16,174 research outputs found

    An embedding technique for the solution of reaction-fiffusion equations on algebraic surfaces with isolated singularities

    Get PDF
    In this paper we construct a parametrization-free embedding technique for numerically evolving reaction-diffusion PDEs defined on algebraic curves that possess an isolated singularity. In our approach, we first desingularize the curve by appealing to techniques from algebraic geometry.\ud We create a family of smooth curves in higher dimensional space that correspond to the original curve by projection. Following this, we pose the analogous reaction-diffusion PDE on each member of this family and show that the solutions (their projection onto the original domain) approximate the solution of the original problem. Finally, we compute these approximants numerically by applying the Closest Point Method which is an embedding technique for solving PDEs on smooth surfaces of arbitrary dimension or codimension, and is thus suitable for our situation. In addition, we discuss the potential to generalize the techniques presented for higher-dimensional surfaces with multiple singularities

    Kinematic reduction of reaction-diffusion fronts with multiplicative noise: Derivation of stochastic sharp-interface equations

    Get PDF
    We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated to the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-KPZ universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations, kinetic roughening, and the noise-induced pushed-pulled transition, which is predicted and observed for the first time. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.Comment: 17 pages, 6 figure

    A Nitsche Finite Element Approach for Elliptic Problems with Discontinuous Dirichlet Boundary Conditions

    Full text link
    We present a numerical approximation method for linear diffusion-reaction problems with possibly discontinuous Dirichlet boundary conditions. The solution of such problems can be represented as a linear combination of explicitly known singular functions as well as of an H2H^2-regular part. The latter part is expressed in terms of an elliptic problem with regularized Dirichlet boundary conditions, and can be approximated by means of a Nitsche finite element approach. The discrete solution of the original problem is then defined by adding the singular part of the exact solution to the Nitsche approximation. In this way, the discrete solution can be shown to converge of second order with respect to the mesh size

    Two-scale large deviations for chemical reaction kinetics through second quantization path integral

    Full text link
    Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second-quantization path integral technique. We get three important types of large deviation results when the underlying two times scales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis-Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes
    • …
    corecore