16 research outputs found

    Narrowband Interference Suppression in Spread Spectrum Communication Systems

    Get PDF
    Of significant interest to the United States military is the ability of an enemy to deny or disrupt the operation of the Global Positioning System. To combat this threat the GPS JPO initiated the Tactical GPS AntiJam Technology project, which yielded a prototype Digital Excision Filter (DEF) to remove narrowband jammers. This research describes the work performed to get the DEF hardware operational and extends the previous research performed in this area. Comdisco\u27s Signal Processing Worksystem was used to examine the effect of the DEF on the probability of bit error. This research uses peak to average correlation value, probability of bit error, and percent jammer power removed to examine the performance of the DEF. Fourteen jamming scenarios are examined using CW, pulsed CW, and broadband noise jammers. The DEF effectively rejected all of the jammers except the broadband noise jammer. In scenarios other than the broadband noise jammer, the DEF removed over 98% of the jammer power. The bit error rate curves show that the DEF significantly enhanced the performance of the system in extreme jamming environments. The results presented in this research show that the DEF is a viable, robust option to remove narrowband interference

    Doctor of Philosophy

    Get PDF
    dissertationWireless communications pervade all avenues of modern life. The rapid expansion of wireless services has increased the need for transmission schemes that are more spectrally efficient. Dynamic spectrum access (DSA) systems attempt to address this need by building a network where the spectrum is used opportunistically by all users based on local and regional measurements of its availability. One of the principal requirements in DSA systems is to initialize and maintain a control channel to link the nodes together. This should be done even before a complete spectral usage map is available. Additionally, with more users accessing the spectrum, it is important to maintain a stable link in the presence of significant interference in emergency first-responders, rescue, and defense applications. In this thesis, a new multicarrier spread spectrum (MC-SS) technique based on filter banks is presented. The new technique is called filter bank multicarrier spread spectrum (FB-MC-SS). A detailed theory of the underlying properties of this signal are given, with emphasis on the properties that lend themselves to synchronization at the receiver. Proposed algorithms for synchronization, channel estimation, and detection are implemented on a software-defined radio platform to complete an FB-MC-SS transceiver and to prove the practicality of the technique. FB-MC-SS is shown through physical experimentation to be significantly more robust to partial band interference compared to direct sequence spread spectrum. With a higher power interfering signal occupying 90% of its band, FB-MC-SS maintains a low bit error rate. Under the same interference conditions, DS-SS fails completely. This experimentation leads to a theoretical analysis that shows in a frequency selective channel with additive white noise, the FB-MC-SS system has performance that equals that obtained by a DS-SS system employing an optimal rake receiver. This thesis contains a detailed chapter on implementation and design, including lessons learned while prototyping the system. This is to assist future system designers to quickly gain proficiency in further development of this technology

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    SPS pilot signal design and power transponder analysis, volume 2, phase 3

    Get PDF
    The problem of pilot signal parameter optimization and the related problem of power transponder performance analysis for the Solar Power Satellite reference phase control system are addressed. Signal and interference models were established to enable specifications of the front end filters including both the notch filter and the antenna frequency response. A simulation program package was developed to be included in SOLARSIM to perform tradeoffs of system parameters based on minimizing the phase error for the pilot phase extraction. An analytical model that characterizes the overall power transponder operation was developed. From this model, the effects of different phase noise disturbance sources that contribute to phase variations at the output of the power transponders were studied and quantified. Results indicate that it is feasible to hold the antenna array phase error to less than one degree per power module for the type of disturbances modeled

    Intelligent genetic algorithms for next-generation broadband multi-carrier CDMA wireless networks

    Get PDF
    This dissertation proposes a novel intelligent system architecture for next-generation broadband multi-carrier CDMA wireless networks. In our system, two novel and similar intelligent genetic algorithms, namely Minimum Distance guided GAs (MDGAs) are invented for both peak-to-average power ratio (PAPR) reduction at the transmitter side and multi-user detection (MUD) at the receiver side. Meanwhile, we derive a theoretical BER performance analysis for the proposed MC-CDMA system in A WGN channel. Our analytical results show that the theoretical BER performance of synchronized MC-CDMA system is the same as that of the synchronized DS-CDMA system which is also used as a theoretical guidance of our novel MUD receiver design. In contrast to traditional GAs, our MDGAs start with a balanced ratio of exploration and exploitation which is maintained throughout the process. In our algorithms, a new replacement strategy is designed which increases significantly the convergence rate and reduces dramatically computational complexity as compared to the conventional GAs. The simulation results demonstrate that, if compared to those schemes using exhaustive search and traditional GAs, (1) our MDGA-based P APR reduction scheme achieves 99.52% and 50+% reductions in computational complexity, respectively; (2) our MDGA-based MUD scheme achieves 99.54% and 50+% reductions in computational complexity, respectively. The use of one core MDGA solution for both issues can ease the hardware design and dramatically reduce the implementation cost in practice.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Sequential detection methods for spread-spectrum code acquisition

    Get PDF
    corecore