3,178 research outputs found

    Sensitivity Analysis for Mirror-Stratifiable Convex Functions

    Get PDF
    This paper provides a set of sensitivity analysis and activity identification results for a class of convex functions with a strong geometric structure, that we coined "mirror-stratifiable". These functions are such that there is a bijection between a primal and a dual stratification of the space into partitioning sets, called strata. This pairing is crucial to track the strata that are identifiable by solutions of parametrized optimization problems or by iterates of optimization algorithms. This class of functions encompasses all regularizers routinely used in signal and image processing, machine learning, and statistics. We show that this "mirror-stratifiable" structure enjoys a nice sensitivity theory, allowing us to study stability of solutions of optimization problems to small perturbations, as well as activity identification of first-order proximal splitting-type algorithms. Existing results in the literature typically assume that, under a non-degeneracy condition, the active set associated to a minimizer is stable to small perturbations and is identified in finite time by optimization schemes. In contrast, our results do not require any non-degeneracy assumption: in consequence, the optimal active set is not necessarily stable anymore, but we are able to track precisely the set of identifiable strata.We show that these results have crucial implications when solving challenging ill-posed inverse problems via regularization, a typical scenario where the non-degeneracy condition is not fulfilled. Our theoretical results, illustrated by numerical simulations, allow to characterize the instability behaviour of the regularized solutions, by locating the set of all low-dimensional strata that can be potentially identified by these solutions

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a κ\kappa-conditioned problem in O(κ)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(κ1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(κ)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT

    Optimization algorithms for the solution of the frictionless normal contact between rough surfaces

    Get PDF
    This paper revisits the fundamental equations for the solution of the frictionless unilateral normal contact problem between a rough rigid surface and a linear elastic half-plane using the boundary element method (BEM). After recasting the resulting Linear Complementarity Problem (LCP) as a convex quadratic program (QP) with nonnegative constraints, different optimization algorithms are compared for its solution: (i) a Greedy method, based on different solvers for the unconstrained linear system (Conjugate Gradient CG, Gauss-Seidel, Cholesky factorization), (ii) a constrained CG algorithm, (iii) the Alternating Direction Method of Multipliers (ADMM), and (iviv) the Non-Negative Least Squares (NNLS) algorithm, possibly warm-started by accelerated gradient projection steps or taking advantage of a loading history. The latter method is two orders of magnitude faster than the Greedy CG method and one order of magnitude faster than the constrained CG algorithm. Finally, we propose another type of warm start based on a refined criterion for the identification of the initial trial contact domain that can be used in conjunction with all the previous optimization algorithms. This method, called Cascade Multi-Resolution (CMR), takes advantage of physical considerations regarding the scaling of the contact predictions by changing the surface resolution. The method is very efficient and accurate when applied to real or numerically generated rough surfaces, provided that their power spectral density function is of power-law type, as in case of self-similar fractal surfaces.Comment: 38 pages, 11 figure
    corecore