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Abstract
Reaction currents in chemical networks usually increase when increasing their driving affinities. But
far from equilibrium the opposite can also happen.We find that such negative differential response
(NDR) occurs in reaction schemes ofmajor biological relevance, namely, substrate inhibition and
autocatalysis.We do so by deriving the full counting statistics of twominimal representativemodels
using large deviationmethods.We argue thatNDR implies the existence of optimal affinities that
maximize the robustness against environmental and intrinsic noise at intermediate values of
dissipation. An analogous behavior is found in dissipative self-assembly, forwhichwe identify the
optimal working conditions set byNDR.

1. Introduction

Systems in contact withmultiple (e.g. chemical, thermal) reservoirs fall out of equilibrium, in a state
characterized by sustainedmean currents (e.g. ofmatter, energy) [1]. These are controlled by affinities, the
thermodynamic forces whichmeasure the difference between the equilibria that distinct reservoirs try to impose
on the system [2]. A perturbation in an affinity—be it the deliberatemanipulation of an experimenter or some
environmental noise affecting the reservoirs—produces a small variation in a current á ñJ , quantified by the

differential response function


= á ñ
R

d J

d
[3]. Close to equilibrium, such response is severely constrained [4].

Since currents are proportional to affinities, á ñ =J R , the responseRmust be positive to ensure positivity of
the entropy production1   S = á ñ =J R 02 . Far from equilibrium, instead, á ñJ need not be linear in thus
makingRnot only dependent on the entropy production. Kinetic aspects become relevant [5], thus opening the
way to regimes of negative differential response (NDR) [6]. This counterintuitive, yet common phenomenon has
been found in awealth of physical systems after itsfirst discovery in low-temperature semiconductors [7].
Examples are particles in crowded and glassy environments [8–12], tracers in externalflows [13, 14], hopping
processes in disorderedmedia [15, 16], molecularmotors [17, 18], polymer electrophoresis in gels [19],
quantum spin chains [20], graphene and thermal transistors [21, 22]. The shared feature underlying all these
systems is a trappingmechanism arising by (e.g. energetic, geometric, topological) constraints on the system
states [23].

Here, we show thatNDRplays a key role in open chemical reactions networks [24–26].We show for three
paradigmaticmodels—substrate inhibition, autocatalysis and dissipative self-assembly—how it appears in the
averagemacroscopic behavior aswell as in the stochastic regime.While the first two are well described core
reaction schemes in living organisms [27, 28], the latter is currently drawing the attention of chemists [29, 30].
Within the scope of these examples we discuss the role ofNDRwith respect to environmental and intrinsic noise
[31–34].Wefirst show that the region ofmarginal stability, i.e. whereR;0, ensures robustness against external
perturbations (in the affinity) atmoderate values of dissipation.We then argue that those systems affected by
NDR that are not poised in the region ofmarginal stability, behave so in order tominimize the dispersion of the
current. Such precision is found to be achieved atmoderate values of dissipation, yet again.Hence, our findings
show that the performance of life-supporting processes does not always increase at larger dissipation rates
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[35, 36]. This rich behavior brought about by far from equilibrium conditions cannot be anticipated solely on
the basis of general results, such as the recently derived thermodynamic uncertainty relations [37–42]. To unveil
these properties, one needs to solve for the full counting statistics through large deviationmethods [43]. Finally,
since both robustness and precision are desirable in artificial applications of dissipative self-assembly, we
identify the optimal affinity set byNDRusing stochastic simulations.

2. Theory

Because cells work at relative high, yetfinite number ofmolecules, reaction currents fluctuate around their
macroscopic average values.We assume the reactions to take place in a largewell-mixed volume of sizeV, so that
concentrations obeymass-action kinetics. The randomness of the single reaction events is described by the
chemicalmaster equation [44]
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that evolves the probability ( )cPt offinding the concentration cσ of the dynamical speciesσ. Here,σ labels the
dynamical species, while species whose concentration arefixed are labeled by s¢. The stochastic generatorH
contains the rate

 =r r
s

s
n

s
s
n

¢
¢
s r s r¢( ) ( )cW k c c 2, ,

withwhich there occurs the reaction ρ involving νσ, ρ (resp. ns r¢, )molecules of dynamical (resp.fixed) speciesσ
(resp. s¢). The stoichiometric coefficient n n= -s r s r s r- +S , , , then gives the net number variation of speciesσ
per reaction ρ. Sincewe are interested in the large system size behavior, we have assumed a large number of
molecules inwriting the transition rates (2).

To analyze the response of the system it is sufficient to focus on a reduced description based on the
instantaneous number of reactions ρ per unit time,Cρ, and the typical rate to leave a chemical state c through

reaction r r ( )cW, (see appendix A). The complete statistics of their time-averaged value, ò( )¯ ≔ ( )t. d .
T

T1

0
, is

encoded in the scaled cumulant generating function

l =
 ¥
 ¥

å l-
r

r r r r
( ) ⟨ ⟩ ( )

( )
g q

V
T

TV
e, lim

1
log , 3

T q C W

that gives upon differentiation all the covariances, e.g.

l¶ ¶ = á ñ á ñ - á ñá ñl r r r r r r=r r
( )∣ ¯ ¯ ≔ ¯ ¯ ¯ ¯g q C C C C C C, .q q q, 0 cc

1 2 1 2 1 2 1 2

Note that for the stationary-state systems considered here, time-averaged and instantaneous quantities coincide.
The averages á ñ... are performed along stochastic realizations with the pathweight obtained from (1)

 òµ ( )( )e , 4c pV t Hd ,
T

0

that contains the auxiliary variable p accounting for randomvariations in particle number2. A standard
technique to calculate (3) consists in absorbing the exponential counting factor of (3) into (4) changingH into
the ‘tilted’ generator [45, 46]

å l= + -ål
r

r r
+s s r s r⎡⎣ ⎤⎦( ) ( ) ( )c p cH W, e 1 . 5q

S p q
,

,

In view of the extensivity inT andV of the observables, averages performedwith  lq, are entirely dominated by
the overwhelminglymore probable trajectory thatmaximizes (5). This observation allows us to calculate the
scaled cumulant generating function as

* *l = l( ) ( ) ( )c pg q H, , , 6q,

where *c and *p are solution of the steady-stateHamiltonian equations ¶ = = ¶l lH H0c pq q, , . Currents can
then be obtained as the net fluxes between forward and backward reactions, -r r r+ -¯ ≔ ( ¯ ¯ )J C C .

The nonequilibriumorigin ofNDR emerges clearly from the stochastic setup. Indeed, the differential
response of a generic current Jρ

2
Akinetic termhas been dropped in the pathweight. It would be relevant formodels displaying limit-cycles at the level of rate equations.
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can be obtained by expanding the generatorH, and thus the pathweight (4), to leading order in a small variation
ò of thefixed concentration s¢c . In general, it reads (see appendix B)

å n= á ñ + á ñ - á ñ
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where r̃ are the reactions whose rates r̃W depend explicitly on the perturbed species s¢. In (8) the current Jρ
correlates with three distinct observables: the reaction current r̃̄J ; the reaction traffic ò +r r r-¯ ≔ ( )˜ ˜ ˜F t C Cd

T

T1

0
,

i.e. the total unsigned number of r ˜ reactions; the reaction rates r¯ ˜W . Note that r¯˜F equals r¯ ˜W only on average,
while itsfluctuations (and thus correlations with other observables) can be substantially different. Differently
from currents, traffic and reactions rates do not have a definite thermodynamic character, their values being
affected by kinetic factors. In the followingwewill focus on perturbations that alters only the affinity that
drives Jρ. If such a perturbation happens at equilibrium, (8) reduces to the fluctuation-dissipation relationwhere
only the entropic term µ á ñr̄R J 2

cc appears (see appendix B). Out of equilibrium, instead, (8) shows thatNDR
arises when the current r̄J becomes sufficiently anticorrelatedwith either- r¯ ˜W or r¯˜F . These two scenarios find
their counterparts among physical systems undergoingmechanical trapping induced, respectively, by geometric
constraints—a colloidal particle pulled through an array of obstacles [6]—and bymany-body clustering—the
same pulling experiment performed in a high-densitymedium [8].

3. Substrate inhibition

Substrate inhibition is estimated to occur in 20%of known enzymes [47]. In its simplest form (see figure 1(a)), it
happenswhen up to two substratemolecules S can bind the active site of one enzyme E giving an inert species
ESS. The binding of a single substratemolecule results in the formation of the active complex ES decaying into
the productP, as in the usualMichaelis–Menten scheme.

The latter pathway is responsible for the production ofP from S at a concentration rate á ñJ̄1 , that is the
chemical current of biological interest. The former instead represents the competing process [27, 47]. It takes up
—or traps, within themechanical analogy—substrate into ESS thus decreasing the rate of production of P for
large [S] (figure 1). Indeed, with [S]? [P] kept constant by particle reservoirs tomimic physiological conditions

andfixing the reaction affinity =
- -

[ ]
[ ]

log k k S

k k P
1 2

1 2
, the stationary current takes the non-monotonic form [27, 47]

á ñ
+ +

-

¯ [ ] [ ]
[ ] [ ]
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k E S

K S S
. 9
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k

1
2 tot

M
23

3

Here [E]tot is the total concentration of enzyme and + -≔K k k

kM
2 1

1
. The kinetics of the usualMichaelis–Menten

scheme is retrieved setting k3=0 (figure 1).
Fluctuations can be obtained analytically (see appendix C). Thefirst two scaled cumulants of the time-

averaged current J̄1 show the existence of amarginal affinity * thatmarks the transition to aNDR regime, i.e.

Figure 1. (a) Left: reaction scheme for substrate inhibition.Right: the stochastic production of P from S can be seen as a biased random
walk from the stateE to ¢ ºE E (identified by periodic conditions) through ES, with ESS being a trapping state fromwhich escaping is
only possible by unlikely fluctuations. (b)Mean reaction current (solid) given by (9) for the synthesis of dopamine. Kinetic parameters
are in accordwith physiological values [47]: m m m= = =-

-[ ]k E K k k36 M s , 46 M, 160 M2 tot
1

M 3 3 . The corresponding curve for
Michaelis–Menten kinetics (dashed), i.e. =k 03 , plateaus only at large affinities. The shaded area indicates the range of daily affinities.
Inset: the differential responseR given by (8) (solid) and the correlation á- + ñ¯ ( ¯ ¯ )J W W1 1 3 cc responsible forNDR (dotted).
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<R 0 for * > , where fluctuations á ñ¯ ≔ ¯J JVar 1 1
2

cc peak. In the presentmodel of substrate inhibition,
-á + ñ¯ ( ¯ ¯ )J W W1 1 3 cc is the leading negative contribution in (8) for *  (figure 1), confirming that ESS is a
trapping state.

The existence ofNDRhas some crucial consequences. First, since * = á ñ( ) ¯R J0, 1 varies little upon sizable
variations of substrate concentration around *[ ]( )S . Second, since á ñJ̄1 is not an injective function of, a target
mean current—e.g. required for optimal physiological functioning—is attainable at two different affinitiesmin

andmax. These two factsmay constitute a crucial advantage to control environmental and intrinsic noise in
biochemical systems.

In thefirst case, the system can reach a homeostatic state characterized by a relative stable output á ñJ̄1 despite
variations in the environmental conditions, i.e. the substrate concentration [S]. Importantly, a similar stable
regimewould be achieved only at larger affinities in the absence ofNDR, i.e. for the standardMichaelis–Menten
kinetics (see figure 1). A representative example is the synthesis of dopamine (P) in neurons from tyrosine (S)
mediated by the enzyme tyrosine hydroxylase (E) [48]. The tyrosine concentration in humans varies in response
tomeals on a timescale t ~ 10 sS

3 , and typically ranges from 100 to m120 M. Since the dynamics (1) for the
substrate inhibition scheme infigure 1 has a unique steady state, its typical relaxation timescale is well estimated
by the inverse of the smallest (pseudofirst-order) reaction rate constant, i.e. t ~-

-( [ ]) ≕k P 1s2
1

rel . Hence, on
the slow timescale tS the current J̄1 evolves quasi-statically, with all itsmoments depending parametrically on the
instantaneous value of the affinity  21.0 21.2 (in units ofRT=1). This interval is placed very close to
*  20.8, hence resulting in a current relative variation smaller than 3%.

In the second case, the system can increase the (scaled) signal-to-noise ratio á ñ≔ ¯ ¯J JSNR Var1 1 selecting
the optimal affinity amongmin andmax. Consider, for example, the synthesis of serotonin (P) out of
tryptophan (S) catalyzed by tryptophan hydoxylase (E) in human cells [49, 50]. For different values of the
parameters compatible with physiological conditions, we found that SNR is always smaller atmin, i.e. higher
precision is achieved at * < (figure 2(c)). As a consequence, such robustness against intrinsicfluctuations is
achieved at the smaller value of themean dissipation rate  S á ñ( ) ≔ J̄1 . Remarkably, the daily concentration of
tryptophan  m m[ ]S25 M 35 M [47] yields a range of affinities  19.6 19.9which is close to optimal in
order tomaximize SNR. Thanks to stochastic uncertainty relations [37–41], SNR can be bounded by dissipation,

 SSNR 2 , and by the system’s dynamical activity,  å á ñr rC̄SNR . The entropic boundmeans that a

more precise currentmay be obtained at larger affinity, and thus dissipation. Nevertheless, such condition need
not be realized in practice, especially because the bound becomes looser as increases, as is the case for
serotonin synthesis.

4. Autocatalysis

Autocatalysis represents the second scenario inwhichNDR can arise, whose simplest possible scheme is
depicted infigure 3(a). Having one dynamical concentration, two reactions (required to have amaximum
current), and twofixed concentrations [S] and [P] (needed to set the system away from equilibrium), this is the
minimal chemical scheme displayingNDR.An outstanding example falling into the autocatalytic paradigm is

Figure 2. (a)Mean reaction current (solid) given by (9) and its scaled variance (dashed) for the synthesis of serotonin. Kinetic
parameters are in accordwith physiological values [47]: m m m= = =-

-[ ]k E K k k36 M s , 46 M, 400 M2 tot
1

M 3 3 . The shadowed
area indicates the daily range of affinities. Inset: the differential responseR (solid) and the correlation á- + ñ¯ ( ¯ ¯ )J W W1 1 3 cc responsible

forNDR (dotted). (b)The signal-to-noise ratio SNR (solid), and the upper bounds S 2 (dashed) and å á ñr rC̄ (dotted) set by the
uncertainty relations. The shadowed area indicates the range of daily affinities. The shaded area indicates the range of daily affinities.
Inset: parametric plot of SNR for the two values of the affinity,Amin andAmax, corresponding to the same average current á ñJ̄1 .
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DNA replication [28]: two double strandedmolecules are produced by one suchmolecule (X) and nucleobases
(S), and eventually undergo a conformational change, e.g. into the double helix structure (P). Several other
biological processes can be similarly described at a coarse-grained level as autocatalytic reactions, e.g. formation
ofmicelles from amphiphiles [51, 52], ATPnet production in glycolysis [53], and conversion of prion proteins
into the infectious form [54]. Here, we regard the autocatalytic scheme as amodel for phosphorylation of
protein kinase (X) coupled to a larger association/dissociation cycle via the conversion into the complex P
[28, 55, 56]. For the chosen physiological values of the parameters, the coupled cycle is known to display
circadian rhythmicity [56]. Taking [P] as time-independent, we highlight the role played byNDR in triggering
chemical oscillations, a topic ofmajor relevancewhichmay even have a role in our understanding of the origin of
life [57].We consider the degradation of S intoP as the current of interest. Itsmacroscopic value determined by
the rate equation

á ñ = + - + - -
-

- - -¯ ( [ ] ( [ ]) [ ] ) [ ]J
k

k
k k P k k S k S k k P

2
4 ,1

2

1
2 1 2 1

2
1 2 2

is a non-monotonic function of [P], and so of the affinity  =
- -

[ ]
[ ]

log k k S

k k P
1 2

1 2
.Moreover, the full statistics of the

model can be obtained by the large deviation techniques introduced in section 2 (see appendixD). The negative
correlation á ñ <¯ ¯J F 01 1 cc (see inset infigure 3(b)) entering (8) shows thatNDR is induced by a competition
between forward and backward flows (due to the nonlinearity of the autocatalytic step), rather than by the
presence of a trapping state, as observed in substrate inhibition. Also, the qualitative behavior of the J̄Var 1 is
different (see figures 2(a) and 3(b)), with theminimum (rather then themaximum) occurring near * . Despite
that, for awide range of parameters compatible with physiological conditions we observe that SNR is larger for

* < , i.e. at smaller dissipation.Hence, as already discussed for substrate inhibition, autocatalysis can be run
at low affinities to reduce the current dispersion or around the region of null response tominimize variations in
the output current.

5.Dissipative self-assembly

As afinal example,we analyzedissipative self-assembly, a paradigmof out-of-equilibriumsynthesis extensively
exploited bybiological systems: prominent examples being the formationofmicrotubules out of tubulindimers fueld
by guanosine5′-triphosphate (GTP) [58, 59] and theATP-driven self-assemblyof actinfilaments [60]. It has been
also probed in experiments such as the controlled gelationof dibenzoyl-L-cysteine to formnanofibers [61] and the
chemically fueled transient self-assemblyoffibroushydrogelmaterials [62]. A simple, yet insightfulmodel is sketched
infigure 4(a), whichhas beenproposed as aminimal general scheme for genuinenonequilibriumself-assembly [30].
Thedirect aggregationof twomonomers (M) to form the assembled state (A2)—whichwouldbehighly disfavored at
equilibrium—is boostedby coupling theprocesswith the burning reactionof some fuel (F) converted intowaste (W).
This fuelingmechanismopens sidepathways involving the activated species *M , which easily aggregates into *A2 . To
give an example, supposingM to not aggregate because of unfavorable electrostatic interactions, thenF (W)maybe a
high (low) energymethylating agent able to convert negatively chargedmonomersM into their neutral form *M . By
properlyfixing the concentrations ofF andW, a nonequilibriumstationary state rich in the target speciesA2 canbe
achieved.Atoddswith conventional equilibriumself-assembly, the efficacy of this synthetic procedure is not

Figure 3. (a)Minimal autocatalytic reaction scheme representing, e.g. a coarse-grainedmodel ofDNA replication. (b)Mean reaction
current (solid) and its variance (dashed). Inset: the differential responseR (solid) and the correlation á ñ¯ ¯J F1 1 cc responsible forNDR

(dashed). (c)The signal-to-noise SNR compared to the bounds S 2 (dashed) and å á ñr rC̄ (dotted) set by the uncertainty
relations.
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determinedby the relative thermodynamic stabilities of the components, but rather by the sustaineddissipation and
kinetic aspects [29, 63, 64].

By design, the system attains large concentrations ofA2 depleting themonomer concentration [M] [30].
Therefore, the current of reaction ρ=4—which is half the current from F toW—is almost unidirectional,
especially far from equilibrium:

+⟨ ⟩ [ ] ( )J k A . 104 4 2

Because of the proportionality relation(10), the existence ofNDR affecting á ñJ̄4 sets an upper bound on the
maximal [A2] achievable by the process.

Being unable to calculate (3) for thismodel, we performed stochastic simulations based on theGillespie
algorithm [65] (see appendix E).Wemeasured themean current and its variance, as well as its response, for

different values of the affinity  = + + + +

- - - -

[ ]
[ ]

log
k k k k F

k k k k W
F W

F

1
2

2 3 4
2

1
2

2 3 4
2 . The responsewas obtained by directlymeasuring á ñJ̄4 at

different, and through(8), by estimating the required correlation functions. The good agreement of the two
methods (figure 4) shows that(8) is not only conceptually revealing, but also of practical relevance for
calculating responses without actually applying perturbations. Despite their proportionality in average, the
current J̄4 and the concentration [A2]were found to possess differentfluctuations. It implies that the signal-to-
noise ratio á ñ[ ] [ ]A AVar2 2 is not bounded by dissipation, hence does not decrease at large due toNDR.

Indeed, á ñ[ ] [ ]A AVar2 2 is close to itsmaximumat the optimal affinity * (figure 4(c)). This is important for
the scalability of artificial syntesis tomicroscopic volumes.

6.Discussion

In conclusion, we have shown thatNDR is awidespread phenomenon in chemistry withmajor consequences on
the efficacy of biological and artificial processes. In substrate inhibition, NDR allows a system to reach
homeostasis at lower dissipation than in theMichaelis–Menten kinetics, keeping the signal-to-noise ratio
unaltered. For systems that do not need tomaintain a stable current, higher precision to sustain a givenmean
current can be reached at low affinity, i.e. dissipation. Remarkably—given the scarcity of solvablemodels away
from equilibrium—these results, obtained in the large-size limit, are exact. They show that the general bounds
offered by the uncertainty relations have little predictive power for parameters that are biologically relevant.

Since the analogous behavior was found in both biochemical schemes, despite the difference in the
qualitative behavior of the currentfluctuations, the idea that life efficiency always increases with the dissipation
rate is called into question [66]. Still, it is worth noticing that whenever these chemical schemes are used as
effectivemodels that coarse-grain some nonequilibrium reactions, the dissipationΣ is always smaller than the
total entropy production rate of the original process [67]. Instead, if only equilibrated subprocesses are lumped
or discarded, a complete thermodynamic description of the original process exists [68]. It identifies with the
chemical potential difference (in units ofRT=1) of thefixed species (respectively, P and S, F andW) andΣwith
the entropy production rate [26].

Figure 4. (a)General scheme of dissipative self-assembly. (b)The reaction current given by the rate equations (solid), itsmean as
obtained from the stochastic simulations atfinite number of chemicals (filled) and its approximation (10) (open). Inset: the differential
responseR obtained from (8) by stochastic simulations (filled) and fromnumerical derivative of themean current (open). (c) Signal-
to-noise ratio of the concentration [A2] obtained from stochastic simulations. The bound S 2 does not apply. Inset: SNRof the
current á ñJ̄4 (circle) compared to the bound offered by the square root of half themean dissipation rate S 2 (square), both obtained
from stochastic simulations. The bound å á ñr rC̄ is not shown, being one order ofmagnitude larger.
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Lastly, we have shownwith stochastic simulations thatNDR limits the efficacy of dissipative self-assembly:
the ideal affinity thatmaximizes the outputmean concentration also yields a nearly optimal signal-to-noise
ratio. Altogether, we have achieved a fundamental analysis ofNDRof reaction currents. It pinpoints the relation
between robustness, precision and dissipation in biochemistry, and allows the optimization of performance and
scalability in nonequilibrium synthesis.

Acknowledgments

We thankArthurWachtel for helpwith the numerical simulations, whichwere carried out using theHPC
facilities of theUniversity of Luxembourg [69]—see https://hpc.uni.lu. The researchwas supported by the
EuropeanResearchCouncil (project NanoThermoERC-2015-COGagreement no. 681456) and by the
LuxembourgNational Research Fund through theCritics DTU (PRIDE16/10907093).

AppendixA. Stochastic dynamics of chemical reaction networks

Consider awell-mixed volumeV occupied by dilute reacting chemical speciesXσ, labeled by the indexσä
{1,K,M}, followingmass action kinetics. The population number of the dynamical species = ¼( )n n n, , M1

varies in time because of the random reactions, while the concentration of the externally controlled species,

s s¢ ¢≔ [ ]c X with s¢ = +{ }M N1 ,... , is kept constant. A single reactive event, occurring thorough the reaction
r Î  { }1, ..., , involves ns r, moleculesσ and changes the population of speciesσ as +s s s r⟶n n S , ,

with n n-s r s r s r- +≔S , , , the stoichiometric coefficient. For compactness, wewill denote rS the vector of the
stoichiometric coefficients corresponding to reaction ρ. The reactions happenwith a probability rate
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with kρ being the rate constant. The stochastic dynamics can be described by the chemicalmaster equation
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[ ( · ) ] ( ) ( ) ( )

( ) ( )

( )

n n S n S n n

S n n

P W P W P

W Pexp 1 A.2n

t t
V

t
V

t

V
t

-¶≕ ( ) ( ) ( )( ) n nH P, , A.3n
V

t

that prescribes the time evolution of the probability ( )nPt of the chemical populations in terms of the action of
the operator ¶( )( ) nH , n

V . The solution of (A.2) can be used to study only the statistics of state-like observables,
i.e. functions of the instantaneous population n. In order to obtain the statistics of transition-like observables it
is convenient to resort to a path integral representation of the probability of full stochastic trajectories. For
example, the probability [ ( )]n t of the population trajectory Î{ ( ) ( ]}n t t T: 0, can be obtained from (A.2)
introducing auxiliary variables p—to bemarginalized over, eventually—that accounts for variations in
population ¶n:

 ò ò= - +[ ( )] ( )[ ˙ ( )· ( ) ( ( ) ( ))]( )
n pt e . A.4n p n pt t t H t td ,

T
V

0

Twoobservables are of interest to us, namely, the time-averaged number of reactive events ρ, r¯ ≔( )C V T,

ò dr r ( )td
T

T
t

1

0 , , and the time-averaged reaction rate ò¯ [ ( )] ≔ ( ( ))( ) ( )n nW t t W tdV T
T

T V, 1

0
.Within this

formalism, the full statistics of the above observables is encoded in the cumulant generating function

 ò ò ò

l

=

å l+

- +

r r r r r

l

( ) ≔

( )

( ) ( ¯ ¯ )

[ ˙ ( )· ( ) ( ( ) ( ))]

( ) ( )

( )
n p

g q, log e

log e A.5n p n p

V T T q C W

t t t H t t

,

d ,

V T V T

T

q
V

, ,

0
,

computed by functional integration of a path probability with ‘tilted’ generator





å l+ + -l
r

r r r r
=-

( ) ≔ [ ( · ) ] ( ) ( )( ) ( )n p S p nH q W, exp 1 . A.6q
V V
,

The superscript (V,T) stands for the dependence on afinite system volumeV and trajectory durationT. Later,
wewill omit the superscriptsV andT to indicate the largeV andT limit of the various functions. All cumulants,
such as themean lá ñ = ¶r l=r

¯ ( )∣( ) ( )C g q,V T
q

V T
q

, ,
, 0 and the connected correlations, e.g.
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l¶ ¶ = á ñ á ñ - á ñá ñl r r r r r r=r r
( )∣ ¯ ¯ ≔ ¯ ¯ ¯ ¯ ( )( ) ( ) ( ) ( ) ( ) ( ) ( )g q C C C C C C, , A.7q q

V T
q

V T V T V T V T V T V T,
, 0

, ,
cc

, , , ,
1 2 1 2 1 2 1 2

can be calculated from (A.5) upon differentiation. The statistics of the time-integrated current,
-r r r+ -¯ ≔ ( ¯ ¯ )( ) ( ) ( )J C CV T V T V T, , , , follows from (A.5) as well.

A.1.Macroscopic limit: the rate equations
In the thermodynamic limit, given by  ¥  ¥sn V, andfinite concentrations =s s s≔ [ ]c n V X , the
probability ( )nPt becomes sharply peaked around itsmaximum. Thereby, one obtains the chemical rate
equationsmultiplying (A.2) by n and averaging,





å=s
r

s r r
=-

˙ ( ) ( )cc S W , A.8,

with the average reaction current given by the (scaled) large-size limit of (A.1):

 r r
s

s
n

s
s
n

¢= +
¢

=

s r s r¢( ) ≔ ( )cW k c c . A.9
M

N M

1 1

, ,

The same result can be obtained by the path integral formalism. The statistical weight in (A.4) peaks as

ò - +[ ˙ ( ) · ( ) ( ( ) ( ))]c p c pV t t t H t texp d ,
T

0
around those paths thatmaximize the time integral, i.e. those that

satisfy theHamilton equations

= -¶ = ¶˙ ( ) ˙ ( ) ( )p c p c c pH H, , , A.10c p

with ( ( ) ( ))c pH t t, being now function of themacroscopic rates (A.9). The rate equations (A.8) are regained by
looking for the noise-less trajectories:

å= = ¶ =
r

r r=⟹ ˙ ( )∣ ( ) ( )p c c p S cH W0 , . A.11p p 0

A.2.Macroscopic limit: scaled cumulant generating function
Fluctuations in the thermodynamics limit are captured by the scaled cumulant generating function

 ò ò òl l =
¥
¥

¥
¥

- + l( ) ≔ ( ) ( )( ) [ ˙ ( )· ( ) ( ( ) ( ))]c pg q
V T

g q
VT

, lim
1

, lim
1

log e . A.12c p c p

V
T

V T
V
T

V t t t H t t, d ,
T

q
0

,

The average (A.12) is dominated by the trajectories thatmaximize the statistical weight, namely, by the solutions
of theHamilton equations

= -¶ = ¶l l˙ ( ) ˙ ( ) ( )p c p c c pH H, , . A.13c pq q, ,

Since herewe are interested only in systemswith a single stable stationary state we focus on the uniquefixed
point of (A.13)—we thus assume the absence ofmultiple stable fixed points and time-dependent attractors for
(A.13), which excludes the emergence in the thermodynamic limit of ergodicity breaking and limit-cycles,
respectively. Namely, we seek the vectors *c and *p solution of

= -¶ = ¶l l( ) ( ) ( )c p c pH H0 0, , . A.14c pq q, ,

To avoid clutter we do not explicitly write the parametric dependence of *c and *p on the countingfields qρ and
λρ. If there exist vectors gℓ such that r= "g

rℓ · S 0 , then the dynamics (A.2) conserves the concentrations
gℓ · c. Therefore, (A.14)needs to be supplemented by the constraints

å å= =
s

s s
g

s

s

s
g

= ¹s

ℓ
ℓ

( )
ℓ∣

c
p

const, 0. A.15
M

1 0

Using the solution *c and *p to evaluate (A.12) yields the scaled cumulant generating function

* *l = l( ) ( ) ( )c pg q H, , . A.16q,

By virtue of the above assumptions, (A.16) is a smooth and convex function of qρ andλρ.

Appendix B. Response of chemical currents

Consider the perturbation  +s s¢ ¢( )c c 1 in the concentration of a one fixed species s¢, with ò= 1.We are
then interested in the response of a time-integrated current r̄J , a long time after the application of the
perturbation—for simplicity, wework in the largeT andV limit, although these results can be equally derived
forfiniteT andV. Such response is defined as
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 








l
¶á ñ

¶
=

¶
¶

¶ - ¶r

l
=

= =
=

r r-
≔

¯
( ) ( ) ( )R

J
g q, . B.1q q

q
0

0, 0
0

Here, the subscript ò indicates that the scaled cumulant generating function (A.16) corresponds to the dynamics
with perturbed reaction rates

 n+ +r s r¢( )( ) ( ) ( )˜ ˜cW O1 , B.2,
2

where r̃ labels the reactionswhose rate depends explicitly on the perturbed species s¢. Performing the
derivatives in (B.1), the response function is then expressed as

å

å

n

n

= á ñ - á ñ

= á ñ + á ñ - á ñ

r
s r r r r r

r
s r r r r r r r

¢

¢
⎡
⎣⎢

⎤
⎦⎥

[ ¯ ¯ ¯ ¯ ]

¯ ¯ ¯ ¯ ¯ ¯ ( )

˜
˜ ˜ ˜

˜
˜ ˜ ˜ ˜

R J C J W

J J J F J W
1

2

1

2
, B.3

, cc cc

, cc cc cc

where in the last linewe have added and subtracted the same quantity to obtain the (largeV andT limit of) time-
averaged current r̃̄J and the time average traffic +r r r-¯ ≔ ¯ ¯˜ ˜ ˜F C C . The latter counts the number of times the
reaction channel r̃ has been used, in both forward ( r+ ˜ ) and backward ( r- ˜ )direction. Notice that (B.3) contains
only unperturbed averages.

When the unperturbed state coincides with equilibrium, defined as = 0, the second and third term in
(B.3) vanish, since they are averages of time-antisymmetric observables donewith a time-symmetricmeasure.
Therefore, (B.3) simplifies to

å n= á ñ
r

s r r r¢ ¯ ¯ ( )
˜

˜ ˜R J J
1

2
. B.4, cc

Perturbing an equilibrium state the response is only dissipative or, equivalently, the dynamical contributions
coincides with the dissipative one. If r̄J and r̃̄J are independent cycle currents [24, 26], their covariances vanish
identically, so that µ á ñ >r̄R J 02

cc holds true at equilibrium.

AppendixC. Substrate inhibition

In the thermodynamic limit, the tilted generator of the substraste inhibition scheme reads

l

l

= - + + -

+ - + -
+ - + + -

l
- + +

-
- +

- + +
-

- + +

- + +
-

- + +

-

-

-

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

c pH k c c e k c e

k c e k c c e

k c c e k c e

, 1 1

1 1

1 1 , C.1

q S E
p p q

ES
p p q

ES
p p q

P E
p p q

S ES
p p q

ESS
p p q

, 1 1 1

2 2

3 3 3

E ES E ES

ES E E ES

ES ESS ESS ES

1 1

2 2

3 3

where the reactions are numbered as infigure 1(a) of themain text. Note that for the sake of clarity we have
identified the labelsσ and s¢with the species name. Also, in view of (B.3), we have added the counting fieldλ
only on the reactions+1 and+3, whose rates depend explicitly on the perturbed species S. The dynamics
conserves the total concentration of enzyme = + +c c c cE E ES ESStot

, so that =ℓ ( )1, 1, 1 .
The rate equations (A.8) obtained from (C.1) by settingλ=q=pσ=0 ∀σ read

= - - + --

á ñ

-

á ñ
     ˙ ( ) ( )c k c c k c k c k c c C.2S ES

J

ES P

J

E 1 E 1 2 2 E

1 2

= - - - - - - --

á ñ

-

á ñ

-

á ñ
        ˙ ( ) ( ( )) ( )c k c c k c k c k c c k c c k c c c , C.3ES S E ES

J

ES P E

J

ES S E E ES

J

1 1 2 2 3 3

1 2

tot

3

wherewe have eliminated = - -c c c cESS E E EStot
. The stationary conditions =ċ 0E and =ċ 0ES imply that

á ñ =J 03 and

á ñ = á ñ =
-

+ + + + + +

- -

- -

-

-

-




( )
( ) ( )J J

k c c c

K c c c c

k c c

K c c1
C.4

E S P
k k

k

P
k

k S P
k

k

k

k S
k c

E S

S
k

k S

1 2

2

M
2 1

2

M
2P

tot
1 2

1

2

1

2

1

3

3

2

tot

3

3

that is equation (1).
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For l q, (and so pσ) different from zero, theHamilton equations (A.14) for the concentrations can be solved
under the constraint + + =c c c cE ES ESS Etot

and + + =p p p 0E ES ESS , obtaining

= +
= +

= + +

+ + +

+ +
-

+ +
-

-
+ + +

-
-

+ + + +

-
+ + + + + +

-

+

- -

- -

- - - -

- -

( ) ( ) ( )
( ) ( ) ( )

( )

( )

p p

p p

p

c c e k e k e f

c c e k c e k e c f

f k c e k
k

k
c se k c e

k e k e k
k

k
c e

,

,

. C.5

E E
p p q q q

ES E
p p q

P
q q

S

P
p p q q

P
q q

S
p p q q

p p q q p p q q
S

q q

4 2
1 2

2 4
2 1

2
2 4

2
3

3
1

2 4

1
4 2

2
4 2

1
3

3

2

E ES

E ES

E ES E ES

E ES E ES

tot
3 1 2

tot
3 2 1

2 3 2 3 1 3

1 3 2 3 1 3

The constraintHamilton equations for p aremost easily solved by the change of variables y = +p plog 2E ES
and f = -p plog ES P , that yields

f y
y

l
=

- + +
+ -

- -

-

- -

-
( ) ( )

( )
( )k e k c k c e

k c k c e

1

1
, C.6

q
P S

q

P S
q

3 2 1

2 1 1

3 1

1

y f y f y y l y y+ - + + + - - - =- - -- -[ ( ) ( )] ( )[ ( ( )) ( )] ( )k e k e k k k c e k e1 1 0. C.7q q q q
1 2 1 2 3 S 3 32 2 3 3

The latter is a 3rd degree polynomial, whose solutions can be expressed in closed form.We avoid to report them
here, being too lengthy. The only physical solution *p is the one giving positive concentrations *c whenplugged
into (C.5). Finally, the scaled cumulant generating function is obtained inserting *c and *p into (C.1), according
to (A.16). InfigureC1we plotted the scaled cumulant generating function of the current J̄1 for two different
affinities.We also display the corresponding Legendre transform = -( ¯ ) ¯ ( ¯ ) ( ( ¯ ) )I J J q J g q J , 01 1 1 1 (with ( ¯ )q J1 the
unique solution of ¶ =( ) ¯g q J, 0q 1), that is the scaled logarithmof the probability ( ¯ )P J1 of the current J̄1

-
¥
¥

( ¯ ) ≔ (¯ ) ( )I J
VT

P Jlim
1

log . C.8
V
T

1 1

Concerning the numerical values of the rate constants, for both the examples in themain text—i.e. tyrosine

hydroxylase (TH) and tryptophan hydroxylase (TPH)—we relied on experimentally available = + -K k k

kM
2 1

1

and = -K k

ki
3

3
[47].Within these constrains, we chose realistic kρʼs based on literature typical values [70]. In

particular, we have set k3<k1, thus considering negative cooperativity betweenmolecules S upon their binding
to the enzyme E. k−3 has been kept small tomake the ‘trapping effect’well highlighted, while k−1 and k2 have
been chosen in order tomake reaction 2 rate limiting. k−2 is usually neglected in kineticmodels, but here it
guarantees thermodynamic consistency. Since the two enzyme considered have sameKMand differentKi, we
have opted to keep differencesminimal. Accordingly to the above argumentation, we checked the robustness of
the qualitative features shown by themodel under different choices. Plots in themain text were obtainedwith
the following parameters:

FigureC1. Left: scaled cumulant generating function g(q, 0) of the current J̄1 for the tyrosine production. Twodifferent affinities are
plotted,  = 19.88 (dashed) and  = 21.79 (solid), both corresponding to the samemean value má ñ = -J̄ 10 M s1

1.Right: the
corresponding rate functions ( ¯ )I J1 .
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m m
m m

m

m m
m m

m m
m m

´ ´
´

- - - -

-
- -

- -

-
- - - - - -

- - - - - -

-
- -

[ ]
[ ]

K
K

k

k

k

k

k

k
E
P

TH TPH
46 M 46 M
160 M 400 M

1 M s 1 M s

20 s 20 s

26 s 26 s

0.1 10 M s 0.025 10 M s

3 10 M s 10 M s

48 s 10 s
1 M 1 M
1 M 1 M

M

i

1
1 1 1 1

1
1 1

2
1 1

2
6 1 1 6 1 1

3
1 1 1 1 1 1

3
1 1

tot

AppendixD. Autocatalysis

In the thermodynamic limit, the tilted generator of the autocatalytic scheme reads

= - + + -

+ - + -
l -

-

- +
-

+ -

( ) ( ) ( )
( ) ( ) ( )

c pH k c c e k c e

k c e k c e

, 1 1

1 1 , D.1

q S X
p

X
p

X
p q

P
p q

, 1 1
2

2 2

X X

X X2 2

where the reactions are numbered as infigure 2(a). Note that for the sake of clarity we have identified the labelsσ
and s¢with the species name. Also, we do not need any counting fieldλ, since the rateW−2 is a constant, hence it
does not contribute to the last term in (B.3).

The rate equation (A.8) obtained from (D.1) by settingλ=q=pσ=0 ∀σ read

= - - --

á ñ á ñ
     ˙ ( ) ( )c k c c k c k c k c . D.2X S X X

J

X P

J

1 1
2

2 1

1 2

At stationarity =ċ 0X wefind

=
-  - + - -

-

( )
( )c

c k k c k k c k k

k

4

2
, D.3X

P S P1 2 1 2
2

1 2

1

where <-c 0X (for all choice of parameters) is discarded because unphysical. The stationary current is then
obtained using +cX

á ñ = á ñ = + - + - -
-

- - -( ( ) ) ( )J J
k

k
k k c k k c k c k k c

2
4 , D.4P S S P1 2

2

1
2 1 2 1

2
1 2 2

that has amaximumal long as + - <- - ( )k k c k c k c k4 2 0P S S2 1 1 1 2 .
For q and then pX different from zero, we first solved (A.14) for cX

=
- + -

--
( ) ( ) ( )

( )
( )c p

e e c k k e

k e

1 1

2 1
. D.5X X

p p
S

q

p
1 2

1

X X

X

2

The resulting 5th-order ordinary differential equation for pX was solved numerically, as it does not allow a
general close-form expression, and then inserted back into (D.5). The so obtained *cX and *pX

gives the scaled
cumulant generating function according to (A.16).

Plots in themain text where obtainedwith the following parameters, directly taken from from [56] (figure 2)
by considering the species KaiAC* as the dynamical variable (X).

m
m

m

´
´

´
´

- - -

-
- - -

- -

-
- -

[ ]

k

k

k

k
S

2 10 M s

0.4 10 M s

8 10 s

4 10 s
4 M

1
3 1 1

1
4 1 1

2
3 1

2
4 1

Appendix E.Dissipative self-assembly

Wehave run the standardGillespie algorithm considering a total population of 1000moleculesM and
generating 105 trajectories of duration 1000 time units. In order to ensure stationarity, we have sampled the
trajectories after a period 100 time units that was previously checked to be long enough for the relaxation of the
chemical network for all values of affinities. This allowed us to calculatemean values and covariances. The
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macroscopic current J4 plotted infigure 4 (b)was obtained by numerical integration of the rate equations (A.8).
Its values does not coincide with the average á ñJ̄4 since the latter pertains to a systemwith large, yetfinite number
ofmolecules. All the plots in themain text were obtainedwith the followingmacroscopic parameters:

´
´
´

´
´
´
´
´
´
´

+
- -

-
- -

+
- - -

-
- -

+
- -

-
- -

+
- -

-
+ - -

+
+ -

-
+ - -

+
- -

-
- - -

[ ]
[ ]
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k

k

k

k

k

k

k

k

k

k

k
M
W
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2.24 10 s
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1.00 M s

1.80 10 s

1.00 10 s
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2.00 10 s
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1.00 10 s

4.79 10 M s
1 M
1 M

F

F

W

W

F

F

W

W

1
1 1

1
2 1

1
3 1 1

1
2 1

2
1 1

2
1 1

3
6 1

3
1 2 1

3
1 1

3
1 2 1

4
1 1

4
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