these preconditioners more or less successful
for restricted classes of problems.

Among all these preconditioners the Incomplete LU factorizations [69, 21]
are the most popular ones, and attempts have been made to improve them, for
instance by including more �ll [70], or by modifying the diagonal of the ILU
factorization in order to force rowsum constraints [58, 6, 5, 73, 95, 34], or by
changing the ordering of the matrix [96, 97]. A collection of experiments with
respect to the e�ects of ordering is contained in [30]. More recently, it was
discovered that a multigrid-inspired ordering can be very e�ective for discretized
di�usion-convection equations, leading in some cases to almost grid-independent
speeds of convergence [93, 11], see also [24]. In these publications the ordering
strategy is combined with a drop-tolerance strategy for discarding small enough
�ll-in elements.

Red-black ordering is an obvious approach to improve parallel properties for
well-structured problems, but it got a bad reputation from experiments, like
those reported in [30]. If carefully done though, they can lead to signi�cant
gains in e�ciency. Elman and Golub [35] suggested such an approach, in which
Red-Black ordering was combined with a reduced system technique. The idea is
simple, eliminate the red points, and construct an ILU for the reduced system
of black points. Recently, DeLong and Ortega [28] suggested carrying out a few
steps of red-black ordered SOR as a preconditioner for GMRES and Bi-CGSTAB.
The key to success in these cases seems to be combined e�ect of fast convergence
of SOR for red-black ordering, and the ability of the Krylov subspace to remove
stagnations in convergence behaviour associated with a few isolated eigenvalues
of the preconditioned matrix.

Saad [80] has proposed some interesting variants on the incomplete LU ap-
proach for the matrixA, one of which is in fact an incomplete LQ decomposition.
In this approach it is not necessary to form the matrix Q explicitly, and it turns
out that the lower triangular matrix L can be viewed as the factor of an in-
complete Choleski factorization of the matrix ATA. This can be exploited in
the preconditoning step, avoiding the use of Q. The second approach was to
introduce partial pivoting in ILU, which appears to have some advantages for
convection-dominated problems. This approach was further improved by includ-
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ing a threshold technique for �ll-in [82].

Another major step forward, for important classes of problems, was the in-
troduction of block variants of incomplete factorizations [92, 20, 4], and mod-
i�ed variants of them [4, 66]. It was observed, by Meurant, that these block
variants were more successful for discretized 2-dimensional problems than for
3-dimensional problems, unless the `2-dimensional' blocks in the latter case were
solved accurately. For discussions and analysis on ordering strategies, in relation
to modi�ed block incomplete factorizations, see [67].

Domain decomposition methods were motivated by parallel computing, but it
appeared that the approach could be used with success also for the construction
of preconditioners. Domain decomposition has been used for problems that arise
from discretization of a PDE over a given domain. The idea is to split the
given domain into subdomains, and to solve the discretized PDE's over each
subdomain separately. The main problem is to �nd proper boundary conditions
along the interior boundaries of the subdomains. Domain decomposition is used
in an iterative fashion and usually the interior boundary conditions are based
upon information on the approximate solution of neighboring subdomains that
is available from a previous iteration step.

It was shown by Chan and Goovaerts [17] that domain decomposition can
actually lead to improved convergence rates, provided the number of domains is
not too large. A splitting of the matrix with overlapping subblocks along the
diagonal, which can be viewed as a splitting of the domain, if the matrix is asso-
ciated with a discretized PDE and has been ordered properly, was suggested by
Radicati and Robert [78]. They suggested to construct incomplete factorizations
for the sub-blocks. These sub-blocks are then applied to corresponding parts of
the vectors involved, and some averaging was applied on the overlapping parts.
A more sophisticated domain-oriented splitting was suggested in [105], for SSOR
and MILU decompositions, with a special treatment for unknowns associated
with interfaces between the subdomains.

The isolation of sub-blocks was done by Tang [91] in such a way that the
sub-blocks corresponded to subdomains with proper internal boundary condi-
tions. In this case it is necessary to modify the sub-blocks of the original matrix
such that the subblocks could be interpreted as the discretizations for subdo-
mains with Dirichlet and Neumann boundary conditions in order to force some
smoothness of the approximated solution across boundaries. In [90] this was fur-
ther improved by requiring also continuity of cross-derivatives of the approximate
solution across boundaries. The local �ne-tuning of the resulting interpolation
formulae for the discretizations was carried out by local Fourier-analysis. It
was shown that this approach could lead to impressive reductions in numbers of
iterations for convection dominated problems.

Another approach that received attention is the concept of constructing an
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explicit approximation for the inverse of a given matrix A. The idea is to �nd
a sparse matrix M such that kAM � Ik is small for some convenient norm.
Kolotilina and Yeremin [64] presented an algorithm in which the inverse was
delivered in factored form, which has the advantage that singularity of M can
be easily detected. In [22] an algortithm is presented which uses the 1-norm for
the minimization. We also mention Chow and Saad [18], who use GMRES for
the minimization of kAM � IkF . This approach has the disadvantage that one
does not have easy control over the amount of �ll-in in M , and drop-tolerance
strategies have to be applied. The approach has the advantage that it can be
used to correct explicitly some given implicit approximation, like for instance an
ILU decomposition.

An elegant approach was suggested by Grote and Huckle [57]. They also
attempt to minimize the F-norm, which is equivalent to the Euclidean norm for
the errors in the columns mi of M :

kAM � Ik2F =
nX
i=1

jjAmi � eik22:

Based on this observation they derive an algorithm that produces the sparsity
pattern for the most error-reducing elements ofM . This is done in steps, starting
with a diagonal approximation, each steps adds more non-zero entries toM , and
the procedure is stopped when the norms are small enough or when memory
requirements are violated.

7 Quo Vadis?

In the previous sections we have seen a large number of new iterative methods,
which have come in addition to older methods like Richardson's method, Gauss-
Jacobi, Gauss-Seidel, SOR, SSOR, BSOR, S2LOR, Chebyshev iteration, and
many more. From the positive point of view, this huge variety in methods has
provided us with a powerful toolbox from which we can select the appropriate
tool for a given problem. From the point of view of the poor user however,
this toolbox is confusingly large. In many practical situations it is not clear at
all what method to select. One is often faced with the question from outside
the expert community which method is the best, but there is in general no
best method. This is nicely illustrated in [71], where examples are given of
di�erent types of linear systems with quite di�erent convergence behavior for
a few archetypes of the methods discussed before. It is shown that for each
method there is a linear system for which the given method is the clear winner,
as well as a linear system for which the same method is the clear looser. For
instance, there is an example for which the, in general slowly converging, LSQR
method is better than the, in general fast converging, GMRES method by orders
of magnitudes. This also puts the e�orts in perspective where the methods are
compared on the basis of some examples. Hopefully this gives us some insight
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in the properties of these methods, but what we really need is some insight into
the characteristics of the linear systems that discriminate between methods.

At present the situation is even more complicated due to the existence of dis-
tributed memory parallel computers. These architectures can be used e�ciently
only if one succeeds in keeping communication between processors below certain
levels, and it turns out that the innerproducts, which are needed for the Krylov
subspace methods, become a bottleneck for the e�ciency for larger numbers of
processors [27]. This has led to a revival of interest in innerproduct-free methods,
like Chebyshev's method and SOR. It has been suggested to use these methods in
combination with the Krylov subspace methods (as a polynomial preconditioner,
see [53, 83] for discussions on this), see also our section on preconditioning.
An interesting approach to construct an innerproduct-free variant of CG from
information obtained after a few steps of CG is hinted in [40], where orthog-
onal polynomials are constructed based on partial information obtained from
CG-iteration polynomials. It has been shown by Golub and Kent [50] that the
optimal parameters for the Chebyshev method can also be deduced from the
Chebyshev iteration vectors. This has been further worked out by Calvetti et
al [16], who show how adaptive Chebyshev methods can be constructed with
iteration parameters that are obtained as in [50].

It is well-known that the distribution of eigenvalues has to do with the speed
of convergence of Krylov subspace methods, and a way to improve this distri-
bution is known as Preconditioning. With a good preconditioner there is not
much di�erence between the various Krylov subspace methods, but this shifts
the problem to the identi�cation and construction of good preconditioners. Al-
though much work has been done in this area, there is still a strong need for
identifying good preconditioners, in particular for highly non-normal matrices
and for inde�nite problems. These problems play an important role in Compu-

tational Fluid Dynamics, and also Helmholtz problems lead to inde�nite prob-
lems. For particular cases, for instance the Stokes problem, e�ective inde�nite
preconditioners have been proposed [55, 37].

The main di�culty in inde�nite preconditioning can be explained as follows.
The Krylov subspace methods converge fast when the eigenvalues are clustered,
say around 1. This means that the preconditioner, often viewed as an approxi-
mation to the inverse of the given matrix, must transfer the eigenvalues to 1. It
may easily happen that, due to approximation errors that are intentionally made
in order to keep the process e�cient, eigenvalues are transferred to values close
to 0. In that case the convergence of Krylov subspace methods will be slow, and
it may happen that the unpreconditioned iteration process converges faster than
the preconditioned iteration.

Complex-valued problems can be treated as the problems discussed in this
paper, in particular Hermitian problems can be treated as real symmetric ones,
by replacing AT by AH , and by the appropriate change of innerproduct. Some
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problems, for instance in Electromagnetics, lead to symmetric complex matrices.
Krylov subspace methods that take advantage of this property have been sug-
gested in [43, 99], but preconditioning for this type of problems has remained an
open problem.

The approximation error in iterative schemes is not directly available, and
has to be estimated or bounded in terms of information obtained in the iteration
process. This can be done for special cases, for instance for the Conjugate
Gradient method (see [10] and references therein). For most cases, however, the
problem of getting realistic error bounds is yet unsolved. In some applications
we need information on errors in speci�ed components of the solution, this is
also mainly an open problem.

Parallel computing is a very important issue in solving large linear systems,
but we have treated this issue only in passing. One might easily dedicate an
entire paper for highlighting developments in this area. We restrict ourselves to
referring to the overview paper by Demmel et al [29], in which parallel approaches
are discussed as well as open problems in this area.

Although the list of interesting open problems can be made arbitrarily longer,
space limitations forced us to mention only a few of them.
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