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Abstract

This paper revisits the fundamental equations for the solution of the frictionless uni-

lateral normal contact problem between a rough rigid surface and a linear elastic

half-plane using the boundary element method (BEM). After recasting the result-

ing Linear Complementarity Problem (LCP) as a convex quadratic program (QP)

with nonnegative constraints, different optimization algorithms are compared for

its solution: (i) a Greedy method, based on different solvers for the unconstrained

linear system (Conjugate Gradient CG, Gauss-Seidel, Cholesky factorization), (ii)

a constrained CG algorithm, (iii) the Alternating Direction Method of Multipliers

(ADMM), and (iv) the Non-Negative Least Squares (NNLS) algorithm, possibly

warm-started by accelerated gradient projection steps or taking advantage of a load-

ing history. The latter method is two orders of magnitude faster than the Greedy

CG method and one order of magnitude faster than the constrained CG algorithm.

Finally, we propose another type of warm start based on a refined criterion for the

identification of the initial trial contact domain that can be used in conjunction

with all the previous optimization algorithms. This method, called Cascade Multi-

Resolution (CMR), takes advantage of physical considerations regarding the scaling

of the contact predictions by changing the surface resolution. The method is very

efficient and accurate when applied to real or numerically generated rough surfaces,

provided that their power spectral density function is of power-law type, as in case

of self-similar fractal surfaces.
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1 Introduction

Contact mechanics between rough surfaces is a very active area of research for

its paramount importance to address several practical applications in physics

and engineering. Understanding the evolution of the contact domain and con-

tact variables, such as load, real contact area, contact stiffness, and many

others, that depend on the morphological properties of roughness, is still con-

sidered a challenging problem today. The reader is referred to (Barber, 2003;

Nosonovsky and Bhushan, 2005; Ciavarella et al., 2006; Hyun and Robbins,

2007; Ciavarella et al., 2008a,b; Carbone and Bottiglione, 2008; Paggi and Ciavarella,

2010; Campaña et al., 2011; Paggi and Barber, 2011; Paggi et al., 2014; Yastrebov,

2014) for an overview of research results developed during the last decade.

Semi-analytical contact theories that are able to provide synthetic predic-

tions of the contact response is also a challenging topic. A comparison and

validation on benchmark results is necessary to understand the limitations

of existing approaches and propose further improvements. Experimental in-

vestigations are difficult to make and involve approximations, for example

very often the contact parameters can only be estimated by indirect measure-

ments of thermal or electric resistances of compressed rough joints (McCool,

1986; Sridhar and Yovanovich, 1994) or are mostly limited to measurements

of real contact area under special conditions (O’Callaghan and Probert, 2005;

Hendriks and Visscher, 1995). Therefore, numerical methods are essential to

acquire as much information as possible about the contact problem at hand

and infer general conclusions.

In spite of its effectiveness and versatility, the finite element method (FEM)

has been mainly applied in mechanics to solve contact problems between

rough surfaces in which the constitutive behavior of the bulk is not linear

∗ Corresponding author. Tel: +39-0583-4326-604, Fax: +39-0583-4326-565.
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elastic. For instance, the study of elasto-plastic contact problems with rough-

ness (Hyun et al., 2004), where an explicit approach was used to reduce the

high computational cost, and the study involving frictional dissipative phe-

nomena in visco-elastic materials, where the energy dissipation in the bulk is

essential and can be well predicted by FEM (Wriggers and Reinelt, 2009), are

worth mentioning.

In the linear elastic regime, when the multi-scale character of roughness cover-

ing a wide spectrum of wavelengths is the main focus, the use of the boundary

element method (BEM) is historically preferred over FEM (Andersson, 1981;

Man, 1994). This is essentially due to the fact that only the surface must be

discretized and not the bulk. Moreover, it is not necessary to adopt surface

interpolation techniques, like Bezier curves, to discretize the interface (see,

e.g., the rigorous studies in (Wriggers, 2006, Ch. 9) and (Hyun et al., 2004)),

which must be used with care to avoid smoothing out artificially the fine scale

geometrical features of roughness.

In the application of BEM, the frictionless contact problem between two lin-

ear elastic rough surfaces is mathematically equivalent to the problem of the

normal contact between a rigid rough surface and an elastic half-plane with

equivalent elastic parameters, see (Barber, 2003) for a rigorous proof. The

core of BEM is based on the so-called Green’s functions, that relate the dis-

placement of a generic point of the half-plane to the action of a concentrated

force on the surface caused by contact interactions. An integral convolution

of all the contact tractions provides the deformed contact configuration. After

introducing a discretization of the half-plane consisting of a grid of boundary

elements, the problem of point-force singularity is solved numerically by us-

ing the closed-form solution for a patch load acting on a finite-size boundary

element (Johnson, 1985, Ch. 3,4). The contact problem is then set in terms of

equalities and inequalities stemming from the unilateral contact constraints

and can be solved by constrained optimization. In this regard, apart from the

discretization error intrinsic in any numerical method, BEM provides the high-

est attainable accuracy for discrete problems (Polonsky and Keer, 1999). The

basic version of BEM can be also extended to solve rough contact problems

with friction (Li and Berger, 2003; Pohrt and Li, 2014) and between viscoelas-
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tic materials (Carbone and Putignano, 2013).

With the aim of investigating the effect of roughness at multiple scales, the

availability of computational methods that can solve large contact problems

in an efficient and fast way is of crucial importance. The size of the linear

system of equations relating the contact pressures to the normal deflections

can be in fact quite large, as it arises from high resolution profilometric surface

samples of 512×512 heights and very large indentations. Hence, the compu-

tational challenges regard two main aspects: (i) efficiently solve the system

of linear equations; (ii) impose the satisfaction of the unilateral contact con-

straints (contact inequalities). Regarding the first issue, iterative methods like

the Conjugate Gradient algorithm or the Gauss-Seidel method (Francis, 1983;

Borri-Brunetto et al., 1999, 2001) have been widely used. Alternatively, the

capabilities of multigrid or multilevel methods have been exploited (Raous,

1999; Polonsky and Keer, 1999) to approximately solve the equation system on

coarse grids and then project the results on finer grids. Finally, we mention the

fast method and its variants based on the solution of the linear system of equa-

tions in the Fourier space (see, e.g., (Nogi and Kato, 1997; Polonsky and Keer,

2000a,b; Batrouni et al., 2002; Scaraggi et al., 2013; Prodanov et al., 2014)).

Regarding the imposition of the contact inequalities, (Johnson, 1985, p.149-

150) suggested to apply a greedy approach: after solving the equation set for

the unknown tractions, the boundary elements for which these are negative

(tensile) are excluded in a following iteration from the assumed contact area

and the corresponding pressures set equal to zero. Johnson (1985)[p.149-150]

stated that “experience confirms that repeated iterations converge to a set of

values of pressures which are positive where contact takes place and zero oth-

erwise”. To the best of the authors’ knowledge, a rigorous proof of convergence

of this method has not been found in the literature. However, if valid, it allows

to use any numerical method to solve the unconstrained set of linear equa-

tions and then impose a correction in a recursive way. Indeed, this numerical

approach has been successfully applied by many authors, such as Kubo et al.

(1981) and Borri-Brunetto et al. (1999, 2001) who used this greedy approach

in conjunction with a Gauss-Seidel iterative algorithm for the solution of the

unconstrained set of linear equations, and Karpenko and Akay (2001) and
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Batrouni et al. (2002) who applied it together with a numerical scheme based

on the Fast Fourier Transform (FFT).

In alternative to the greedy approach, Polonsky and Keer (1999) proposed

a constrained Conjugate Gradient method based on the theory in (Hestenes,

1980, Ch. 2,3) to solve the linear system of equations and rigorously impose the

satisfaction of the contact constraints. For the solution of the system of equa-

tions, a multi-grid solution scheme was proposed in (Polonsky and Keer, 1999)

and then a FFT algorithm was considered in (Polonsky and Keer, 2000a,b).

In this paper, we first examine the validity of the greedy approach based on

a monotonic elimination of tensile points. We show that this approach usu-

ally finds the exact solution but, as we prove by a counter-example, it may

fail. Then, we show that other optimization algorithms such as Non-Negative

Least Squares (NNLS) and the Alternative Direction Method of Multipliers

(ADMM) can be used in alternative to the greedy approach, by exploiting the

equivalence between the contact problem and quadratic programming with

unilateral non-negativity constraints. Moreover, we propose warm starting

techniques for the optimization algorithms that are especially useful in case

of a solution of a sequence of increasing or decreasing displacements.

This paper provides a comprehensive comparison of the computational per-

formance of the greedy approach (used in conjunction with different uncon-

strained solvers like the Conjugate Gradient, the Gauss-Seidel iterative scheme,

or the MATLAB’s mldivide solver 1 ), of the original constrained CG method

by (Polonsky and Keer, 1999), and of novel optimization algorithms that are

able to exploit warm starts for solving convex quadratic programs subject

to non-negativity constraints. As a main conclusion, the proposed NNLS al-

gorithm with warm start based on accelerated gradient projections (GPs) is

found to be one order of magnitude faster than the algorithm by Polonsky and Keer

(1999) and two orders of magnitude faster than the greedy approach.

Finally, by exploiting the morphological features of the contact domain of

1 According to documentation, mldivide solves linear systems with sym-

metric positive definite matrices by computing a Cholesky factorization, see

http://www.mathworks.it/help/MATLAB/ref/mldivide.html
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fractal surfaces, we propose in this paper a cascade multi-resolution algorithm

that can further reduce computation time by at least a factor two with respect

to the NNLS algorithm with accelerated GPs.

2 Mathematical formulation

In the framework of BEM, the normal displacements u(x) at any point of

the half-plane identified by the position vector x are related to the contact

pressures p(y) at other points as follows (Johnson, 1985; Barber, 2010):

u(x) =
∫

S
H(x,y)p(y)dy, (1)

where H(x,y) represents the displacement at a point x due to a surface con-

tact pressure p acting at y and S is the elastic half-plane. For homogeneous,

isotropic, linear elastic materials, the influence coefficients are:

H(x,y) =
1− ν2

πE

1

‖ x− y ‖ , (2)

where E and ν denote, respectively, the composite Young’s modulus and Pois-

son’s ratio of half-plane, and ‖ · ‖ the standard Euclidean norm. The total

contact force P is the integral of the contact pressure field

P =
∫

S
p(x)dx. (3)

By referring to Fig. 1, in the following we define for each surface point x ∈ S

its elevation ξ(x), measured with respect to a reference frame, and set ξmax ,

maxx∈S ξ(x) the maximum elevation. The indentation of the half plane at the

points in contact is denoted by ū, whereas a generic displacement along the

surface is u.

We consider the following problem:

Problem 1 For a given far-field displacement ∆ ≥ 0 in the direction perpen-

dicular to the undeformed half-plane, find the solution of the normal contact

problem u(x), p(x) satisfying (1) and the unilateral contact (linear comple-
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Figure 1. Sketch of the contact problem between a rigid rough surface and an elas-

tic half-plane. Its deformed configuration corresponding to the imposed far-field

displacement ∆ is depicted with a black solid line. The red dashed line correspond-

ing to a rigid-body motion of the half-plane identifies the heights to be included in

the initial trial contact domain. Once Problem 1 is solved we may have: (i) heights

certainly not in contact from the beginning, type (a); (ii) heights loosing contact

due to elastic interactions, type (b); (iii) heights in contact, type (c).

mentarity) conditions

u(x)− ū(x,∆) ≥ 0, (4a)

p(x) ≥ 0, (4b)

(u(x)− ū(x,∆))p(x) = 0, (4c)

for all points x ∈ S, where contact tractions are positive when compressive.

Introducing the quantity w(x,∆) = u(x) − ū(x,∆), Eq.(4) can be rewritten

as:

w(x,∆) ≥ 0, (5a)

p(x) ≥ 0, (5b)

w(x,∆)p(x) = 0. (5c)

Problem 1 is an infinite-dimensional linear complementarity problem. We find

a finite-dimensional approximate solution by discretizing the surface as a

square grid of spacing δ consisting of N×N average heights. Let Sij be the cell

of area δ2 indexed by i, j ∈ IN , with IN , {1, ..., N} × {1, ..., N}. Let xi,j ,
∫
x∈Sij

xdx, ξi,j ,
∫
x∈Sij

ξ(x)dx, pi,j ,
∫
x∈Sij

p(x)dx, and ui,j ,
∫
x∈Sij

u(x)dx
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be, respectively, the barycentric coordinate, average height, resultant of the

contact pressures, and the corresponding displacement on the surface element

Sij . Consider the following discretized version of (1)

ui,j =
N∑

k=1

N∑

l=1

Hi−k,j−l pk,l (6)

for all (i, j) ∈ IN , where the term Hi−k,j−l is the Green function used in (1)

averaged over the elementary area δ2, which corresponds to the displacement

induced by a uniformly loaded square:

Hi−k,j−l =
1

δ2

∫

Sij

∫

Skl

H(x,y)dydx, (7)

and

pk,l ≥ 0, ∀(k, l) ∈ IN . (8)

For instance, Borri-Brunetto et al. (1999) used the following approximation

related to a uniform pressure acting on a rounded patch of radius δ/2:

Hi−k,j−l =





2

Eπδ
, if i = k and j = l

2

Eπδ
arcsin

δ

2‖xi,j − xk,l‖
, if i 6= k, j 6= l

(9)

but other formulae for a square patch can also be taken as in (Pohrt and Li,

2014).

Let ĪC , {(i, j) ∈ IN : ξi,j < ξmax−∆} be the set of indices corresponding to

elements Sij that are certainly not in contact (cf. Fig. 1), and hence

pk,l = 0, ∀(k, l) ∈ ĪC , (10)

let m = #ĪC be the number of elements of ĪC and n = #IC the number of

elements belonging to the initial trial contact domain, IC , IN \ ĪC . The set IC
is only a superset of the set I∗C of actual contact points, since the corrections to

the displacements induced by elastic interactions may induce lack of contact

in some elements (i, j), i.e., ui,j > ūi,j, where ūi,j , ∆− ξmax+ ξi,j is the value

of the compenetration of the height corresponding to the element (i, j) in the

half-plane (see Fig. 1).
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For a generic (i, j) ∈ IC corresponding to an element of the surface which is

potentially in contact with the elastic half-plane, we denote by

wi,j , ui,j − ūi,j ≥ 0 (11)

the corresponding elastic correction to the displacement. Clearly, it must hold

that

wi,jpi,j = 0, ∀(i, j) ∈ IC (12)

since wi,j > 0 implies no contact between the surfaces and therefore no pres-

sure, while pi,j > 0 implies contact, ui,j = ūi,j, or equivalently wi,j = 0.

By taking into account that pk,l = 0 for all (k, l) ∈ ĪC , Eq. (6) can be recast

as the following condition

wi,j + ūi,j =
∑

(k,l)∈IC

Hi−k,j−l pk,l, ∀(i, j) ∈ IC , (13)

which is limited to the nodes belonging to the initial trial contact domain IC ,

whose number of elements is in general significantly smaller than those of IN .

The relations (8)-(13) can be recast in matrix form as the following Linear

Complementarity Problem (LCP) (Cottle et al., 1992):

w = Hp− ū (14a)

w ≥ 0, p ≥ 0, w′p = 0, (14b)

where w ∈ R
n is the vector of unknown elastic corrections wi,j, (i, j) ∈ ĪC ,

w′ denotes its transpose, p ∈ R
n is the vector of unknown average con-

tact forces pi,j, (i, j) ∈ IC , ū ∈ R
n is the vector of compenetrations ūi,j,

(i, j) ∈ IC , and H = H′ is the matrix obtained by collecting the compli-

ance coefficients Hi−k,j−l, for (i, j), (k, l) ∈ IC . Due to the properties of linear

elasticity (Johnson, 1985, p.144) we have that

H = H′ ≻ 0, (15)

that is H is a symmetric positive definite matrix (with the additional property

deriving from (9) of having all its entries positive). After solving (14), the

vector u ∈ R
n of normal displacements ui,j, (i, j) ∈ IC , is then simply retrieved

as u = ū+w.
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By the positive definiteness property (15) of H, we inherit immediately the

following important property (Cottle et al., 1992, Th. 3.3.7):

Property 1 The discretized version (8), (10)-(13) of Problem 1 admits a

unique solution p, u, for all ∆ ≥ 0.

The LCP problem (14) corresponds to the Karush-Kuhn-Tucker (KKT) con-

ditions for optimality of the following convex quadratic program (QP)

minp

1

2
p′Hp− ū′p (16a)

s.t. p ≥ 0 (16b)

in that the solution p of (16) and its corresponding optimal dual solution w

solve (14), and vice versa.

Problem (16) is consistent with former pioneering considerations by Kalker and van Randen

(1972) and also summarized in (Johnson, 1985, p.151–152). In fact, the contact

pressures solving the unilateral contact problem can be obtained by minimiz-

ing the total complementary energy W of the linear elastic system, subject to

the constraint p(x) ≥ 0, ∀x ∈ S. For a continuous system, the total comple-

mentary energy is

W = U −
∫

S
p(x)ū(x,∆) dx, (17)

where U is the internal complementary energy of the deformed half-plane in

contact. For linear elastic materials, we have:

U =
1

2

∫

S
p(x)u(x) dx. (18)

Although such an energy-based approach can be used to derive FEM for-

mulations, it is also possible to remain within BEM and introduce a surface

discretization as before. By invoking the averaged Green’s functions in (7),

the discretized version of W̃ leads to

W̃ =
1

2

∑

(i,j)∈IC

∑

(k,l)∈IC

Hi−k,j−l pk,lpi,j −
∑

(i,j)∈IC

pi,jūi,j (19)

which represents a quadratic function of p to be minimized, under the con-

straints pi,j ≥ 0, ∀(i, j) ∈ IC , as in (16). Since it is unlikely that the contact
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area is known a priori, the active set of nodes in contact results only after

solving problem (14) or equivalently (16).

A large variety of solvers for LCP and QP problems were developed in the last

60 years (Beale, 1955; Fletcher, 1971; Goldfarb and Idnani, 1983; Cottle et al.,

1992; Schmid and Biegler, 1994; Patrinos and Bemporad, 2014), and is still

an active area of research in the optimization and control communities. His-

torically, in the mechanics community, Kalker and van Randen (1972) pro-

posed the simplex method, although it was found to be practical only for

relatively small N . More recent contributions adopt algorithms to solve the

unconstrained linear system of equations and then correct the solution by

eliminating the boundary elements bearing tensile tractions (Francis, 1983;

Borri-Brunetto et al., 1999, 2001), or use a constrained version of the Con-

jugate Gradient (CG) algorithm (Polonsky and Keer, 1999). These methods

are simply initialized by considering arbitrary nonnegative entries in p, with-

out taking advantage of the monotonic increase (or decrease) of pressures by

increasing (or decreasing) the far-field displacement, an important property

guaranteed by rigorous elasticity theorems (Barber, 1974). The history of pres-

sures is saved during a contact simulation and it is easy to access and use and

it can be beneficial to save computation time.

Next section presents effective optimization algorithms for solving the QP

problem (16) and compares their performance with respect to the Greedy

CG method. Contrary to the latter, not only the considered QP have the

guaranteed property of always converging to the unique solution p, u for any

given ∆ ≥ 0, but also the history of loading can be more efficiently taken into

account as a warm-start, with a significant saving of computation time.

3 Optimization algorithms

Since now on, we use the subscript i to denote the i-th component of a vector

or the i-th row of a matrix, the subscript I to denote the subvector obtained

by collecting all the components i ∈ I of a vector (or all the rows i of a

matrix), and the double subscript I, I1 to denote the submatrix obtained by
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collecting the i-th row and j-th column, for all i ∈ I, j ∈ I1.

3.1 Greedy methods

A greedy method corresponds to solve problem (16) by iteratively solving the

unconstrained linear system of equations w = Hp − ū = 0 with respect to

p and increasingly zeroing negative elements of p until the condition p ≥ 0

is satisfied. By construction we obtain w′p = 0. The method is described in

Algorithm 1, in which a standard Conjugate Gradient employed to solve the

unconstrained linear system of equations. Steps 2.1-2.4 can be replaced by

any other algorithm for solving the linear system of equations, like the Gauss-

Seidel iterative scheme as in (Borri-Brunetto et al., 1999, 2001), the MAT-

LAB’s mldivide solver, or even the FFT algorithm as in (Karpenko and Akay,

2001; Batrouni et al., 2002).

Assuming that the prescribed initial p and I are such that pj = 0 for all

j ∈ {1, . . . , n} \ I, and Kmax is sufficiently large, the output of the greedy

algorithm leads to a contact pressure vector p∗ and a normal displacement

vector u∗ satisfying u∗ = Hp∗, p∗ ≥ 0, (u∗ − ū)′p∗ = 0. In fact, condition

p∗ ≥ 0 is guaranteed by the condition in Step 2 up to ǫ precision. By letting

w∗ , u∗− ū, at termination of the algorithm we have w∗
I = HI,Ip

∗
I − ūI = 0

because of the solution of the CG method (Step 2.4), or equivalently u∗
I = ūI

(cf. Step 5). By setting u∗
Ī , HĪ,IpI in Step 5, and recalling that p∗

Ī = 0, we

have


w∗

I

w∗
Ī


 =




0 0

HĪ,I 0






p∗
I

0


+




0

−ūĪ


 =



HI,I HI,Ī

HĪ,I HĪ,Ī






p∗
I

p∗
Ī


+



−ūI

−ūĪ




and hence u∗ = w∗+ ū = Hp∗. The complementarity condition (u∗− ū)′p∗ =

(w∗)′p∗ = 0 follows by construction, as Step 2.4 zeroes all the components of

w∗
j that correspond to nonnegative p∗

j , ∀j ∈ I, and zeroes all the components

p∗
j that correspond to possible nonzero components w∗

j , ∀j ∈ Ī.

However, to the best of the authors’ knowledge, no formal proof exists that the

condition w∗
Ī ≥ 0 is satisfied after the algorithm terminates, i.e., that u∗ ≥ ū.

12



Algorithm 1. Greedy method with Conjugate Gradient (greedy CG)

Input: Matrix H = H′ ≻ 0, vector ū; initial guess p and initial active set

I ⊆ {1, . . . , n} such that p{1,...,n}\I = 0; maximum number Kmax of iterations,

tolerance ǫ > 0.

(1) i← 0; Ī ← {1, . . . , n} \ I;
(2) while (i ≤ Kmax and min(p) < −ǫ) or i = 0 do:

(2.1) wI ← HI,IpI − ūI ;

(2.2) nw ← ‖wI‖2;
(2.3) bI ← −wI

(2.4) while nw > ǫ and i ≤ Kmax do:

(2.4.1) sI ← HI,IbI ;

(2.4.2) pI ← pI − w′

I
bI

b′

I
sI
bI ;

(2.4.3) w̄I ← HI,IpI − ūI ;

(2.4.4) bI ← −w̄I +
w̄′

I
sI

b′

I
sI
bI ;

(2.4.5) wI ← w̄I ;

(2.4.6) nw ← ‖wI‖2;
(2.4.7) i← i+ 1;

(2.5) for j ∈ I do:

(2.5.1) if pj < −ǫ then pj ← 0; I ← I \ {j}; Ī ← Ī ∪ {j};
(3) p∗ ← p;

(4) u∗
I = ūI , u

∗
Ī ← HĪ,IpI ;

(5) end.

Output: Contact force vector p∗ and normal displacement vector u∗.

If the algorithm is applied to randomly generated ū vectors and H positive

definite matrices with positive coefficients, in many cases the LCP is not solved

exactly. In contact mechanics, the only evidence that this condition is satisfied

has been shown in simulations (see, e.g., (Batrouni et al., 2002)). Indeed, we

obtained the following counterexample in which the greedy method failed in

getting the solution also for H whose coefficients are given by Eq.(9) 2 .

Example 1 Consider a square mesh with grid spacing δ consisting of N ×N

boundary elements indexed by (i, j) ∈ IN , IN = {1, . . . , N}×{1, . . . , N}. Sup-

2 The MATLAB routine of the counterexample is available for download at

http://musam.imtlucca.it/counterexample.m
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pose that all the boundary elements are included in the initial trial contact do-

main IC (n = N×N) by assigning a positive value of ūi,j to all elements. This

may represent a situation where a cluster of densely packed heights comes into

contact. Since ūi,j depends on the height field ξi,j, which is a random variable,

for the sake of generality we extract the values ūi,j randomly from a uniform

distribution in the interval (0, 1). The matrix H is assembled according to (9).

By running a sequence of 100 random simulations, we find that in approxi-

mately 40% of the simulations the greedy method provides a solution which

violates the condition w∗
i,j ≥ 0 in at least one element. This lack of getting

the right solution is observed for any size n of the problem. One of the wrong

results obtained for n = 100 is shown in Fig. 2. The assigned random values

of ū are plotted in Fig. 2(a) for the sequence of boundary elements (from 1

to 100) composing the mesh. The solution w∗ presents a negative entry in

one single element (element 62 in Fig. 2(b)). The computed contact forces are

compared in Fig. 2(c) with the values corresponding to the exact solution of

the problem (green dots) obtained by using the NNLS algorithm presented

in Section 3.3, that is proven to satisfy the LCP conditions (14) exactly. Al-

though just one value of w∗ is negative, the overall solution is affected by this

violation. We observe in fact a false contact detection for the element number

62 violating the condition w∗
i,j > 0, a contact not detected (element 81) and 7

contact forces significantly underestimated with respect to the exact ones. �

For less densely packed boundary elements belonging to IC , for instance with

a minimum distance of 2δ between them instead of δ as in Example 1, the

algorithm was found to always provide a solution satisfying the condition

w∗ ≥ 0. Other benchmark tests considering a deterministic smooth variation

of ū, as in case of an indentation by a smooth sphere or by a flat punch, did not

show any convergence problem to the solution as well, although the boundary

elements in contact are densely packed as in the counterexample shown before.

In conclusion, although it is likely that the diagonally dominant property of

the matrixH plays a role in the robustness of the algorithm, it remains an open

problem to find exact mathematical requirements for H and ū that guarantee

the greedy method to provide a solution satisfying w∗ ≥ 0, so that all the

LCP conditions (14) are met.
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Figure 2. Counterexample showing that the greedy CG method fails in getting

the correct solution (δ = 1 a.u. of L, as u and w∗; E = 0.01 F/L2). Green dots

correspond to the correct contact forces satisfying the LCP and are obtained by

using the NNLS method, Sec. 3.2
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Therefore, as a word of caution, the reliability of the greedy method should be

carefully checked in case of applications of BEM to contact problems governed

by other forms of H, as in the case of contact with an anisotropic or an

inhomogeneous half-space, or in the presence of multiple fields.

Another drawback of the algorithm is the difficulty to warm start the method

with a proper choice of the initial active set I. Since at Step 2.5.1 the number

of elements in the sequence I is decreased by removing negative enough com-

ponents pj of the current solution vector, i.e., eliminating the points bearing

tensile (negative) forces, in a monotonic way (no index j that has been removed

from I can be added back), a safe cold start is to set I = {1, . . . , n} and pick

up a vector p ≥ 0, usually a vector with arbitrary non-negative numbers. The

history of contact forces obtained during the solution of a sequence of imposed

displacements is not taken into account by the method to accelerate its con-

vergence, although we know that contact forces are monotonically increasing

functions of the far-field displacement. In any case, for a complex sequence of

loading with an increased or decreased far-field displacement, any warm start-

ing on forces cannot be implemented in the method, since the elimination of

contact points is irreversible.

3.2 Constrained Conjugate Gradient

A constrained CG algorithm was proposed by Polonsky and Keer (1999) based

on the theory by (Hestenes, 1980, Ch. 2,3) to solve the linear system of equa-

tions and rigorously impose the satisfaction of the contact constraints. Algo-

rithm 2 has been applied by Polonsky and Keer (1999) to simulations under

load control. However, it can be used also for displacement control. The con-

dition for convergence set by Polonsky and Keer (1999) in terms of relative

variation in the local contact forces from an iteration to the next has been re-

cast in terms of the error in the local contact displacements. The two criteria

are completely equivalent.

This constrained CG algorithm does not remove the points bearing tensile

forces from the active set. Therefore, the size of the linear system of equations

16



Algorithm 2. Constrained Conjugate Gradient

Input: Matrix H = H′ ≻ 0, vector ū, initial guess p ≥ 0, initial active set

I = {1, . . . , n}; maximum number Kmax of iterations, tolerance ǫ > 0.

(1) i← 0, nw,old = 1, d = 0, err = +∞;

(2) w← Hp− ū;

(3) while (i ≤ Kmax and err > ǫ):

(3.1) if i = 0 then t← w else: t← w + d
nw

nw,old

told;

(3.2) τ =
w′t

t′Ht
;

(3.3) p← p− τt;

(3.4) ∀j ∈ I : pj ← max{pj, 0};
(3.5) Find Iol = {j ∈ I : pj = 0, wj < 0};

if Iol = ∅ then d = 1 else d = 0; pj ← pj − τwj, ∀j ∈ Iol;

(3.6) I ← {j : pj > 0} ∪ Iol;

(3.7) told ← t, nw,old ← nw;

(3.8) w← Hp− ū;

(3.9) nw = ‖w‖2;
(3.10) err ← |nw − nw,old|/nw,old;

(3.11) i← i+ 1;

(4) p∗ ← p; u∗ = Hp∗;

(5) end.

Output: Contact force vector p∗ and normal displacement vector u∗.

is not reduced during the iterations, increasing the computation time for its

solution. On the other hand, the method assures the satisfaction of the LCP

conditions (14) and it is found to convergence with a reduced number of iter-

ations as compared to the Greedy CG algorithm. Although not investigated

in (Polonsky and Keer, 1999), it can be warm started in case of a sequence

of loading steps by considering both an initial trial contact domain and a set

of contact pressures derived from the previous converged solution. The FFT

method can be used to accelerate step (2.7) as in (Polonsky and Keer, 2000a).
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3.3 Non-Negative Least Squares (NNLS)

In this section we show how a QP problem with positive definite Hessian

matrix having the special form (16) can be effectively solved as a nonnegative

least squares problem.

Thanks to property (15), matrix H admits a Cholesky factorization H = C′C.

Hence we can theoretically recast problem (16) as the Non-Negative Least

Squares (NNLS) problem:

minp

1

2
‖Cp−C−T ū‖22 (20a)

s.t. p ≥ 0 (20b)

A simple and effective active-set method for solving the NNLS problem (20)

is the one in (Lawson and Hanson, 1974, p.161), that is extended here in

Algorithm 3 to directly solve (16) without explicitly computing the Cholesky

factor C and its inverse C−1 and to handle warm starts. After a finite number

of steps, Algorithm 3 converges to the optimal contact force vector p∗ and

returns the normal displacement vector u∗ whose components pi,j, ui,j satisfy

pi,j ≥ 0, ui,j ≥ ūi,j, (ui,j − ūi,j)pi,j = 0, and (13), ∀(i, j) ∈ IC .

The method is easy to warm start in case of a loading scenario consisting of an

alternating sequence of increasing or decreasing far-field displacements. The

contact forces determined for a given imposed displacement are used to initial-

ize vector p. Due to the monotonicity of the contact solution, this initialization

is certainly much closer to the optimal solution p∗ than a zero vector. This

usually significantly reduces the iterations of the method to convergence. Such

a warm start has a fast implementation requiring a projection of the forces

of the points belonging to I∗C(∆k) to the same points of the trial domain

I∗C(∆k+1) for a new imposed far field displacement ∆k+1. For an increasing

far-field displacement, i.e., ∆k+1 > ∆k the forces in the elements belonging

to I∗C(∆k+1) − I∗C(∆k) are simply initialized equal to zero. In the numerical

experiments of Section 4, the time required for this projection will be added to

the global solution time for a consistent comparison with the greedy method

with cold start and with the constrained CG algorithm.
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Algorithm 3. Non-Negative Least Squares (NNLS)

Input: Matrix H = H′ ≻ 0, vector ū, initial guess p; maximum number Kmax

of iterations, tolerance ǫ > 0.

(1) I ← {i ∈ {1, . . . , n} : pi > 0}; init← FALSE; k ← 0;

(2) if I = ∅ then init← TRUE;

(3) w← Hp− ū;

(4) if ((w ≥ −ǫ or I = {1, . . . , n}) and init = TRUE) or k ≥ Kmax then

go to Step 13;

(5) if init = TRUE then i← argmini∈{1,...,n}\I wi; I ← I ∪ {i};
else init← TRUE;

(6) sI ← solution of the linear system HIsI = ūI

(7) if sI ≥ −ǫ then p← s and go to Step 3;

(8) j ← argminh∈I: sh≤0

{
ph

ph−sh

}
;

(9) p← p+ pj

pj−sj
(s− p);

(10) I0 ← {h ∈ I : ph = 0};
(11) I ← I \ I0; k ← k + 1;

(12) go to Step 6;

(13) p∗ ← p;

(14) u∗ ← w + ū;

(15) end.

Output: Contact force vector p∗ and normal displacement vector u∗ satisfy-

ing u∗ = Hp, u∗ ≥ ū, p∗ ≥ 0, (u∗ − ū)′p = 0.

Note that Step 6 of Algorithm 3 is equivalent to Step 2.4 of Algorithm 1

and has been performed by using the MATLAB’s mldivide solver. This step

can be accelerated by the use of an approach based on the FFT (for its im-

plementation, see e.g. (Batrouni et al., 2002)). Alternatively, since the set I0
changes incrementally during the iterations of the algorithm, more efficient it-

erative QR (Lawson and Hanson, 1974, Chap. 24) or LDLT Bemporad (2014)

factorization methods can be employed.

3.3.1 Warm-started NNLS via accelerated Gradient Projection (NNLS+GP)

An alternative method to solve Problem (16) is to use an accelerated gradi-

ent projection (GP) method for QP (Nesterov, 1983; Patrinos and Bemporad,
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Algorithm 4. Accelerated Gradient Projection (GP)

Input: Matrix H = H′ ≻ 0 and its Frobenius norm L, vector ū, initial guess

p, number K of iterations.

(1) p̄← p;

(2) for i = 0, . . . , K − 1 do:

(2.1) β = max{ i−1
i+2

, 0};
(2.2) s = p+ β(p− p̄);

(2.3) w = Hs− ū;

(2.4) p̄← p;

(2.5) p← max{s− 1
L
w, 0};

(3) end.

Output: Warm start for contact force vector p and elastic correction vector

w.

2014). Because of the simple nonnegative constraints in (16), rather than go-

ing to the dual QP formulation as in (Patrinos and Bemporad, 2014), we for-

mulate the GP problem directly for the primal QP problem (16). Numerical

experiments have shown slow convergence of a pure accelerated GP method

to solve (16). However, we can use the method to warm start Algorithm 3,

as described in Algorithm 4. If Algorithm 4 is executed (K > 0), it returns a

vector p that is immediately used as an input to Algorithm 3, otherwise one

can simply set p = 0 (cold start). As shown in Section 4, GP iterations provide

large benefits in warm starting the NNLS solver, therefore allowing taking the

best advantages of the two methods: quickly getting in the neighborhood of

the optimal solution (GP iterations of Algorithm 4) and getting solutions up

to machine precision after a finite number of iterations (the active-set NNLS

Algorithm 3).

3.4 Alternating Direction Method of Multipliers (ADMM)

The QP problem (16) can also be solved by the Alternating Direction Method

of Multipliers (ADMM), which belongs to the class of augmented Lagrangian

methods. The reader is referred to (Boyd et al., 2011) for mathematical details.
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The method treats the QP (16) as the following problem

minp,s
1
2
p′Hp− ū′p+ g(s)

s.t. p = s

(21)

where

g(s) =





0 if s ≥ 0

+∞ if s < 0

Then, the augmented Lagrangian function

Lρ(p, s,w) =
1

2
p′Hp− ū′p+ g(s) +w′(p− s) +

ρ

2
‖p− s‖22

is considered, where ρ > 0 is a parameter of the algorithm. The basic ADMM

algorithm consists of the following iterations:

pk+1 = argminp Lρ(p, s
k,wk)

sk+1 = argmins Lρ(p
k+1, s,wk)

wk+1 = wk + ρ(pk+1 − sk+1)

(22)

A scaled form with over-relaxation of the ADMM iterations (22) is summarized

in Algorithm 5. The algorithm is guaranteed to converge asymptotically to the

solution p∗, u∗ of the problem. The over-relaxation parameter α > 1 is intro-

duced to improve convergence, typical values for α suggested in (Boyd et al.,

2011) are α ∈ [1.5, 1.8].

A warm start of the algorithm that takes into account the loading history

is possible in a way analogous to that described for the NNLS approach of

Section 3.3. However, as an additional complexity, also an initialization for

the dual variable vector w must be provided, possibly obtained by projecting

the solution obtained for a certain ∆k to that for ∆k+1.
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Algorithm 5. Alternative Direction Method of Multipliers (ADMM)

Input: Matrix H = H′ ≻ 0, vector ū, initial guesses p, w, parameter ρ >

0, over-relaxation parameter α > 1, maximum number Kmax of iterations,

tolerance ǫ > 0.

(1) M← (1
ρ
H+ I)−1;

(2) wρ ← −1
ρ
w;

(3) s← p;

(4) i← 0;

(5) while (i ≤ Kmax and ‖p− s‖∞ > ǫ) or i = 0 do:

(5.1) s←M(p−wρ − 1
ρ
ū);

(5.2) s̄← αs+ (1− α)p;

(5.3) p← max{s̄+wρ, 0};
(5.4) wρ ← wρ + s̄− p;

(5.5) i← i+ 1;

(6) p∗ ← p;

(7) u∗ ← ū− ρwρ;

(8) end.

Output: Contact force vector p∗ and normal displacement vector u∗ satisfy-

ing u∗ = Hp, u∗ ≥ ū, p∗ ≥ 0, (u∗ − ū)′p = 0.

4 Performance comparison of the algorithms

The optimization algorithms presented in the previous section are herein ap-

plied to the frictionless normal contact problem between a numerically gen-

erated pre-fractal rough surface and a half-plane, in order to compare their

performance in terms of number of iterations required to achieve convergence

and computation time.

The random midpoint displacement algorithm (Peitgen and Saupe, 1988) is

used to generate the synthetic height field of surfaces with multiscale fractal

roughness, i.e., with a power spectral density (PSD) function of the height

field of power-law type. The surface with a given resolution (pre-fractal) is re-

alized by a successive refinement of an initial coarse representation by adding

a sequence of intermediate heights whose elevation is extracted from a Gaus-

sian distribution with a suitable rescaled variance, see a qualitative sketch
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Progressive surface refinement

Figure 3. Rough surfaces with multi-scale roughness and different resolution, nu-

merically generated by the random midpoint displacement algorithm.

in Fig. 3. Several applications of the method to model rough surfaces for

contact mechanics simulations are available in (Zavarise et al., 2004, 2007;

Paggi and Ciavarella, 2010).

In particular, we consider a test problem consisting of a surface with Hurst

exponent H = 0.7, lateral size L = 100 µm and 512 heights per side, which

corresponds to the highest discretization used to sample real surfaces with

a confocal profilometer, like the Leica DCM3D available at the Multi-scale

Analysis of Materials (MUSAM) Laboratory of IMT Lucca, Italy. Similar dis-

cretizations are obtained in case of AFM. The surface is brought into contact

with an elastic half-plane under displacement control. Ten displacement steps

are imposed to reach a maximum far-field displacement which is set equal to

(ξmax − ξave)/2, where ξmax and ξave are the maximum and the average ele-

vations of the rough surface, respectively. All the simulations are carried out

with the server 653745-421 Proliant DL585R07 from Hewlett Packard with

128 GB Ram, 4 processors AMD Opteron 6282 SE 2.60 GHz with 16 cores

running MATLAB R2014b.

The parameters for the Greedy CG method are the maximum number of

iterations Kmax = 1 × 105 and the convergence tolerance ǫ = 1 × 10−8. The

contact forces are initialized at zero (cold start). The constrained CG method

also considers Kmax = 1× 105 and the same tolerance ǫ = 1× 10−8. Both the

original version by Polonsky and Keer (1999) (labeled P&K1999 in Fig. 4)

and its warm-started variant (labeled P&K1999 + warm start in Fig. 4) are

considered.

For the NNLS algorithm (Algorithm 3) we adopt the warm start strategy
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Figure 4. Comparison between the optimization algorithms in terms of computation

time.

based on the projection of contact forces from the solution corresponding

to a previous displacement step. Alternatively, for NNLS+GP, 100 gradient

projections are used to initialize vector p. For the ADMM method we use

α = 1.5, ρ = 1, Kmax = 3 × 103 and ǫ = 10−8. The total number n of

optimization variables is varying with ∆ and therefore with the force level.

For the highest indentation we have n = 35555. Warm starting the algorithm

is achieved by projecting primal variables as for the NNLS and dual variables

w as well. The projection simply consists of assigning the values of p∗i,j and

w∗ of the boundary elements in contact for the step ∆k to the same boundary

elements belonging to the trial contact domain IC corresponding to the higher

indentation ∆k+1.

Once convergence is achieved for each imposed far-field displacement, the

optimization algorithms provide the same normal force P and contact do-

mains, with small roundoff errors due to finite machine precision. The CPU

time required by each method to achieve convergence are shown in Fig. 4

vs. the dimensionless normal force P/(EA), where E is the Young’s mod-

ulus and A = L2 is the nominal contact area. The best performance is

achieved by the application of the NNLS method with 100 gradient projec-

tions (GP), which is 26 times faster than the original constrained CG method

by Polonsky and Keer (1999) and about two orders of magnitude faster than

the ADMM and the Greedy CG algorithms.
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contact superset IC : CG vs. MATLAB’s mldivide solver and CG vs. Gauss-Seidel

algorithm.

As outlined in the introduction, the Greedy method can be used in conjunction

with other algorithms for solving the unconstrained linear system of equations

(Step 2.4) than the CG algorithm. Although an extensive comparison of dif-

ferent solvers of linear systems of equations with positive definite matrices is

outside the scope of this paper, we tested the Greedy algorithm after replacing

the CG Step 2.4 with the optimized built-in mldivide function of MATLAB,

or with the Gauss-Seidel algorithm, as proposed in Borri-Brunetto et al. (1999,

2001).

The MATLAB’s mldivide solver (which employs the Cholesky factorization)

leads to a reduction of computation time of 30−40%, almost regardless of the

size of the system n, see Fig. 5. Even with this gain in computation speed,

the overall performance is still quite far from that of the NNLS Algorithm 3

on the platform used for the tests. Moreover, the MATLAB solver leads to an

error of lack of memory for n > 20000, a serious problem for large systems

that is not suffered by the CG solver described in Step 2.4 of Algorithm 1.

The Gauss-Seidel algorithm does not suffer for the lack of memory but it is

about 3 times slower than the CG method.

The effect of the number K of GP iterations applied before the NNLS algo-

rithm is investigated in Fig. 6 for the same test problem whose results were

shown in Fig. 4. By increasing K from 0 to 100 we observe a reduction in

the total computation time due to a decrease in the number of iterations re-
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Figure 6. Computation times of the NNLS algorithm depending on the number K

of gradient projection (GP) iterations.

quested by the NNLS algorithm to achieve convergence thanks to a better

initial guess of p. However, a further increase in K (see, e.g., the blue curve

in Fig. 6 corresponding to K = 200 iterations) does not correspond to further

savings of CPU time. This is due to the fact that the number of NNLS itera-

tions was already reduced to its minimum for K = 100 GP iterations, so that

the application of further gradient projections are just leading to additional

CPU time without further benefit.

5 Cascade multi-resolution (CMR) method

5.1 Algorithm

A further speed-up of computation time, as compared to the NNLS method,

can be achieved by improving the criterion for the guess of the initial set IC of

points in contact. The standard criterion based on checking the interpenetra-

tion of the surface heights into the half-plane in case of a rigid body motion

is the most conservative. However, at convergence, only a small subset I∗C of

that initial set is actually in contact. Therefore, a better choice of the initial

trial contact domain would reduce the size of the system of linear equations

with an expected benefit in terms of computation time.
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As shown in (Borri-Brunetto et al., 1999) via numerical simulations on pre-

fractal surfaces with Hurst exponent H > 0.5 and different resolution, by

refining the surface height field via a recursive application of the random

midpoint displacement algorithm the real contact area of each surface repre-

sentation decreases by reducing δ, as illustrated in the sketch in Fig. 7. In the

fractal limit of δ → 0, the real contact area vanishes. Therefore, this property

of lacunarity implies that the heights that are not in contact for a coarser

surface representation are not expected to come into contact by a successive

refining of the height field, for the same imposed far-field displacement.

Therefore, as a better criterion, the initial trial contact domain can be selected

by retaining, among all the heights selected by the rigid body interpenetration

check, only those located within the areas of influence of the nodes belonging

to the contact domain of a coarser representation of the rough surface for the

same imposed displacement ∆.

As graphically shown in Fig. 7, an area of influence of a given node in contact

can be defined by the radius
√
2δ, where δ is the grid size of the coarser surface

representation. Since the criterion is not exact, it is convenient to consider a

multiplicative factor h larger than one for the radius defining the nodal area of

influence. It is remarkable to note that this numerical scheme can be applied

recursively to a cascade of coarser representations of the same rough surface.

As a general trend, computation time is expected to drastically diminish by

increasing the number of cascade projections. However, the propagation of

errors due to the wrong exclusion of heights that would actually make contact

cannot be controlled by the algorithm and it is expected to increase with the

number of projections as well. The advantage of the method is represented

by the fact that, in addition to saving computation time with respect to that

required by the NNLS algorithm to solve just the contact problem for the

finest surface, all the contact predictions for the coarser scale representations

of the same surface will be available for free, which is a useful result for the

multi-scale characterization of contact problems. Moreover, the CMR method

can be used in conjunction with any of the optimization algorithms presented

in the previous sections.
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Figure 7. A sketch illustrating the property of lacunarity of the contact domain: the

real contact area progressively diminishes by refining the surface, until vanishes in

the fractal limit of δ → 0. This implies that some boundary elements detected by

the rigid-body interpenetration criterion (dashed grey elements) can be neglected a

priori since they are outside the real contact area corresponding to the coarse scale

contact solution.

Algorithm 6. Cascade multi-resolution (CMR) algorithm

Input: s = 1, . . . , l surface representations with different resolution or grid

spacing δ(s); area of influence parameter h ≥ 1.

(1) for s = 1, . . . , l do:

(1.1) Determine IC(s) = {(i, j) ∈ IN(s) : ξi,j ≥ ξmax(s)−∆};
(1.2) if s = 1 then IC,p(s) = IC(s)

else IC,p(s) = {(i, j) ∈ IC(s) : ri−k,j−l = ‖xi,j − xk,l‖ ≤ hδ(s − 1)},
∀(k, l) ∈ I∗C(s− 1)

end

(2) Construct H based on the projected trial contact domain IC,p(s);

(3) Apply optimization algorithms (e.g., NNLS) and determine p∗, u∗, I∗C(s);

(4) end.

The algorithm is illustrated in Algorithm (6).
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5.2 Validation in case of numerically generated and real rough surfaces

To assess the computational performance of the approach described in Sec-

tion 5.1, the CMD method is applied in conjunction with the NNLS algorithm

to pre-fractal surfaces with different H numerically generated by the RMD

method. As an example, the lateral size is 100 µm for all the surfaces and the

finest resolution whose contact response has to be sought corresponds to 256

heights per side. The method requires the storage of the coarser representa-

tions of such surfaces that are in any case available by the RMD algorithm

during its various steps of random addition.

We apply the cascade of projections starting by a coarser representation of

the surfaces with only 16 heights per side and then considering 32, 64, 128

and finally 256 heights per side. A parameter h = 2 has been used for the

definition of the area of influence. The solution of the contact problem for

the surface with 16 heights per side is obtained in an exact form since it is

the starting point of the cascade, whereas the contact predictions for the finer

surface representations can be affected by an error intrinsic in the criterion.

The approximate predictions for the surface with 256 heights per side are

compared with the reference solution corresponding to the application of the

NNLS algorithm with warm start directly to the finest representation of the

rough surface.

The computation time of the CMR+NNLS solution is the sum of the CPU

time required to solve all the coarser surface representations and it is found to

be much less than the CPU time required by the NNLS algorithm to solve just

one single surface with the finest resolution, see Fig. 8, where we observe a

reduction of 50% in CPU time almost regardless of H . The relative error in the

computation of the maximum normal force between the predicted solution and

the reference one is a rapid decreasing function of H , as shown in Fig. 8(d).

Considering that real surfaces have often a Hurst exponent H > 0.5, this is

very promising.

A synthetic diagram illustrating the effect of the parameter h for the surface

with H = 0.7 and for a single imposed displacement corresponding to the
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Figure 8. Performance of the CMR+NNLS method applied to numerically generated

fractal surfaces with different Hurst exponent H, h = 2.

maximum load in Fig. 8(c) is shown in Fig. 9. The relative error is rapidly

decreasing to values less than 1% by increasing h. The ratio between the

number of points expected to be in contact after the application of the CMR

projection criterion, np, and the number of points that would be included by

using the classic rigid-body interpenetration check, n, is ranging from 0.4 to

0.8 by increasing h from 1.25 to 3.0. The ratio between CPU times, on the

other hand, tends to an asymptotic value of 0.6, which implies a saving of 40%

of computation time as compared to the exact solution, with less than 0.01%

of relative error.

We also check the CMR method for warm starting on real surfaces not dis-

playing the ideal fractal scaling at any length scale, to better assess possible

limits of applicability. As a practical example we consider the surface of tex-

tured silicon solar cells sampled with two different lenses in order to achieve

two different magnifications (10x and 100x) by using the confocal profilometer
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Figure 9. Performance of the CMR+NNLS method with respect to NNLS for a

numerically generated fractal surface with H = 0.7, depending on the parameter h.

Leica DCM3D, see Fig. 10. The PSD function of such a surface sampled with

512 points per side presents a power-law trend for high frequencies (fine resolu-

tions) and a cut-off to the power-law at low frequencies (coarse resolutions). In

the power-law regime the surface is characterized by a Hurst exponent H ∼= 0.6

that can be determined by the slope of the PSD function as customary.

As a main difference with respect to pre-fractal rough surfaces generated by

the RMD algorithm, the application of the CMR method requires a filter to

downsample the acquired surfaces and extract their coarser representations.

The CMR method is applied to the two surfaces acquired with 10x and 100x

magnifications using h = 1.5 and considering a cascade of projections in-

volving coarser representations of the finest surfaces with 64 and 128 heights

per side. A single contact step corresponding to an imposed far-field normal

displacement equal to (ξmax − ξave)/5 is examined.

The application of the CMR+NNLS method to the surface acquired at 100x

leads to very good results in line with those observed for ideal fractal surfaces.

The relative error in the prediction of the normal load is −0.4%, with a sav-

ing of CPU time of 18% as compared to the direct application of the NNLS

algorithm. On the other hand, the method applied to the surface acquired at

10x leads to poor results in terms of accuracy with −98% of relative error and

almost no saving in computation time. This bad performance is due to the fact

that the property of lacunarity of the contact domain, strictly connected with
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(a) 10x (b) 100x

Figure 10. Surface of textured silicon solar cells sampled with a confocal profilometer

at two different magnifications (10x and 100x) obtained by using two different lenses.

Figure 11. Power spectral density function (PSD) of the two sampled rough surfaces

shown in Fig. 10.

the self-affine scaling of roughness due to fractality, does not hold anymore

for the surface sampled at 10x due to the cut-off to its power-law PSD. As

a consequence, the CMR method erroneously excludes many possible points

from the initial contact domain suggested by the rigid body interpenetration

check that are actually relevant for contact. Therefore, in conclusion, the CMR

method is efficient for warm starting the NNLS algorithm, but it should be

strictly applied to numerically generated or real rough surfaces provided that

the self-affine properties of roughness are confirmed by a PSD function of

power-law type.
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6 Conclusion

This paper has shown how the problem of frictionless normal contact between

rough surfaces within the BEM framework can be solved very efficiently by

exploiting ideas from convex quadratic programming. A series of efficient op-

timization algorithms has been proposed and compared with the traditional

Greedy method and constrained CG algorithm. As the lack of convergence

of the Greedy method seems to be a rare phenomenon, it remains an open

question to establish the conditions on H and ū for which the algorithm is

guaranteed to converge.

The NNLS algorithm warm started by accelerated gradient projections was

shown at least two orders of magnitude faster than the Greedy method and

26 times faster than the original constrained CG algorithm.

Finally, we explored another method for warm starting the optimization al-

gorithms, this time focusing on a selective reduction of the size of the initial

trial contact domain based on the multi-resolution properties of roughness.

The resulting cascade multi-resolution (CMR) method allows a further sav-

ing of about 50% of CPU time as compared to NNLS for contact simulations

involving numerically generated fractal surfaces. Relative errors were found

less than 2% for surfaces with H > 0.5, by using h = 2, that was found a

good compromise between accuracy and computation time. Moreover, it has

to be remarked that not only the solution of the finest contact problem is

gained by the CMR+NNLS method with much less CPU time, but also the

contact problems involving all the coarser representations of the finest sur-

face. These results are particularly important for speeding up intensive Monte

Carlo simulations involving a sequence of contact simulations for a population

of fractal surface with different resolution. So far, to the best of the authors’

knowledge, such extensive simulations, that are important to determine more

reliable trends from the statistical point of view, have been limited to popu-

lations of 20 to 50 randomly generated surfaces.

In case of real surfaces, a very good performance (less than 2% of error with

3 cascades and at least 18% of CPU time saved for one single imposed dis-
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placement step) has been demonstrated in case of power-law PSDs, assuring

the self-affine scaling of roughness which represents the main underlying as-

sumption for the algorithm applicability. For surfaces with a cut-off to the

power-law PSD, on the other hand, the CMR+NNLS method has given poor

results in terms of accuracy and in any case almost no saving in CPU time as

compared to the pure application of NNLS. Therefore, this warm start method

should be used with care and only in a range where the PSD is of power-law

type.

Finally, we point out that the proposed optimization methods can also be

applied to frictional contact problems by using for instance the complete BEM

formulation as in (Pohrt and Li, 2014). Although this issue is left for further

investigation, we expect an even more significant gain in CPU time by applying

the algorithms presented in this paper instead of other optimization methods,

since the size of the problem is by far significantly increased as compared to

the frictionless case.
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