3 research outputs found

    A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0-1 problems

    Get PDF
    A parallel matheuristic algorithm is presented as a spin-off from the exact Branch-and-Fix Coordination (BFC) algorithm for solving multistage stochastic mixed 0-1 problems. Some steps to guarantee the solution’s optimality are relaxed in the BFC algorithm, such that an incomplete backward branching scheme is considered for solving large sized problems. Additionally, a new branching criterion is considered, based on dynamically-guided and stage-wise ordering schemes, such that fewer Twin Node Families are expected to be visited during the execution of the so-called H-DBFC algorithm. The inner parallelization IH-DBFC of the new approach, allows to solve in parallel scenario clusters MIP submodels at different steps of the algorithm. The outer parallel version, OH-DBFC, considers independent paths and allows iterative incumbent solution values exchanges to obtain tighter bounds of the solution value of the original problem. A broad computational experience is reported for assessing the quality of the matheuristic solution for large sized instances. The instances dimensions that are considered are up to two orders of magnitude larger than in some other works that we are aware of. The optimality gap of the H-DBFC solution value versus the one obtained by a state-of-the-artMIP solver is very small, if any. The new approach frequently outperforms it in terms of solution’s quality and computing time. A comparison with our Stochastic Dynamic Programming algorithm is also reported. The use of parallel computing provides, on one hand, a perspective for solving very large sized instances and, on the other hand, an expected large reduction in elapsed time.MTM2015-65317-P, MTM2015-63710-P, IT928-16; UFI BETS 2011; IZO-SGI SGIke

    Essays on Multistage Stochastic Programming applied to Asset Liability Management

    Get PDF
    Uncertainty is a key element of reality. Thus, it becomes natural that the search for methods allows us to represent the unknown in mathematical terms. These problems originate a large class of probabilistic programs recognized as stochastic programming models. They are more realistic than deterministic ones, and their aim is to incorporate uncertainty into their definitions. This dissertation approaches the probabilistic problem class of multistage stochastic problems with chance constraints and joint-chance constraints. Initially, we propose a multistage stochastic asset liability management (ALM) model for a Brazilian pension fund industry. Our model is formalized in compliance with the Brazilian laws and policies. Next, given the relevance of the input parameters for these optimization models, we turn our attention to different sampling models, which compose the discretization process of these stochastic models. We check how these different sampling methodologies impact on the final solution and the portfolio allocation, outlining good options for ALM models. Finally, we propose a framework for the scenario-tree generation and optimization of multistage stochastic programming problems. Relying on the Knuth transform, we generate the scenario trees, taking advantage of the left-child, right-sibling representation, which makes the simulation more efficient in terms of time and the number of scenarios. We also formalize an ALM model reformulation based on implicit extensive form for the optimization model. This technique is designed by the definition of a filtration process with bundles, and coded with the support of an algebraic modeling language. The efficiency of this methodology is tested in a multistage stochastic ALM model with joint-chance constraints. Our framework makes it possible to reach the optimal solution for trees with a reasonable number of scenarios.A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam uma grande classe de programas probabilísticos reconhecidos como modelos de programação estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos. Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica. A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar a solução ótima para árvores com um número razoável de cenários
    corecore