8,567 research outputs found

    Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    Full text link
    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo. Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-"coupled"- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g. coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as em goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz-Kalos-Lebowitz algorithm's philosophy, where here events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach

    The instanton method and its numerical implementation in fluid mechanics

    Full text link
    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional fluid dynamical problems. We illustrate these ideas using the two-dimensional Burgers equation and the three-dimensional Navier-Stokes equations

    Control of stochastic and induced switching in biophysical networks

    Full text link
    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks.Comment: A ready-to-use code package implementing the method described here is available from the authors upon reques

    Negative differential response in chemical reactions

    Get PDF
    Reaction currents in chemical networks usually increase when increasing their driving affinities. But far from equilibrium the opposite can also happen. We find that such negative differential response (NDR) occurs in reaction schemes of major biological relevance, namely, substrate inhibition and autocatalysis. We do so by deriving the full counting statistics of two minimal representative models using large deviation methods. We argue that NDR implies the existence of optimal affinities that maximize the robustness against environmental and intrinsic noise at intermediate values of dissipation. An analogous behavior is found in dissipative self-assembly, for which we identify the optimal working conditions set by NDR.Comment: Main text and S

    Forward Flux Sampling for rare event simulations

    Full text link
    Rare events are ubiquitous in many different fields, yet they are notoriously difficult to simulate because few, if any, events are observed in a conventiona l simulation run. Over the past several decades, specialised simulation methods have been developed to overcome this problem. We review one recently-developed class of such methods, known as Forward Flux Sampling. Forward Flux Sampling uses a series of interfaces between the initial and final states to calculate rate constants and generate transition paths, for rare events in equilibrium or nonequilibrium systems with stochastic dynamics. This review draws together a number of recent advances, summarizes several applications of the method and highlights challenges that remain to be overcome.Comment: minor typos in the manuscript. J.Phys.:Condensed Matter (accepted for publication

    Controlled diffusion processes with markovian switchings for modeling dynamical engineering systems

    Get PDF
    A modeling approach to treat noisy engineering systems is presented. We deal with controlled systems that evolve in a continuous-time over finite time intervals, but also in continuous interaction with environments of intrinsic variability. We face the complexity of these systems by introducing a methodology based on Stochastic Differential Equations (SDE) models. We focus on specific type of complexity derived from unpredictable abrupt and/or structural changes. In this paper an approach based on controlled Stochastic Differential Equations with Markovian Switchings (SDEMS) is proposed. Technical conditions for the existence and uniqueness of the solution of these models are provided. We treat with nonlinear SDEMS that does not have closed solutions. Then, a numerical approximation to the exact solution based on the Euler- Maruyama Method (EM) is proposed. Convergence in strong sense and stability are provided. Promising applications for selected industrial biochemical systems are showed
    • …
    corecore