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Abstract

Reaction currents in chemical networks usually increase when increasing their driving affinities. But
far from equilibrium the opposite can also happen. We find that such negative differential response
(NDR) occurs in reaction schemes of major biological relevance, namely, substrate inhibition and
autocatalysis. We do so by deriving the full counting statistics of two minimal representative models
using large deviation methods. We argue that NDR implies the existence of optimal affinities that
maximize the robustness against environmental and intrinsic noise at intermediate values of
dissipation. An analogous behavior is found in dissipative self-assembly, for which we identify the
optimal working conditions set by NDR.

1. Introduction

Systems in contact with multiple (e.g. chemical, thermal) reservoirs fall out of equilibrium, in a state
characterized by sustained mean currents (e.g. of matter, energy) [1]. These are controlled by affinities, the
thermodynamic forces which measure the difference between the equilibria that distinct reservoirs try to impose
on the system [2]. A perturbation in an affinity .A—be it the deliberate manipulation of an experimenter or some

environmental noise affecting the reservoirs—produces a small variation in a current (J), quantified by the

differential response function R = %{3 [3]. Close to equilibrium, such response is severely constrained [4].

Since currents are proportional to affinities, (J) = R.A, the response R must be positive to ensure positivity of
the entropy production' ¥ = (J).A = AR > 0. Far from equilibrium, instead, (J) need not be linear in .A thus
making R not only dependent on the entropy production. Kinetic aspects become relevant [5], thus opening the
way to regimes of negative differential response (NDR) [6]. This counterintuitive, yet common phenomenon has
been found in a wealth of physical systems after its first discovery in low-temperature semiconductors [7].
Examples are particles in crowded and glassy environments [8—12], tracers in external flows [ 13, 14], hopping
processes in disordered media [15, 16], molecular motors [17, 18], polymer electrophoresis in gels [19],
quantum spin chains [20], graphene and thermal transistors [21, 22]. The shared feature underlying all these
systems is a trapping mechanism arising by (e.g. energetic, geometric, topological) constraints on the system
states [23].

Here, we show that NDR plays a key role in open chemical reactions networks [24—26]. We show for three
paradigmatic models—substrate inhibition, autocatalysis and dissipative self-assembly—how it appears in the
average macroscopic behavior as well as in the stochastic regime. While the first two are well described core
reaction schemes in living organisms [27, 28], the latter is currently drawing the attention of chemists [29, 30].
Within the scope of these examples we discuss the role of NDR with respect to environmental and intrinsic noise
[31-34]. We first show that the region of marginal stability, i.e. where R =~ 0, ensures robustness against external
perturbations (in the affinity) at moderate values of dissipation. We then argue that those systems affected by
NDR that are not poised in the region of marginal stability, behave so in order to minimize the dispersion of the
current. Such precision is found to be achieved at moderate values of dissipation, yet again. Hence, our findings
show that the performance of life-supporting processes does not always increase at larger dissipation rates

1 . . . .
Here we focus on systems with only one macroscopic current, and thus only one macroscopic affinity.
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[35, 36]. This rich behavior brought about by far from equilibrium conditions cannot be anticipated solely on
the basis of general results, such as the recently derived thermodynamic uncertainty relations [37—42]. To unveil
these properties, one needs to solve for the full counting statistics through large deviation methods [43]. Finally,
since both robustness and precision are desirable in artificial applications of dissipative self-assembly, we
identify the optimal affinity set by NDR using stochastic simulations.

2. Theory

Because cells work at relative high, yet finite number of molecules, reaction currents fluctuate around their
macroscopic average values. We assume the reactions to take place in a large well-mixed volume of size V, so that
concentrations obey mass-action kinetics. The randomness of the single reaction events is described by the
chemical master equation [44]

OBy (c) = VH(c, %ac)z%(c)

S0 RS K HETIC) 0
p

that evolves the probability P, (c) of finding the concentration ¢, of the dynamical species 0. Here, o labels the
dynamical species, while species whose concentration are fixed are labeled by ¢’. The stochastic generator H
contains the rate

Wo(e) =k, [T " T] & )

with which there occurs the reaction p involving v, p (resp. 1,7, ,) molecules of dynamical (resp. fixed) species o
(resp. o). The stoichiometric coefficient S, , = 1, _, — vy, 1, then gives the net number variation of species &
per reaction p. Since we are interested in the large system size behavior, we have assumed a large number of
molecules in writing the transition rates (2).

To analyze the response of the system it is sufficient to focus on a reduced description based on the

instantaneous number of reactions p per unit time, C,, and the typical rate to leave a chemical state ¢ through
. . . o - T .
reaction p, W, (c) (see appendix A). The complete statistics of their time-averaged value, (.) = % fo dr(),is

encoded in the scaled cumulant generating function

1 Tz(qpén*/\ﬂwﬂ)
A = lim —loge = s 3
8@ N = lim_—log )
T — oo

that gives upon differentiation all the covariances, e.g.

8q/’18qﬂzg(q’ Mlga=o = <Cplcpz>cc = <CP1 CP2> - <CPI><sz>-

Note that for the stationary-state systems considered here, time-averaged and instantaneous quantities coincide.
The averages (...) are performed along stochastic realizations with the path weight obtained from (1)

v 'arn
770<efo tHep) (4)

that contains the auxiliary variable p accounting for random variations in particle number”. A standard
technique to calculate (3) consists in absorbing the exponential counting factor of (3) into (4) changing H into
the ‘tilted’ generator [45, 46]

Hya(c, p) = Z[ezgswmqp + - 1]Wp(c). 5)
p

Inview of the extensivity in T'and V of the observables, averages performed with 7, ) are entirely dominated by
the overwhelmingly more probable trajectory that maximizes (5). This observation allows us to calculate the
scaled cumulant generating function as

g(Q) A) - Hq,/\(c*a P*)) (6)

where ¢* and p* are solution of the steady-state Hamiltonian equations 0.H, y = 0 = 9,H,, 5. Currents can
then be obtained as the net fluxes between forward and backward reactions, ]_p == (Cy o — C_ )

The nonequilibrium origin of NDR emerges clearly from the stochastic setup. Indeed, the differential
response of a generic current J,

2 A kinetic term has been dropped in the path weight. It would be relevant for models displaying limit-cycles at the level of rate equations.

2
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Figure 1. (a) Left: reaction scheme for substrate inhibition. Right: the stochastic production of P from S can be seen as a biased random
walk from the state Eto E’ = E (identified by periodic conditions) through ES, with ESS being a trapping state from which escaping is
only possible by unlikely fluctuations. (b) Mean reaction current (solid) given by (9) for the synthesis of dopamine. Kinetic parameters
are in accord with physiological values [47]: k;[Elior = 36 uM s~!, Ky = 46 uM, k_3/ks = 160 uM. The corresponding curve for
Michaelis—Menten kinetics (dashed), i.e. k3 = 0, plateaus only at large affinities. The shaded area indicates the range of daily affinities.
Inset: the differential response R given by (8) (solid) and the correlation (—J;(W; 4+ W5)).. responsible for NDR (dotted).

g 20
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can be obtained by expanding the generator H, and thus the path weight (4), to leading order in a small variation
e of the fixed concentration c,. In general, it reads (see appendix B)

1 ,-- 1 ,- - _
R= S g S0 + S Fe — (e | ®)
5

where p are the reactions whose rates W;; depend explicitly on the perturbed species o”’. In (8) the current J,,

correlates with three distinct observables: the reaction current J;; the reaction traffic F; = % fo ! dt(C; + C_p),
i.e. the total unsigned number of =+ p reactions; the reaction rates W. Note that F; equals W;, only on average,
while its fluctuations (and thus correlations with other observables) can be substantially different. Differently
from currents, traffic and reactions rates do not have a definite thermodynamic character, their values being
affected by kinetic factors. In the following we will focus on perturbations that alters only the affinity .4 that
drives J,.. If such a perturbation happens at equilibrium, (8) reduces to the fluctuation-dissipation relation where
only the entropic term R o (J /f )ec appears (see appendix B). Out of equilibrium, instead, (8) shows that NDR
arises when the current J, becomes sufficiently anticorrelated with either —W; or F;. These two scenarios find
their counterparts among physical systems undergoing mechanical trapping induced, respectively, by geometric
constraints—a colloidal particle pulled through an array of obstacles [6]—and by many-body clustering—the
same pulling experiment performed in a high-density medium [8].

3. Substrate inhibition

Substrate inhibition is estimated to occur in 20% of known enzymes [47]. In its simplest form (see figure 1(a)), it
happens when up to two substrate molecules S can bind the active site of one enzyme E giving an inert species
ESS. The binding of a single substrate molecule results in the formation of the active complex ES decaying into
the product P, as in the usual Michaelis—Menten scheme.

The latter pathway is responsible for the production of P from Sata concentration rate (J), thatis the
chemical current of biological interest. The former instead represents the competing process [27, 47]. It takes up
—or traps, within the mechanical analogy—substrate into ESS thus decreasing the rate of production of P for
large [S] (figure 1). Indeed, with [S] >> [P] kept constant by particle reservoirs to mimic physiological conditions

and fixing the reaction affinity A = log P ki :2 [S[L] , the stationary current takes the non-monotonic form [27,47]
—1k—2
- k[E S
<]1> ~ 2[ ]tot[ ] (9)

Ky + [S] + 22[SP
Here [E];o is the total concentration of enzyme and Ky := % The kinetics of the usual Michaelis—Menten
1
scheme is retrieved setting k3 = 0 (figure 1).
Fluctuations can be obtained analytically (see appendix C). The first two scaled cumulants of the time-
averaged current J; show the existence of a marginal affinity A* that marks the transition to a NDR regime, i.e.

3
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Figure 2. (a) Mean reaction current (solid) given by (9) and its scaled variance (dashed) for the synthesis of serotonin. Kinetic
parameters are in accord with physiological values [47]: ky [Elior = 36 uM s~!, Kyy = 46 uM, k_3/k; = 400 M. The shadowed
area indicates the daily range of affinities. Inset: the differential response R (solid) and the correlation (—J;(W; + W5)).. responsible
for NDR (dotted). (b) The signal-to-noise ratio SNR (solid), and the upper bounds /¥/2 (dashed) and /Zﬂ(C,) (dotted) set by the

uncertainty relations. The shadowed area indicates the range of daily affinities. The shaded area indicates the range of daily affinities.
Inset: parametric plot of SNR for the two values of the affinity, A i, and A,y corresponding to the same average current (J;).

R < 0for A > A* where fluctuations VarJ; := (J ). peak. In the present model of substrate inhibition,
—(I(W; + W5)).. is the leading negative contribution in (8) for A ~ A* (figure 1), confirming that ESS is a
trapping state.

The existence of NDR has some crucial consequences. First, since R(A*) = 0, (J}) varies little upon sizable
variations of substrate concentration around [S](A*). Second, since (J;) is not an injective function of A, a target
mean current—e.g. required for optimal physiological functioning—is attainable at two different affinities A,
and A .. These two facts may constitute a crucial advantage to control environmental and intrinsic noise in
biochemical systems.

In the first case, the system can reach a homeostatic state characterized by a relative stable output (J;) despite
variations in the environmental conditions, i.e. the substrate concentration [S]. Importantly, a similar stable
regime would be achieved only at larger affinities in the absence of NDR, i.e. for the standard Michaelis—Menten
kinetics (see figure 1). A representative example is the synthesis of dopamine (P) in neurons from tyrosine (S)
mediated by the enzyme tyrosine hydroxylase (E) [48]. The tyrosine concentration in humans varies in response
to meals on a timescale 75 ~ 10%s, and typically ranges from 100 to 120 M. Since the dynamics (1) for the
substrate inhibition scheme in figure 1 has a unique steady state, its typical relaxation timescale is well estimated
by the inverse of the smallest (pseudo first-order) reaction rate constant, i.e. (k_,[P])™! =: 7o ~ 1s. Hence, on
the slow timescale 75 the current J; evolves quasi-statically, with all its moments depending parametrically on the
instantaneous value of the affinity 21.0 < A < 21.2 (in units of RT = 1). This interval is placed very close to
A* =~ 20.8, hence resulting in a current relative variation smaller than 3%.

In the second case, the system can increase the (scaled) signal-to-noise ratio SNR := (J;) / \/ Var]; selecting
the optimal affinity among A i, and A .. Consider, for example, the synthesis of serotonin (P) out of
tryptophan (S) catalyzed by tryptophan hydoxylase (E) in human cells [49, 50]. For different values of the
parameters compatible with physiological conditions, we found that SNR is always smaller at A iy, i.e. higher
precision isachieved at A < A* (figure 2(¢)). As a consequence, such robustness against intrinsic fluctuations is
achieved at the smaller value of the mean dissipation rate ¥(A) := A(J;). Remarkably, the daily concentration of
tryptophan 25uM < [S] < 35 uM [47] yields a range of affinities 19.6 < A < 19.9 which is close to optimal in
order to maximize SNR. Thanks to stochastic uncertainty relations [37-41], SNR can be bounded by dissipation,
SNR < \/Z_/Z ,and by the system’s dynamical activity, SNR < /ZP(CP) . The entropic bound means thata

more precise current tmay be obtained at larger affinity, and thus dissipation. Nevertheless, such condition need
not be realized in practice, especially because the bound becomes looser as A increases, as is the case for
serotonin synthesis.

4. Autocatalysis

Autocatalysis represents the second scenario in which NDR can arise, whose simplest possible scheme is
depicted in figure 3(a). Having one dynamical concentration, two reactions (required to have a maximum
current), and two fixed concentrations [S] and [P] (needed to set the system away from equilibrium), this is the
minimal chemical scheme displaying NDR. An outstanding example falling into the autocatalytic paradigm is

4
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Figure 3. (a) Minimal autocatalytic reaction scheme representing, e.g. a coarse-grained model of DNA replication. (b) Mean reaction
current (solid) and its variance (dashed). Inset: the differential response R (solid) and the correlation (J; F; ), responsible for NDR

(dashed). (c) The signal-to-noise SNR compared to the bounds /3 /2 (dashed) and /> p<C’p> (dotted) set by the uncertainty
relations.

DNA replication [28]: two double stranded molecules are produced by one such molecule (X) and nucleobases
(S), and eventually undergo a conformational change, e.g. into the double helix structure (P). Several other
biological processes can be similarly described at a coarse-grained level as autocatalytic reactions, e.g. formation
of micelles from amphiphiles [51, 52], ATP net production in glycolysis [53], and conversion of prion proteins
into the infectious form [54]. Here, we regard the autocatalytic scheme as a model for phosphorylation of
protein kinase (X) coupled to alarger association/dissociation cycle via the conversion into the complex P

[28, 55, 56]. For the chosen physiological values of the parameters, the coupled cycle is known to display
circadian rhythmicity [56]. Taking [P] as time-independent, we highlight the role played by NDR in triggering
chemical oscillations, a topic of major relevance which may even have a role in our understanding of the origin of
life [57]. We consider the degradation of S into P as the current of interest. Its macroscopic value determined by
the rate equation

(h) = %(\/4](72]{71[13] + (k — K[SD? + k[S] — k) — k_,[P],
1

p kl;:z [S[]P] . Moreover, the full statistics of the
_1k_2

model can be obtained by the large deviation techniques introduced in section 2 (see appendix D). The negative
correlation (] F} ). < 0 (see inset in figure 3(b)) entering (8) shows that NDR is induced by a competition
between forward and backward flows (due to the nonlinearity of the autocatalytic step), rather than by the
presence of a trapping state, as observed in substrate inhibition. Also, the qualitative behavior of the Var], is
different (see figures 2(a) and 3(b)), with the minimum (rather then the maximum) occurring near A*. Despite
that, for a wide range of parameters compatible with physiological conditions we observe that SNR is larger for
A < A*, i.e. atsmaller dissipation. Hence, as already discussed for substrate inhibition, autocatalysis can be run
atlow affinities to reduce the current dispersion or around the region of null response to minimize variations in
the output current.

is a non-monotonic function of [P], and so of the affinity A = log

5. Dissipative self-assembly

As a final example, we analyze dissipative self-assembly, a paradigm of out-of-equilibrium synthesis extensively
exploited by biological systems: prominent examples being the formation of microtubules out of tubulin dimers fueld
by guanosine 5’-triphosphate (GTP) [58, 59] and the ATP-driven self-assembly of actin filaments [60]. It has been
also probed in experiments such as the controlled gelation of dibenzoyl-L-cysteine to form nanofibers [61] and the
chemically fueled transient self-assembly of fibrous hydrogel materials [62]. A simple, yet insightful model is sketched
in figure 4(a), which has been proposed as a minimal general scheme for genuine nonequilibrium self-assembly [30].
The direct aggregation of two monomers (M) to form the assembled state (A,)—which would be highly disfavored at
equilibrium—is boosted by coupling the process with the burning reaction of some fuel (F) converted into waste (W).
This fueling mechanism opens side pathways involving the activated species M*, which easily aggregates into A,". To
give an example, supposing M to not aggregate because of unfavorable electrostatic interactions, then F (W) maybe a
high (low) energy methylating agent able to convert negatively charged monomers M into their neutral form M*. By
properly fixing the concentrations of Fand W, a nonequilibrium stationary state rich in the target species A, can be
achieved. At odds with conventional equilibrium self-assembly, the efficacy of this synthetic procedure is not

5
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Figure 4. (a) General scheme of dissipative self-assembly. (b) The reaction current given by the rate equations (solid), its mean as
obtained from the stochastic simulations at finite number of chemicals (filled) and its approximation (10) (open). Inset: the differential
response R obtained from (8) by stochastic simulations (filled) and from numerical derivative of the mean current (open). (c) Signal-

to-noise ratio of the concentration [A,] obtained from stochastic simulations. The bound /X /2 does notapply. Inset: SNR of the
current (J;) (circle) compared to the bound offered by the square root of half the mean dissipation rate /3/2 (square), both obtained
from stochastic simulations. The bound /ZP(CP) is not shown, being one order of magnitude larger.

determined by the relative thermodynamic stabilities of the components, but rather by the sustained dissipation and
kinetic aspects [29, 63, 64].

By design, the system attains large concentrations of A, depleting the monomer concentration [M] [30].
Therefore, the current of reaction p = 4—which is half the current from F to W—is almost unidirectional,
especially far from equilibrium:

(Ja) = kos[As). (10)

Because of the proportionality relation (10), the existence of NDR affecting (],) sets an upper bound on the
maximal [A,] achievable by the process.

Being unable to calculate (3) for this model, we performed stochastic simulations based on the Gillespie
algorithm [65] (see appendix E). We measured the mean current and its variance, as well as its response, for

. . _ k2 gk ok swk 4 [FP2
different values of the affinity A = log 5——>——
kZypk_ok_sk_4[W]

different A, and through (8), by estimating the required correlation functions. The good agreement of the two
methods (figure 4) shows that (8) is not only conceptually revealing, but also of practical relevance for
calculating responses without actually applying perturbations. Despite their proportionality in average, the
current J; and the concentration [A,] were found to possess different fluctuations. It implies that the signal-to-
noise ratio ([A;]) /+/Var[4,] is not bounded by dissipation, hence does not decrease at large A due to NDR.
Indeed, ([A;]) /+/Var[A,] is close to its maximum at the optimal affinity A* (figure 4(c)). This is important for
the scalability of artificial syntesis to microscopic volumes.

. The response was obtained by directly measuring (J,) at

6. Discussion

In conclusion, we have shown that NDR is a widespread phenomenon in chemistry with major consequences on
the efficacy of biological and artificial processes. In substrate inhibition, NDR allows a system to reach
homeostasis at lower dissipation than in the Michaelis—Menten kinetics, keeping the signal-to-noise ratio
unaltered. For systems that do not need to maintain a stable current, higher precision to sustain a given mean
current can be reached at low affinity, i.e. dissipation. Remarkably—given the scarcity of solvable models away
from equilibrium—these results, obtained in the large-size limit, are exact. They show that the general bounds
offered by the uncertainty relations have little predictive power for parameters that are biologically relevant.

Since the analogous behavior was found in both biochemical schemes, despite the difference in the
qualitative behavior of the current fluctuations, the idea that life efficiency always increases with the dissipation
rate is called into question [66]. Still, it is worth noticing that whenever these chemical schemes are used as
effective models that coarse-grain some nonequilibrium reactions, the dissipation ¥ is always smaller than the
total entropy production rate of the original process [67]. Instead, if only equilibrated subprocesses are lumped
or discarded, a complete thermodynamic description of the original process exists [68]. It identifies .4 with the
chemical potential difference (in units of R T=1) of the fixed species (respectively, Pand S, Fand W) and ¥ with
the entropy production rate [26].
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Lastly, we have shown with stochastic simulations that NDR limits the efficacy of dissipative self-assembly:
the ideal affinity that maximizes the output mean concentration also yields a nearly optimal signal-to-noise
ratio. Altogether, we have achieved a fundamental analysis of NDR of reaction currents. It pinpoints the relation
between robustness, precision and dissipation in biochemistry, and allows the optimization of performance and
scalability in nonequilibrium synthesis.
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Appendix A. Stochastic dynamics of chemical reaction networks

Consider a well-mixed volume V occupied by dilute reacting chemical species X, labeled by the index o €

{1, ..., M}, following mass action kinetics. The population number of the dynamical species n = (11, ..., my)
varies in time because of the random reactions, while the concentration of the externally controlled species,

¢y = [Xy]with o/ = {M + 1,... N}, iskept constant. A single reactive event, occurring thorough the reaction
p € {£l, .., £ M]},involves 1, , molecules o and changes the population of species oas n, — 1, + S, ,,
with S, , == 1, _, — 14,4, the stoichiometric coefficient. For compactness, we will denote S, the vector of the
stoichiometric coefficients corresponding to reaction p. The reactions happen with a probability rate

WM (n) = Vk ﬁ e ﬁ L __ ol (A.1)
. p(r’:M+1 7D Vi (g — Uy -
with k, being the rate constant. The stochastic dynamics can be described by the chemical master equation
M
ORm= Y WV (n—S)Pn—S,)— W (n)P(n)]
p=—M
M
= > [exp(=S$, - Op) — IW(m) P (n) (A2)
p=—M
= HY)(n, —0,) P (n), (A.3)

that prescribes the time evolution of the probability B (n) of the chemical populations in terms of the action of
the operator H(V)(n, 9,,). The solution of (A.2) can be used to study only the statistics of state-like observables,
i.e. functions of the instantaneous population n. In order to obtain the statistics of transition-like observables it
is convenient to resort to a path integral representation of the probability of full stochastic trajectories. For
example, the probability P[n (¢)] of the population trajectory {n(t): t € (0, T]} can be obtained from (A.2)
introducing auxiliary variables p—to be marginalized over, eventually—that accounts for variations in
population O,,:

T
Pln(n)] — po o) At HY m,p@)) (Ad)

Two observables are of interest to us, namely, the time-averaged number of reactive events p, C;V’T) =

T _ T
% fo dr 8, ), and the time-averaged reaction rate WD [n(1)] := % fo dt W) (n(t)). Within this
formalism, the full statistics of the above observables is encoded in the cumulant generating function

~(V,T) (V. T)
gV (g, \) = 10g<eTZﬂ<qpc/, + 2, )>

T
—a(t) W)
_ longn fDP efo e[ () p()+HY (n(0),p(1)] (A5)

computed by functional integration of a path probability with ‘tilted’ generator

M
H(n,p)= > [exp(S, - p +q,) + A, — UW ) (n). (A.6)
p=—M

The superscript (V, T) stands for the dependence on a finite system volume V and trajectory duration T. Later,
we will omit the superscripts Vand T'to indicate the large V and T'limit of the various functions. All cumulants,
such as the mean (C;,V’T)> = 8qu(v’ (g, A)lgr—o and the connected correlations, e.g.
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01,00,807 Dlyaco = (EFTET T = (EDELT) — EIELT) @)

9y

can be calculated from (A.5) upon differentiation. The statistics of the time-integrated current,
]_/()V’ D= (C_f_‘;’T) -C E\;’T)), follows from (A.5) as well.

A.1. Macroscopic limit: the rate equations

In the thermodynamic limit, given by n, — 00, V — oo and finite concentrations ¢, := n,/V = [X,], the
probability P.(n) becomes sharply peaked around its maximum. Thereby, one obtains the chemical rate
equations multiplying (A.2) by n and averaging,

M
Co = Z Sa,pvvp(c): (A.8)
p=—M

with the average reaction current given by the (scaled) large-size limit of (A.1):

N M
W,(c) ==k, H CoVohe H Colo. (A9)
o'=M+1 o=1

The same result can be obtained by the path integral formalism. The statistical weight in (A.4) peaks as
exp VJ(;T dt[—¢(t) - p(t) + H(c(t), p(t))]around those paths that maximize the time integral, i.e. those that
satisfy the Hamilton equations

P = _8£H(cr P) ¢= apH(Ca P)r (A'lo)

with H (c(t), p(t)) being now function of the macroscopic rates (A.9). The rate equations (A.8) are regained by
looking for the noise-less trajectories:

p=0 = ¢=0,H(c Plp—o =D S,W,(0). (A.11)
P

A.2. Macroscopic limit: scaled camulant generating function
Fluctuations in the thermodynamics limit are captured by the scaled cumulant generating function

. 1 . 1 v [" e Hy((),p ()]
g(g, A) = lim Wg(V’T)(q, A = ‘}grolcﬁlongc po & 0P O HEO PO, (A.12)
T—o00 T—o0

The average (A.12) is dominated by the trajectories that maximize the statistical weight, namely, by the solutions
of the Hamilton equations

P = 7(9ch,)\(£) p) c= aqu,)\(C> p)- (A.13)

Since here we are interested only in systems with a single stable stationary state we focus on the unique fixed
point of (A.13)—we thus assume the absence of multiple stable fixed points and time-dependent attractors for
(A.13), which excludes the emergence in the thermodynamic limit of ergodicity breaking and limit-cycles,
respectively. Namely, we seek the vectors ¢* and p™* solution of

0= _ach,A(c: p) 0= aqu,)\(C: p)- (A.14)

To avoid clutter we do not explicitly write the parametric dependence of ¢* and p* on the counting fields g,,and
A, If there exist vectors £7 such that #7 - §, = 0 V p, then the dynamics (A.2) conserves the concentrations
?, - c. Therefore, (A.14) needs to be supplemented by the constraints

u P
> ¢r?] = const, > =2 =o. (A.15)
o=1 o|t,=0 fJ,

Using the solution ¢* and p* to evaluate (A.12) yields the scaled cumulant generating function
g(g, N) = Hyx(c*, p™). (A.16)

By virtue of the above assumptions, (A.16) is a smooth and convex function of g,and A,,.

Appendix B. Response of chemical currents

Consider the perturbation ¢,s — ¢,/(1 + ¢) in the concentration of a one fixed species o/, with € < 1. We are
then interested in the response of a time-integrated current J,, along time after the application of the
perturbation—for simplicity, we work in the large T'and V'limit, although these results can be equally derived
for finite T'and V. Such response is defined as
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o) )
R:= de |, = a—f(aqp - aq,p)gg(q) A) qzo’f():o . (B.1)

Here, the subscript € indicates that the scaled cumulant generating function (A.16) corresponds to the dynamics
with perturbed reaction rates

Wie) (1 + vy pe) + O(e?), (B.2)

where p labels the reactions whose rate depends explicitly on the perturbed species ¢’. Performing the
derivatives in (B.1), the response function is then expressed as

(IhFs)ee — (I ,a>cc], (B.3)

where in the last line we have added and subtracted the same quantity to obtain the (large Vand T limit of) time-
averaged current J; and the time average traffic F; := C; + C_;. Thelatter counts the number of times the
reaction channel p has been used, in both forward (+ ) and backward (— p) direction. Notice that (B.3) contains
only unperturbed averages.

When the unperturbed state coincides with equilibrium, defined as A = 0, the second and third term in
(B.3) vanish, since they are averages of time-antisymmetric observables done with a time-symmetric measure.
Therefore, (B.3) simplifies to

1
R = Z VU’,/?E <]p]f)>cc- (B.4)
P

Perturbing an equilibrium state the response is only dissipative or, equivalently, the dynamical contributions
coincides with the dissipative one. If I_p and J. ; are independent cycle currents [24, 26], their covariances vanish
identically, so that R o< (J 5 )ec > 0holds true at equilibrium.

Appendix C. Substrate inhibition

In the thermodynamic limit, the tilted generator of the substraste inhibition scheme reads

Hya(c, p) = kiescp(e PetPes™h — 1+ N) + k_jcgs(ePePestda — 1)
+ szEs(e*PEsJFPHﬂLqZ -1+ k_2CPCE(e*PE+PES+q72 -1
+ k3C5CEs(€7PH3+PESs+q3 -1+ )\3) + k_3CEss(€7ph'55+pES+q*3 — 1), (Cl)

where the reactions are numbered as in figure 1(a) of the main text. Note that for the sake of clarity we have
identified the labels 0 and o’ with the species name. Also, in view of (B.3), we have added the counting field A
only on the reactions +1 and 43, whose rates depend explicitly on the perturbed species S. The dynamics
conserves the total concentration of enzyme cg,, = ¢z + cgs + cgss,sothat € = (1, 1, 1).

The rate equations (A.8) obtained from (C.1) by setting A = q = p, = 0 Voread

g = — (kicsce — k_icgs) + kocps — k_xcpee (C.2)
) (1)

cgs = (kicscg — k_icgs) — kacgs — k_acpeg — (kscgscs — k—3(cg,, — 8 — ¢85))> (C3)
(h) (1) (Js)

where we have eliminated ¢gg = ¢g,, — ¢z — cgs. The stationary conditions ¢z = 0 and ¢gg = 0 imply that
(J5) = 0and

k2CE (CS — Cp kilkiz) k
tot k CE o CS
(h) = (h) = P ;c o 2k ~:<<1 — L o (C4)
Km + CP—k’lz + cs(l + cP—k’lz) + —k:cs 2t Km + ¢ + PR

that is equation (1).
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Figure Cl. Left: scaled cumulant generating function g(g, 0) of the current J; for the tyrosine production. Two different affinities are
plotted, A = 19.88 (dashed)and .A = 21.79 (solid), both corresponding to the same mean value (J;) = 10 uM s~!. Right: the
corresponding rate functions I (J;).

For A, g (and so p,,) different from zero, the Hamilton equations (A.14) for the concentrations can be solved
under the constraint ¢z + cgs + cgss = cg,,, and pg + ppg + Ppgs = 0, obtaining

ce(p) = cp, e*fr e tas(k el + ket )f (p),
ces(p) = cpePe st (k_scped2 + kielics )f (p),
2pp+4 ks 2pp+4
f(p)=k_acpe PetaPes T4 ot 5 4 k_,— cpsel2T9 + kjcge?PetHPest it s
-3

+ k_qe*Pet2Ppstaitas 4 fe4Ppt2Ppstaata s klﬁcsze%*q}_ (C.5)
-3

The constraint Hamilton equations for p are most easily solved by the change of variables log 1) = p, + 2pg
and log ¢ = pps — pp, thatyields

o k73(€q*3w — 1) + k72Cp + k](,‘seqfl
¢(¢) N k_2Cp + k]CSqul(l — )\1)

(C.6)

Plk_iel2 + ket — (ko + k) o (V)] + o) [kscs(eB + (A3 — 1)) — Pk_s(elsp — D] =0. (C.7)

Thelatter is a 3rd degree polynomial, whose solutions can be expressed in closed form. We avoid to report them
here, being too lengthy. The only physical solution p* is the one giving positive concentrations c¢* when plugged
into (C.5). Finally, the scaled cumulant generating function is obtained inserting ¢* and p* into (C.1), according
to (A.16). In figure C1 we plotted the scaled cumulant generating function of the current J; for two different
affinities. We also display the corresponding Legendre transform I (J}) = Jiq(J)) — g(q(J), 0) (with q(J;) the
unique solution of 9,¢ (g, 0) = J;), that is the scaled logarithm of the probability P (J;) of the current J;

_ 1 _
I(h) = —Vlﬂ}gc Wlogp(fl)- (C.8)

T—o0

Concerning the numerical values of the rate constants, for both the examples in the main text—i.e. tyrosine
hydroxylase (TH) and tryptophan hydroxylase (TPH)—we relied on experimentally available Ky; = kﬁle’l
and K; = kk—’: [47]. Within these constrains, we chose realistic k,,’s based on literature typical values [70]. In
particular, we have set ks < ki, thus considering negative cooperativity between molecules S upon their binding
to the enzyme E. k_; has been kept small to make the ‘trapping effect’ well highlighted, while k_, and k, have
been chosen in order to make reaction 2 rate limiting. k_, is usually neglected in kinetic models, but here it
guarantees thermodynamic consistency. Since the two enzyme considered have same Ky, and different K;, we
have opted to keep differences minimal. Accordingly to the above argumentation, we checked the robustness of

the qualitative features shown by the model under different choices. Plots in the main text were obtained with
the following parameters:

10
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TH TPH
Ku |46 M 46 uM
K [160 uM 400 M
ko |1 pM st IMls!
ko, [20s7! 2051
k(26571 2651

k5 {01 x 107 uM's710.025 x 1076 uyM~!s7!
ks [3x 107 uMts™t 107 pM s

k_; [48s7! 1051
[Eltot|1 pM 1 uM
[P] 1 uM 1 uM

Appendix D. Autocatalysis

In the thermodynamic limit, the tilted generator of the autocatalytic scheme reads

Hy (¢, p) = kicsex (ePx — 14) + k_ick(e Px — 1)

+ kyex (e Px a2 — 1) + k_ocp(efx a2 — 1), (D.1)
where the reactions are numbered as in figure 2(a). Note that for the sake of clarity we have identified the labels
and o’ with the species name. Also, we do not need any counting field ), since the rate W_, is a constant, hence it
does not contribute to the last term in (B.3).

The rate equation (A.8) obtained from (D.1) by setting A = g = p, = 0 Vo read
éX = leSCX — k716§ — (kZCX — klcp). (DZ)

(h) ()

At stationarity ¢y = 0 we find

ok = ook —k £ \/(Csk1 — k)? + 4cpk_ik_>

= D.3
" (D.3)
where ¢y < 0 (for all choice of parameters) is discarded because unphysical. The stationary current is then
obtained using ¢
k
(hy = (h) = 2k2 (\/4k—2k—1CP + (ky — kics)* + kics — ko) — k_cp, (D.4)
—1
thathas amaximum allong as 4k_ok_1cp + kjcs(kjcs — 2ky) < 0.
For gand then p,, different from zero, we first solved (A.14) for cx
ePx(1 — ePx)csk) + k(e — 1
x(py) = x( eski + ks ( )_ (D.5)

2k_1(epx — 1)

The resulting 5th-order ordinary differential equation for p, was solved numerically, as it does not allow a
general close-form expression, and then inserted back into (D.5). The so obtained c§ and Py gives the scaled
cumulant generating function according to (A.16).

Plots in the main text where obtained with the following parameters, directly taken from from [56] (figure 2)
by considering the species KaiAC™ as the dynamical variable (X).

k|2 x 1073 uM1s!
k_1]0.4 x 107* uM~ 157!
k (8 x 1073571

ko4 x 1074571

[S] |4 uM

Appendix E. Dissipative self-assembly

We have run the standard Gillespie algorithm considering a total population of 1000 molecules M and
generating 10” trajectories of duration 1000 time units. In order to ensure stationarity, we have sampled the
trajectories after a period 100 time units that was previously checked to be long enough for the relaxation of the
chemical network for all values of affinities. This allowed us to calculate mean values and covariances. The

11
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macroscopic current J, plotted in figure 4 (b) was obtained by numerical integration of the rate equations (A.8).
Its values does not coincide with the average (J,) since the latter pertains to a system with large, yet finite number
of molecules. All the plots in the main text were obtained with the following macroscopic parameters:

kip [5.00 M 157!

ko [2.24 x 1072571

kit [1.00 x 1073 M~ 15!

k1w |3.75 x 107271

kir [LOOM ! !

k., |1.80 x 107ts7!

kysp [1.00 x 107657}

k sp |5.82 x 1071 M~2s7!

kiaw |2.00 x 1071571

k3w |1.66 x 107! M~257!

kis [1.00 x 1071s7!

kg [479 x 1074 M ts7!

[MJior|]1 M

(W] 1M
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