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SUMMARY 

In this report, we address the problem of pilot signal parameter
 

optimization and the related problem of power transponder performance
 

analysis for the SPS reference phase control system. Signal and
 

interference models are established to enable specifications of the
 

RF front end filters including both the notch filter and the antenna
 

frequency response. A simulation program package is developed to be
 

included in SOLARSIM to perform tradeoffs of system parameters based
 

on minimizing the phase error for the pilot phase extraction.
 

An analytical model that characterizes the overall power transponder
 

operation is developed. From this model, the effects of different phase
 

noise disturbance sources that contribute to phase variations at the
 

output of the power transponders can be studied and quantified:
 

The important findings on the transponder design parameters
 

and results can be summarized as follows:
 

oEIRP = 93.3 dBW
 

'PN Chip Rate 10 Mcps
1 


ORF filter 3 dBcutoff frequency - 20 MHz
 

eNotch filter 3 dB cutoff frequency 1 MHz
. 

oNotch filter dc attenuation a 60 dB 

*cPN Code period > 1 msec 

oCostas loop phase jitter < 0.1 deg for 10 Hi loop bandwidth 

oPN Code loop jitter is negligible
 

eChannel Doppler is negligible
 

eKlystron phase control loop bandwidth > 10 KHz
 

61 
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Inconclusion our results indicate that it is feasible to hold the
 

antenna array phase error to less than one degree per power module
 

for the type of disturbances modeled in this report. However, there
 

are irreducible error sources that are not considered, herein and their
 

effects remai to be seen. They include:
 

*Reference phase distribution errors
 

oDifferential delays in the RF path
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1.0 INTRODUCTION
 

This report serves to document results from the Pilot Signal
 

Parameter Optimization/Analysis (Task I) and the Power Transponder
 

Analysis/Modeling (Task II)of the SPS Antenna Phase Control System
 

Hardware Simulation Study (Phase III). It can be divided into two
 

parts: Sections 2.0-11.0 deal with Task I and Sections 12.0 - 15.,0
 

are devoted to Task II.
 

The key technical issues to be addressed under Task I can be 

summarized by Fig. 1.1. The interferences are generated by the following 

mechanisms: (1)self jamming due to the power beam leakage from the 

diplexer/circulator; (2)mutual coupling from adjacent transponders 

and (3)thermal noise. The signal and interference spectrum at the 

input to the SPS transponder isdepicted in Fig. 1.1(b). Ingeneral, 

the combined phase noise inference from the power beams consists of a 

coherent and a noncoherent term. Depending on the mechanization of 

the antenna structure and diplexer/circulator characteristics, these 

terms are associated with gains K1 and K2. Note that the phase noise 

interferences are concentrated around the carrier frequency (2450 MHz). 

The uplink pilot signal on the other hand has no power around this 

frequency. Its power spectrum peaks at f t 0.75 Rc, with a value 

proportional to the product of the received power (PR) and the PN 

chip rate (Rc), and inversely proportional to the PN code length (M). 

The parameters Rc and M are also related to the processing gain of the 

PN spread signal and determine its interference suppression 

capability. Notice also that about 14% of the pilot signal power 

lies between IfJ < 2Rc. The RF filter characteristic ismainly 

determined by the waveguide antennas, which have bandwidths ranging 

-3­
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Figure 1.1. Signal and Noise Spectrum into SPS Transponder.
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from approximately 15 to 45 MHz depending on the array area. Our
 

goal is to optimally select (1)the pilot signal so that it passes through
 

the RF filter with negligible distortions, and (2)a practical notch
 

filter that rejects most of the phase noise interferences. When this
 

is done, one can De assured that the reconstructed pilot signal phase
 

after the sync loops bears a tolerable error for the retrodirective
 

scheme.
 

In this report, we have characterized the interference model and
 

requirements for the optimization of the first IF filter for the pilot
 

signal communication system. We have characterized analytically the
 

power spectral density of the pilot signal as well as various sources
 

of interference. From this information, we are able to optimize
 

the first IF filter in the reference SPS transponder for interference
 

rejection. We have also formulated a mathematical framework which
 

serves as a basis where different tradeoffs can be made-in terms of
 

system parameters such as pilot signal transmitter EIRP, PN code
 

requirements and chip rates. Based upon this mathematical model, a
 

computer program is developed to be included in the SOLARSIM package to
 

perform tradeoffs of pertinent design parameters of the receiver portion
 

of the SPS transponder; the phase error of the pilot phase tracking
 

(Costas) loop is used as the performance measure. As a result of the
 

SOLARSIM data, the following can be specified on a preliminary basis:
 

(1)chip rate, (2)notch filter response, (3)code period, (4)uplink
 

EIRP and (5)Costas loop bandwidth.
 

Under Task II,we have developed analytical models for the SPS
 

transponder tracking loop system that includes: (1)the PN despreader
 

loop, (2)the pilot phase tracking (Costas) loop and (3)the PA phase
 

-5­



control loop. The phase reference receiver that feeds the reference phase
 

distribution system is also modeled. Various sources of potential
 

phase noise interferences are identified and their effects on the
 

performance of the individual loops are modeled. Inparticular, a
 

model of the phase noise profile of the klystron amplifier based
 

on a specific tube measurement is introduced. Important implications
 

on the PA control loop design are also addressed.
 

An analytical model for evaluating the overall performance of the
 

SPS transponder is given. The phase fluctuation at the output of the
 

transponder is shown to be directly related to the various noise
 

processes through the closed-loop transfer functions of the tracking
 

loops. These noise processes are either generated externally to the
 

transponder circuitry such as ionospheric distrubances, transmit
 

frequency instability, or externally such as receiver thermal noise,
 

power beam interferences, data distortions, VCO/mixer phase noise
 

and the phase variations introduced by the reference distribution tree.
 

A detailed computer simulation is deemed necessary to quantitatively
 

investigate the interplays between the -elements of the transponder.
 

Based on our preliminary investigations, some recommendations on the
 

transponder design are also made.
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2.0 	THE PROBLEMS AND ASSUMPTIONS ASSOCIATED WITH SPS PILOT SIGNAL
 
DESIGN OPTIMIZATION
 

We wish to design the pilot signal communication system to operate
 

reliably in the face of several types of interference:
 

(1) The downlink power beam signal.
 

(2) Noise in the spacetenna receivers.
 

(3) Unintentional or intelligent RFI.
 

(4) Intelligent beam stealing signals.
 

Figure 2.1 illustrates the R.F. signal scenario under consideration. The
 

spacetenna is-composed of 101,552 variable size rectangular arrays which range
 

from 1.73mxl.73m to 5.2mxS.2m, operating at a frequency of 2450_MHz.
 

The power beam signal contributed by the itc subarray is denoted
 

by si(t) for i=l,2,...,N, measured at the output port of the ith
 

transmitter. The signal at the output of the jth subarray's RF
 

receiver is given by r.(t) and possesses components due to the
 

power beam signals s'.(t), i=l,...,N, the receiver noise nj(t), the
 

RFI sRFI(t), and a possible beam-stealing signal sBS(t), in addition
 

to the desired pilot signal sp(t). If we knew all of these input
 

signals to the scenario, we could develop a representation for r.(t)
 

as indicated in Figure2.2,once we have the following additional
 

information:
 

(a) The system function Hi (f)describing the coupling of the
 

ih power beam signal to the j-h receiver's RF output signal
 

rj(t). This includes the effects of all waveguides,
 

circulators, RF receiver filters, antennas, etc. This
 

must be known for all values of i.
 

(b) The system function HRF(f) from the jt--subarray's antenna
 

terminal to the .th receiver's RF output signal rj(t). This
 

-7­
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also includes the effects of waveguides, circulator, RF
 

filters, etc.
 

(c) 	Atmospheric and ionospheric channel models for the paths
 

from the pilot signal transmitter, the RFI source, and
 

the beam stealer to the antenna terminal of the j-h subarray.
 

(d) A "threat model" indicating the capabilities and level of
 

sophistication of the beam stealing processor.
 

Knowledge of the above quantities would make the analyses to
 

follow more precise.
 

The pilot signal baseline design [1] is given as NRZ/BPSK/
 

Bi- -DS/CDMA, i.e.,
 

jbct }
Sp(t) = Re~d(u,t)c(u,t)a(u,t)e 


where u is a sample space parameter indicating randomness, d(u,t) is
 

an NRZ binary data signal BPSK modulated on a Manchester-coded
 

direct-sequence spread spectrum signal, and a(u,t) represents
 

(unwanted) amplitude and phase modulation on the pilot transmitter.
 

We assume that the following approximations are valid:
 

(a) The atmospheric-ionospheric channel can be modelled as:
 

s (t) M---. H-- s (t)
 

(SIGNAL AT PILOT (SIGNAL AT SUBARRAY
 
TRANS. OUTPUT) b(u,t) APERTURE)
 

jdr'
s () hN(t-t')Re{d(u,t')c~ut')a(u,tl)b(u,tl)e'jW } 


(b) 	The filtering HCH(f) imposed by the channel is wide
 

compared to-the receiver RF filtering HRF(f). Assuming
 

that attenuation functions which are uniform across the
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bandwidth of HRF(f) are included inthe channel fading
 

function b(u,t), we approximate hcH(t)
 

hcH(t) = (t-T(u)) 

by a pure random delay. Therefore
 

s (t) = Re{m'p(t-(u))ej ct}
 

m'(t) = a(u,t)b(u,t)c(u,t)d(u,t)
 
P
 

(c) The RF and IFsections of the subarray receivers are
 

modelled in Figure 2.3. Under weak narrowband assumptions
 

we can reduce the RF and IFsubsystem signal processing
 

model to an equivalent complex baseband signal processing
 

model. These techniques are discussed inAppendices 1
 

and 2. The resultant model is shown in Figure 2.4. Ifs(t)
 

isthe input signal in Figure 2.3,then mx(t) isthe
 

equivalent input signal in Figure 2.4 where
 

C I
Re{m (t)e
= x%(t) 


The output signal y(t) and its baseband equivalent my(t) 

are related by 

y(t) = Re{my(t)e IF 1 

where the IF frequency is 490 MHz which isone-fifth
 

of the carrier frequency.
 

(d) We further assume that the factor a(u,t)b(u,t)d(u,t)
 

of the received pilot signal's modulation is quite narrow
 

band relative to the passband of the equivalent RF system
 

function GRF(f). The product filtering approximation of
 

Appendix 3 can then be applied to further simplify the effect
 

of the RF filter on the received pilot signal.
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3.0 POWER SPECTRAL DENSITY COMPUTATIONS
 

We will now sketch the computation of the power spectral density
 

at the input to the second IF filter. This is useful information
 

for determining carrier tracking loop and data detector performance.
 

The PN tracking loop contains a similar signal and these computa­

tions can be adapted to those design needs as well. We assume
 

that superposition is valid and analyze each signal source's effect
 

separately. We feel that this is a very good assumption despite the
 

number of tracking loops which feed very slowly varying functions
 

of the IF signal back into the system. These loops are "broken"
 

in our computation.
 

3.1 The Pilot Signal
 

The Bi- DS spread spectrum (SS) modulation c(u,t) on the pilot
 

signal is of the form
 

c(u,t) : aiP(t-iTc6 (u))
 

where ai is a known +1 binary sequence, &(u) is a random delay, Tc is
 

the chip time, and P(t) is	the basic Bi-p waveform:
 

P(t)
 
; *1
 

TT-Tc/2 

c!
 

The chip time Tc and the sequence fai} are design variables.
 

Pure power spectral analysis cannot be used to analyze the
 

effect of the RF filter on the pilot signal. This is based on the
 

fact that the phase of the SS code on the pilot signal relative to
 

the phase of the code reference signal from the PN tracking loop
 

c5tUntiffln-14-
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determines the bandwidth occupancy of this pilot signal component of
 

the input to the second IF filter.
 

When s'(t) passes through the RF and first IF filters, we
 

assume that the main effect of these operations is the reshaping
 

of P(t). Hence the output of the first IFfilter is
 

s~l)(t) Re{m(l)(t-T(u))ej IFt}
 

where
 

l ( t ) = ( u ' ( u )) mM a(u,t)b(ut ) (u,t)d(u,t)ede t + 

p
 

c(1)(ut) = .2 aiQ(t-iTc-(u)) 

and the new pulse shape Q(t) is given by
 

Q(t) = P(t)*gRg(t)*gl(t )
 

Here YRF(t) and gl(t) are the impulse responses of the first two
 

filters in the complex baseband equivalent circuit (Figure 4), and
 

* denotes convolution. 

After PN code reference multiplication, the baseband equivalent
 

input to the second IF filter is:
 

m 2)(u,t) = m(1)(t-T(u))cR(u t_(u))
 

= A(u,t)c (1)(u,t-r(u))cR(u,t-4Cu))
 

where A(u,t) now represents the low bandwidth signal:
 

A(u,t) = a(u;t--(u))b(u,t-(u))d(u,t-(u))e
j (ut)
 

(We in fact assumed earlier that A(u,t) has bandwidth << I/TC.)
 

Now CR(u,t) is a replica of c(u,t) except that the transmitter
 

clock error s(u) is not known.
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I CR(U't) = 'aiP(t-iTC)
i
 

The product of SS signals appearing in m(2) (u,t) is then
 
p
 

c()ut) 4 C(1)(u't--T(U))CR(u~t--T(U))
 

ai Q(t-iTc (u)-r (u)) 
i 

x - aj P(t-jjT0-(u) 

-c 

2)(u,t)


k
 
4k 

where
 

c2)(u,t) j+kQ(t-(j+k)Tc (u)-T(u))P(t-JTc-(u)
-


Inthe ideal processor from the pilot signals point of view, the
 

RF filter does not distort the pulse, i.e. Q(t) = P(t), the PN sync
 

subsystem adjusts (u) = t(u)+a(u), and hence we would have
 

c(ut) = c2)(u,t) = 1 (Ideal Pilot Signal Reception) 

Due to RF filter distortion and PN tracking error, c 2)(u,ty will
 

be a periodic waveform with period Tc. One period of the waveform
 

(between -Tc/ 2 + T(u) and Tc/2 + T(u))is given by P(t-4(u))Q(t-s(u)
 

-M(u)). Lets expand this waveform in a Fourier series to determine
 

its 'harmonic content:
 

c2)(u,t) = PnU)exp(j~irnt/Tc)
 

n 
where
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cT/2+(u)
 

-T 2(Tuc/2
C exp
(2nT_(u))
 

T c P(t)Q(t-e(u))exp(-j2rnt/Tc)dt
 
C Jf-Tc/2
 

and the PN apparent tracking offset is given by
 

e(u) = (u)+6(u) - T(u) 

We call this the apparent tracking error for two reasons:
 

(1) Ideally we would like the PN tracking loop to drive
 

e(u) to the value which maximizes Jp0(u)f to get the
 

maximum energy into the narrow 2nd IF filter and later
 

detection filters. This maximum may not occur at e(u)=O.
 

(2) The fact that P(t)$Q(t) and Q(t) is not generally symmetric
 

in any way implies that the "S-curve" of the PN tracking
 

loop will not generally be symmetric or have a zero at
 

e=0.
 

As indicated in (1)above, we have identified a portion of the pilot
 

signal which corresponds to the desired 2nd IF filter input, namely
 

the signal whose complex baseband representation is given by
 

m3)(u,t) c(2)(u,t)A(u,t)
p 0 

10 P0(u)a(u,t) 

The last approximation is quite accurate as far as 2P- IF filter
 

computations go, since the other spectral components of c2)
 

shift the spectrum of A(u,t) away from the filter passband by integer
 

C m
-17-




multiples of l/T­c
 

The remaining components c(2) u,t), k/O, of c(2)(u,t)
 

correspond to signals modulated at the chip rate by the sequences
 

{ajaj+k}; and hence are still spread spectrum signals. We view
 

these as distortion noise and define their baseband equivalent 

signal as 

n 3l(u,t) A Au,t) Z c(2)(u,t) 

The sum signal has period MTc where M is the period of the sequence
 

{a.} and can be analyzed spectrally once the design parameters are
 

selected. For now we assume that the power in n 3)(u,t) which is
 
in the passband of the IF filter is lower than that of m(3) (u,t)b
pp
 

at least the processing gain of the SS system. Hence is is not a
 

major factor in the preliminary design and will be ignored.
 

At this point power spectral density calculations are quite
 

easily done for the equivalent baseband pilot signal m 3)(t). Let
 

us generally define
 

RX(T) = <E{x(u,t+T)x*(u,t)}>
 

and 

Sx(f) = f Rx ()exp(-j2wfT).dr 

We assume that the data modulation d(u,t) is independent oF B(u,t)
 

where
 

B(u,t) = a(u,t)b(u,t)ej O (uttr(u)) 

But o(u,t) cannot be considered independent of a(u,t) and b(u,t)
 

whose phases it is designed to track. Continuing then,
 

-18­
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m(3)(u,t) = p0 (u)B(u,t)d(u,t) 

and
 

SmC3)(f) = K{IPo(U)I 2SB(f)*Sd(f)
 

p
 

3.2 	 Independent Interference
 

One of the major advantages of SS systems istheir relative
 

immunity to wide-sense stationary interference. There are several
 

sources of interference which are independent of the SS code
 

reference signal cR(ut):
 

I. 	Receiver noise nj(u,t).
 

2. 	Unintentional RFI (we exclude multipath and intelligent
 

jamming from this category).
 

3. Downlink signals sj(t), j=l,2,...,N.
 

The theory of wide-sense stationary independent interference rejection
 

is covered in [2].
 

Ingeneral if a narrowband signal s(u,t) is represented by a 

complex baseband equivalent signal ms (u,t), i.e., 

jW t 
s(u,t) = Refms (u,t)ec I 

Then the power spectral density of ms(u,t) can be determined from
 

the corresponding density of s(u,t) by
 

SM (f) = 4U(f+fo)Ss(f+fO)
 

or, reversing the relation,
 

Ss(f) [Sms(f2 o) + Sms(-f-fo)]
 

We assume that we can determine the following power spectral
 

densities:
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I. Snjf) = N0/2 = equivalent noise power spectral density.
 

of the receiver reference to the antenna terminals.
 

2. SRFI(f) = the RFI power spectral density measured at the
 

subarray antenna terminals. We assume that the effects
 

of the RFI channel have been taken into account already.
 

3. 	 Ssj(f) = the power spectral density of the output of the
 

j-th subarray transmitter.
 

4. (f)=- the power cross-spectral density of the outputs 

of the j- and k-h subarray transmitters. This is the 

Fourier transform of 

R Or) = <Itsj(u;t+T)s*(u,t)}> 

We expect these to definitely be nonzero since all subarray
 

transmitters are transponding the same pilot tone with
 

basically the same modulation on it.
 

We further assume that for purposes of this spectral computation
 

we can set the carrier tracking phase e(u,t) to a constant e(u).
 

Now it is a simple matter to compute the power spectral density
 

.of the interference at the input to the second IF filter, due to these
 

signals. The resultant equivalent baseband power spectral density is:
 

Sm (f) = Sc (f)* IGI(f)12 [(2N +SmRF(f))IGRF(fH 2 

+ E 	Z Smimk(f)Gij(f)G*kj(f
 
i k
=l 


where
 

SmRFI(f) = 4U(f+fo)SRFI(f+fo) 

Smimk =if4U(f+fo)Si sk (f+fo), i k
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Gi (f) = U(f+fo)Hij(.f+fo) 

and 

Smimi(f) =, 4U(f+f0)Ssi(f+f0)
 

The function S CR) represents the power spectral density of the
 

PN code reference signal generated in the receiver.
 

3.3 Intelligent Jamming
 

In this situation the jammer attempts to emulate the pilot tone,
 

either to add narrowband noise modulation and jam the data signal, or
 

to beam steal. To be effective in either case, the jammer must
 

initially synchronize his SS code modulation with the pilot tones
 

SS code modulation so that they arrive nearly in phase at the
 

receiver. He must also deliver a signal power level at least
 

comparable to the pilot signal's level at the spacetennas subarray
 

terminals. The basic power density analysis is similar to that used
 

for the pilot signal earlier.
 

4. DESIGNING THE FIRST IF FILTER
 

In this portion of the design it seems reasonable to assume that
 

the unintentional RFI and the intelligent jamming signals are not
 

present. The SS processing (code multiplier and second IF filter)
 

is the key to rejecting these interference signals. The major
 

purpose of the first IF filter is to reject as much of the extremely
 

strong downlink signal-as is possible.
 

One plausible criterion for the design of HI(f) or its baseband
 

equivalent G1 (f) is to maximize the signal-to-interference density
 

ratio SIDR in the center of the second IF filter passband. Thus we
 

consider
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2}SB(f)Sd(f)
= {Po(u)j
SIR 

ScR (f)*[IGl(f)l Sl(f)] f=
 

where
 

PON) 	 1 P(t)Q(t-e(u))dt
 
P- T /2
 

which by 	Parsevals theorem is
 

Po(U) = 4-f Ip(f) 2GRF(f)e-Jwe(u)Gl(f)df 

with p(f) being the Fourier transform of P(t). Also the quantity
 

S,(f) in the denominator isgiven by
 

Sl(f) = 2NoIGaF f)l2 + N > Smmk(f)G (f)G*j (f)
 

i=l k=l1
 

Another plausible criterion for the design of the first IFfilter
 

isthe maximization of the signal-to-interference power ratio inthe
 

passband of the second IFfilter.
 

I{JPoM)2}f JG2(f) 2[SB(f)*Sd(f)]df 

SIPR = - ­

fS =G2(f)I(ScR,(f)*[ JGi f) 12SI(f)])df 

The problem with both of these performance measures istheir dependence
 

on parameters which are not decided at this point.
 

Before continuing we must get an idea of the shape of ScR(f). Its
 

spectral density iscomputed inAppendix 4. Below is a sketch of the
 

envelope of the line spectrum S (f) assuming that the spectrum S (n)
 

of the sequence an I isflat (see Appendix 4 for definitions.)
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S Mf) Envelope of Line Powers
C 	 in Sc (f). Line Spacing=l/MTC ' 

M = Period of {an1. 

4 
T 

2 
-o 

2 4 

When the line spacing I/NTc in ScR(f) is much less than the 

width of S1(f), and assume Sa(f) is flat, we can approximate 

cR(f)*[IGl(f)12S (f)]jf:O 

'constant f Ip(f)G1 CflI2Sl(f)df 

and hence 

E h: Ip(f) 2GRF(f)e-Jme(U)Gl(f)df 

SIDR ',constant x 

f p(f)Gl(f)1 
2S (f)df 

In many SS systems, the line spacing I/MTc is also the data 

bandwidth and the approximate bandwidth of the 21- IF filter. 

In this case we make the approximation 

f IG2(f)12ScR (f­a)df 

-­,constant x Ip(a)l 2 

21 
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where Ip(f)I 2 isthe envelope of the line spectrum ScR(f), and
 

again we assumed Sa(n) is flat. This can be used to significantly
 

simplify the denominator of SIPR, and
 

E 2'. 4pf1GFfe-w()lf
SIPRU constant x 0 


So under certain circumstances both SIPR and SIDR have approximately
 

the same dependence on Gl(f) shown explicitly above.
 

Lets work on the numerator expression to evaluate the expected
 

value and determine its relation to the denominator.
 

Numerator = jjf IP(fl)I 2G*F(fl)G*(fl)IP(f2)12GRF(f2)Gl(f 2) 

E{eJ(wl-w2 )e~u ) d1df
}dfldf2
 

To continue precisely much depends on the characteristic function
 

of the tracking error. The integrals factor only ifwe assume
 

e(u) P E{e(u)} = me, i.e. e(u) is very close to its mean value
 

with probability approaching one. Lets assume this is true and
 

see what happens:
 

IS IPf)I2GRF(f)Gl(f)e-J medf12
 Numerator = 


Applying Schwartz's inequality then gives
 

Numerator < j' IGl(f)Pf)vsjTm1 2df 

.Xf s-41 GRF(f)p*(f)e eldf 
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or
 

Numerator < IGRF(f)p(f)12
 

Denominator or SIPRmax
S Jfmax 


The maiimum on the right is independent of Gl(f) and is achieved
 

when
 
m e
GF(fleiw


G(f) F Sfe
 

We must now try to design a decent approximation to Gl(f), even
 

though itmay be difficult to approximate me and determine SI(f)
 

precisely.
 

5.0 	 APPROXIMATIONS TO THE INTERFERENCE SPECTRUI S (f)
 

The major problem encountered in attempting the design of Hl(f)
 

(or the equivalent G1(f)) is the evaluation of SI(f). Recall that
 

Sl(f) = 2NOIGRF(f)I? + -E Smmj(f) 

k
i k 


represents the equivalent baseband power spectral density of the
 

interference at the RF output of spacetenna receiver j. Hopefully
 

hardware experience will provide us with estimates of No/2 and GRF(f).
 

The complicated double sum however requires some simplification.
 

We shall write'the following expression for the signal transmitted
 

by the kt-- antenna subarray.
 

}
 
= Re{mk(u,t)e
Sk(t) 


,where
 

Ak(ut)e [ (u.t-dk)+mcdk]
mk(u,t) = 


dk =	The differential delay between the pilot tone arrival
 

at subarray k and the pilot tone arrival at subarray j.
 

-5 	An2
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4(u,t) = The phase function appearing on the output of the jth
 

subarray transmitter in the absence of transmitter
 

noise and receiver noise. The time variations in *(u,t)
 
are due to the modulation fattor a(u,t)b(u,t) on the
 

pilot tone.
 

cdk = 	 Differential carrier phase shift between the pilot tone 

at subarray k and the pilot tone at subarray j. 

Ak(ust) = Effects of transmitter and receiver noise generated in
 

subarray k.
 

Ideally Ak(Ut) = a0 for all k, and mk(u,t) would be the same as
 

mj(u,t) except for a time delay and a constant complex phase factor.
 

We now make the following assumptions:
 

(a) {Ak(ut)l is a set of independent, identically-distributed
 

wide-sense stationary random processes each with meanK
 

and covariance KA().
 

E{Ak(U,t)l = A, Vk,t 

Cov{Ak(uwtl)Ak(u,t2)} = KA(tl-t2), Yk,tlt 2 

(b) 4(u,t) is a stationary random process with the function
 

E{exp(j[4(u,t+t)-p(u,t)])1 = D(c) 

known.
 

(c) {Ak(ut) } and *(u,t) are independent random processes.
 

Under these assumptions it is easily shown that
 

Rmimk(tlit 2) A E{mi(utl)mk(u't2)l
 

j (d-dk)

=jA c(tl-t 2-di+dk)e c i k , ik 

2 ) i=k
{'A(tIt2+AA2] (tlt
 

-26­



10 119 

Defining Fourier transforms
 

SmImk(f) = f mI (T)e - j 2 f Tdt 
m~i k f 1*i' 

S(f) = f $(z)e-J 2 rfTdT 

SA(f) f KA(t)e-j2 fxd,' 

It follows that
 

S2Sf)ej 2 (fc-f)(di-dk) it~Smimk(f) Sfe 


k&2(f)+SA(f)]*S (f), 
 i=k
 

This can now be used to simplify the expression for the inter­

ference power spectral density at the RF terminals of the jth
 

subarray receiver,
 

SI(f) = 2NOIGRF(f)12 +[SA(f)*S(f)] iGki(f)l2 

k=l
 
f j2rdk(fc-f) 2
+WS (f)Gk__


+ 2cfZ Gk(f)e kcl
 

This has considerably simplified the requirements for power spectral
 

density information, and indicates the precise dependence of the
 

interference power spectral density on the baseband equivalent RF
 

system functions and on the pilot signals direction of arrival (which
 

is hidden in {dkl).
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6.0 	 DESIGN PARAMETERS AND CONSTANTS
 

The preceding sections provide a mathematical framework in which
 

to study the interference rejection problem. We will now choose some
 

design parameters and design constants for use in later computations:
 

(a) 	Thermal Noise Density:
 

= -20kT .69 x 10
N0 = 

Here 	k is Boltzmann's Constant and T is 5000 K.
 

(b) 	Spacetenna Subarray Transmitter Noise Characteristics:

2 

2
-2 a

SAMf = 4Pe taSO(f) 

where
 

P = Transmitter Power = 65 kw
 

2
03 = Transmitter Phase Error Variance 

= .0305 rad 2 - (100 rms) 

:=Variance to-squared-mean ratio of the angular modulation
 
2 

So(f) = normalized phase error spectral density 

c , If < 1 KHz 

= c(f/10 3)-6 , 1 KHz < Ifl < 10 KHz 

-2c 106 (f/104 , 10 KHz < Ifj
 
I
 

c = normalizing constant = (2.4 x 103)
-


The development of the model for subarray transmitter noise
 

is discussed in Appendix V. SA(f) in dB above 1 W/Hz
 

is shown in Figure6.1. 
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(c) Spectral density of spurious phase modulation on the
 

uplink signal:
 

S (f) = a (Dirac'Delta Function)
 
) D(f)I
 

This is a reasonable approximation for interference
 

computations.
 

(d) Chip rate:
 

Tc 	= lO-7sec
 

(e) Baseband-equivalent RF filter:
 

1
GGRF(f) = l+j2f 

The time constant T of this filter is normalized interms 

of chip times to 

A 	 T 

C 

Note the 3 dB cutoff point for GRFf) is . Figure 6.2 is 

a sketch of IGRF(f)12. The one-pole Butterworth filter 

characteristic has been chosen to conform with frequency
 

response of half module radiator supplied by Boeing. A
 

comparison is given in Fig. 6.3.
 

If) The noncoherent-interference-coupling equivalent-baseband
 

system function:
 

SIG 2 < K1 (constant)
 

k
 

Here K is an array design parameter.
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Figure 62. The Assumed Power Response of the RF Filter.
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Figure 6.3. Frequency Response of Half Module Radiator.
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(g) The coherent-interference-coupling equivalent-baseband
 

system function:
 

j2wdk(fc-f) 2 

Z GkJ(f)e k < K2 (A Constant) 

Here K2 is an array design parameter.
 

(h) The PN apparent tracking offset e is normalized in terms
 

of chip times.
 
A _e 

C 

(i) The first IF filter in equivalent baseband form is given by
 

6+(f) = + ft 1 

=3 () - exp(j(2n+l),ir/12) 

This is a high-pass Butterworth filter with an added constant
 

y which can be used to specify the quality of the filter's null
 

at bandcenter. Six poles were chosen since this matches the
 

predicted theoretically optimal filter (see Section 4) in
 

the critical range where SA(f ) has a 60 dB per decade slope.
 

The inversion frequency f0 is a design parameter. A sketch of
 

IG1(f)I 2 is shown in Figure 6.4.
 

We'also normalize f0 to the chip rate by defining
 

6 = foTc 

(j) Bi- Manchester waveform characterization:
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P (t) imperfect Manchester pulse 
T 

~~~*~s2 < t < 0-I+e Tc
 

t <T
 , 0 < 
l+e2
 

0 , otherwise 

2 P(t) + IP(t 

Hence P (t) is a weighted sum of the Manchester waveform
 

P(t) and the NRZ waveform IP(t)f, (see Fig.6.5).
 

The squared-magnitude of the Fourier transform of
 

PS(t), after normalization, is given by
 

2) sin2(nfTC)
 

27 2 


pE(f ) 2 (sin4(wfTc/ 2 


cT-- (nfTc/2) I+ CWfTc 

which is a linear combination of the energy spectrum of
 

the Manchester waveform and the energy spectrum of the NRZ
 

waveform.
 

PCt) and p (f) will replace P(t) and p(f) in some of
 

the equations derived earlier so that we can estimate the
 

effects of an imperfect PN code waveform on the leakage of
 

narrowband interference into the passband of the second IF
 

filter. Thus e is a basic design parameter.
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7.0 INTERFERENCE LEVELS AT THE OUTPUT OF THE SECOND IF FILTER
 

Under the assumptionsof the previous section, the interference
 

spectral density in the worst case is given by
 

S1 (f) = 2NOIGRF(f)I2 + KISA(f) + K2A2D(f) 

Using this as our model for Sl(f), we can evaluate the effect of
 

the notch filter parameters f0 and y on the interference power IF
 

at the output of the first IF filter.
 

IF :f Sl(f)IG%(f)I 2df
 

The results of this computation are given in Table'7-1, along with
 

a breakdown of the contributions to IF of the three components of
 

S1(f), namely thermal noise, noncoherent downlink interference, and
 

coherent downlink interference. The width fo of the notch filter
 

is limited by the loss of uplink signal power which it causes. This
 

will be evaluated in the next section. The minimum value of y is
 

limited by hardware implementation problems.
 

The effect of the PN code multiplier in the receiver is to spread
 

the interference power spectrum over a wide band. The power spectral
 

density of the input to the baseband equivalent second 'IFfilter
 

G2(f),is given by
 

SI2IN(f) SCR(f)*[IGI(f)12SI(f)]
 

where for an m-sequence, the code spectral density consists of lines
 

I/MTc apart with:
 

scR (f) =Pn6D(f nMT)
f_ 


n 

-37­



Table 7-1.Effect of Notch Filter Parameters On Interference Level Before
 
PN Despread.
 

(a) Effect of Cutoff Frequency 

= O- 2-3 = =I 1K , Tc 1yl10 , O ,K 1 2 

COMPONENTS OF IF
 

f0F THERMAL -=0NMROE7ET COHERENT
 

102 6.94(l) 7.83(-13) 6.94(l) 1.22(-3)
 

103 
 1.35(l) 7.83(-13) 1.35(l) 1.22(-3)
 

5 x 103 7.10(-3) 7.82(-13) 5.88(-3) 1.22(-3)
 

4
lO 1.90(-3) 7.82(-13) 6.78(-4) 1.22(-3)
 

105 
 1.30(-3) 7.80(-13) 7.57(-5) 1.22(-3)
 

106 1.30(-3) 7.54(-13) 7.57(-5) 1.22(-3)
 

2 x 106 1.30(-3) 7.26(-13) 7.57(-5) 1.22(-3)
 
3 x 106 1.30(-3) 6.99(-13) 7.57(-5) 1.22(-3) 

(b) Effect of DC Attenuation with Narrowband Notch Filter
 

10 K 2= 10-2, Tc = 10-7
 fo = , 0, a = 

COMPONENTS OF IF
 

IF THERMAL NONCOHERENT COHERENT
 

10-2 1.30(-l) 7.96(-13) 7.57(-3) 1.22(-1)
 

10-3  
 1.90(73) 7.82(-13) 6.78(-4) 1.22(-3)
 

10-4  
 6.17(-4) 7.81(-13) 6.05(-4) 1.22(-5)
 

10-5 6.04(-4) 7.81(-13) 6.04(-4) 1.22(-7)
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(c) Effect of DC Attenuation with Wideband Notch Filter
 

4, K = K -2, Tc = 10- 7f = 2 x 106 a = , a=-

COMPONENTS OF IF 

IF THERMAL NONCOHERENT COHERENT 

10- 2 1.30(-l) 7.36(-13) 7.57(-3) 1.22(-1) 

10. 3  1.30(-3) 7.26(-13) 7.57(-5) 1.22(-3) 

10-4  1.30(-5) 7.26(-13) 7.57(-7) 1.22(-5) 

10. 5  1.30(-7) 7.25(-13) 7.57(-9) 1.22(-7) 
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IPE(0)  2n
where 
 0
 

Pn P In	MZ Tc P,:Tn)22 

I 11 PTc o. 

Hence the resultant spectral density at the input to the baseband­
equivalent second IF filter contains lines separated by - hertz
 

Mic
 
along with a continuous spectral density. We assume that the
 

second IF filter has a bandwidth narrow enough to reject all lines
 

except the center line in SI2IN(f). For example let's assume that G2(f)
 

is a zonal filter:
 

G 	 , 1f1< 2MTC 
0, otherwise.
 

This idealistic assumption is not critical since a "narrower" non­

ideal filters occur in the carrier tracking loops which follow. Then
 

we approximate the output baseband equivalent second IF filter by:
 

S120UT~f) = 2N + U3sSeq 	 Ifl 1
D(f) < 2MTc
 

where 2Neq isthe continuous spectral density at band center, and J
 

is the d.c. 	line power,
 

2Ne 2 PIG1Ci 121 FN2 + K, 
eq n Ic) 2NiGRF(M-)I +MSA(g ,n 	 C c 

2 = y2POK2A2 

.Notice that 	if P (t) is a perfect Manchester pulse, i.e., = 0, then 

J = O.and the line inthis density disappears, implying that in this
 

case the interference can be made proportionately smaller by decreasing
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the loop bandwidth.
 

The spectral density SI20UT(f) which we have just developed is
 

the spectral density of the complex valued modulation on the IF signal
 

at the output of H2CM). The spectral density of the actual IF signal
 

at the output of H2(f) is given by
 

Sq T + j [ (f-fIF) + a(f+frF)J ' iff 
 < 21T 

I S 0, otherwise 

This expression will be used in later sections to determine tracking
 

loop signal-to-noise ratios. The effect of the code length M on the
 

noise process is shown in Table 7-2.
 

8.0 UPLINK SIGNAL LEVELS AT THE OUTPUT OF THE SECOND IF FILTER
 

The uplink pilot signal power PR at the terminals of the subarray
 

antenna is given by
 

PTGTAR
 

PR 4-R
 

where
 

PT: Pilot transmitter power = 65 kw
 

G = -2
GrT 47AT Pi'lot Antenna Gain 32,900
 

x Pilot transmitter wavelength = .12245m
 

AT = Pilot antenna aperture area = 78.5 m2 (lOm dish) 

i= Transmit efficiency = .5
 

3m2
 
AR Subarray pilot antenna perture 


R = range = 38,000 km 
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Table 7-2. Effect of Code Length M on Equivalent Noise Seen
 
by Costas Loop.
 

M Neq J 

1 2.6(-15) 6.12(-6) 

2 4.9(-15) 1.53(-6)
 

3 5.3(-14) 6.79(-7)
 

4 5.2(-14) 3.82(-7)
 

10 5.2(-14) 6.12(-8) 

100 5.2(-14) 6.12(-10) 

1,000 5.2(-14) 6.12(-12) 

10,000 5.2(-14) 6.12(-14)
 

0-
K1 = K2 : 2 

= 10- 7 
Tc 

-3
=:1


1 
a 41r 

6 = 10- 3 

= 10%
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The 	received pilot signal power then is
 

PR 	: .354 iw. 

As discussed in Section 3.1, the pilot signal undergoes a
 

fractional pain due to the notch in the first IF filter and to RF
 

filtering, which is given by
 

d(f)jGRF(f)Gl(f)eJ27fedf 2 
LF IT j pc 

where e is the PN apparent tracking offset. Figure8:lindicates the
 

variation in LF as the normalized PN apparent tracking offset varies 

between +1 chip time. Notice that inthe most optimistic case for the 

chosen parameters, LF is less than 0.7 and that tracking error from this 

maximum must be on the order of 0.1 Tc to keep LF above 0.6. Our nominal 

choice of s= 0 for later power computations puts LF at about 0.55. 

The fractional power loss is also function of the RF terminal response 

GRF(f) and the notch filter Gl(f). The results are given in Table 8-1. 

For these tables, we have also indicated the loss if phase compensation 

for the filters (GRF(f) and GI(f)) are used. 

We assume that the carrier tracking loop is operating properly and
 

that a nominal unit gain is seen by the pilot signal's center-line when
 

passing through the second IF filter.
 

9.0 	 COSTAS LOOP PHASE ERROR
 

At the input to the Costas loop, the signal consists of three terms:
 

a term due to the uplink pilot data modulation with power PR.LF, a line
 

due to the interference with power J and an equivalent "white" noise term
 

with one-sided spectral density eq" From [7 ], the phase error of a
 

Costas loop isgiven by
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SIGNAL POWER LOSS, LF 

0.6
 

= 1/4Tn
 

=10-3y 
- 3 

= lo 

S= 0.2
 

I _0.4 

I 

1 0.3 .I 

0.2
 

0.1 

-1.0 
 -0.5 0.0 0.5 +1.-

MEAN PN TRACKING OFFSET, 8 

Figure 8,1. Pilot Signal Power Gain Through the Receiver as a
 
Function of PN Apparent Tracking Offset.
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Table 8-1. 	 Effect of GF(f) and Notch Filter Bandwidth on
 
Fraction Po er Loss LF.
 

(a) Effect 	of Notch Filter
 

t
6 LF 	(peak) LF Tc =10-7 

10- 3 	 .63 .63 Y = .001 

-2 .63 .63 	 a = 1/4710


-
10 1 .63 .63 

.2 .51 .61 

.4 .35 .51 

.6 .29 .35 

.8 .15 .18 

(b) Fffect 	of RF Terminal Response GRF)
 

(2m) -I
r LF* 

.2 .06 Tc = 10-7 

.5 .25 y = 10- 3 

1 .49 	 = 10-1 

2 .72
 

5 .88
 

10 .93
 

20 .96
 

50 .97
 

*With ideal 	phase compensation.
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Cr2 l eqL 
* L PR-LF
 

where BL is the one-sided loop bandwidth and 4L is the squaring loss
 

which is a function of the IF filter and the arm filters. A typical
 

squaring loss is 2 dB. The interference term will also introduce a
 

phase error which depends on J and the random phase between the
 

interference and the carrier. We shall adopt a worst case analysis,
 

i.e., the carrier and the interference are at quadrature with each
 

other. The phase error is now modified to
 

2 = 	3-l eqBL +
 
* L PR.LF PR'LF 

If no data modulation is employed for the uplink pilot, the carrier
 

recovery can be accomplished with a CW loop. In that case,the squaring
 

loss penalty is removed. It also reduces hardware problems such as balancing
 

the I and Q arm filters when a Costas loop is used.
 

10.0 SPREAD SPECTRUM CODE SELECTION
 

The system design, as analyzed earlier, depends on the spread
 

spectrum sequence (SSS) {ai} in several ways:
 

(a) 	The d.c. line energy in the code spectral density, namely
 

PO is the same for any balanced sequence of odd period.
 

Hence we have assumed that the SSS has a number of ones
 

and a number of zeros in one period which differ by 1.
 

(b) 	The SSS spectral line spacing is (c)- -hertz and it is
 

assumed that all but the d.c. line would be rejected by
 

the second IF filter. Hence the code period M must satisfy
 

the relation
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M<< 	 B2Tc
 

where 82 is the bandwidth of the second IF filter, or the
 

filter must have carefully consti-ucted nulls at multiples
 

of l/?lTc .
 

(c) 	The equivalent noise spectral density parameter Neq is
 

a function of the SSS spectral line levels Pn for all n.
 

(d) 	To provide a good characteristic for the code tracking
 

loop, the SSS must have a spike-like periodic autocorrelation
 

function.
 

Now lets investigate the options open to us under these constraints.
 

With a chip time of 10-7 seconds and a second IF filter bandwidth
 

on the order of 100 hertz, the period of the sequence must be less than
 

104 to satisfy the line rejection constraint (b). Certainly maximum­

length linear-feedback shift register sequences; i.e., m-sequences,
 

satisfy the remaining constraints. They are balanced and have spike­

like autocorrelation functions. The numerical data for Neq given in
 

Section 7 is based on the values of Pn for m-sequences.
 

The following gives the number of distinct m-sequences and their
 

period M, as a function of shift register length L, along with a
 

typical shift register generator.
 

Number Typical
 
Register Length Period of Sequences Generator
 

9 511 56 9,4
 

10 1023 99 10,3
 

11 2047 186 II,1
 

12 4095 335 12,6,4,1
 

13 8191 630 13,4,3,1
 

14 16383 1161 14,12,2,1
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To construct the m-sequence from the generator information in the
 

above table, simply take the modulo 2 sum of the outputs of the stages
 

indicated in the table and feed the result back into the shift register.
 

An example is given below for the length 12.
 

STAGE NUMBER 

{ 12 11 10 9 8 7 6 5 4 3 2 1 

MODULO 2 ADDERS
 

Load the register with any sequence of bits, not all zero, and as it
 

runs itwill produce some phase shift of the m-sequence associated
 

with the particular register. Changing to a different seqeunce involves
 

changing the tap connections. Appropriate connections for other
 

generators are determined using a table of primitive polynomials over
 

GF(2), e.g., the table in [3].
 

If code-division multiple access schemes are required to provide
 

satisfactory isolation betweenthe pilot signals from different rectennas,
 

then there are several alternatives, all based on shift register
 

generated sequences. They are (a)Gold Codes, (b)Kasami Sequences,
 

and (c)Bent-Function Sequences. All are easily implemented. Properties
 

of these sequence sets are tabulated below for designs of period 2n-1.
 

The Gold Codes are suboptimal from two viewpoints: They are not all
 

balanced, and their crosscorrelation is approximately 72 too large.
 

Both Kasami sequences and bent sequences offer an alternative to Gold
 

sequences with better correlation properties. The Kasami sequences
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Property Gold [4] Kasami [5] Bent [6]
 

All Balanced 
 No No Yes
 

Number of Sequences 2n+l 2n/2 2n/2
 

Allowable n n not divisible n even n a multiple
 
by 4 of 4
 

Maximum Cross- 2(n/2)+l+l,n even 2n/2+1 2n/2 + 1
Correlation 2(n+l)/2+1n odd
 

Linear Recursion rLength 2n+l +1 Longer
 

are available in a greater variety of lengths (2n-l for all even n) than
 

bent sequences, but the bent sequences are guaranteed balanced, and in
 

addition have two nice properties when an intelligent jammer is trying to
 

cause trouble. First, the linear span of a bent sequence is quite long
 

for the shift register length employed. Secondly, it is quite easy in
 

hardware to reinitialize a given bent sequence to a new random phase.
 

In the code division multiple access situation, we would recommend
 

the use of the set of 64 bent function sequences of period 4095. The
 

design details are available in [6] along with a sample design for n=12.
 

For a further discussion, see Appendix 6.
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11.0 PERFORMANCE EVALUATION VIA SOLARSIM
 

In the precding sections, analytical models have been developed
 

in terms of the pertinent design parameters of the receiver portion
 

of the SPS transponder. These important parameters include:
 

Bi4 Waveform Asymmetry
 

oPN Chip Rate
 

.pN Code Period
 

&Uplink EIRP
 

oReceiver G/T 

eDiplexer Isolation
 

ORE Path Cutoff Frequency
 

oNotcn Filter Stop Band and Attenuation
 

©Costas Loop Bandwidth 

They serve to characterize the uplink waveform, the jjink budget, the 

receiver RF front end, interference nulling IF filter and the-'phase 

tracking system. In order to optimally select these parameters, the 

SOLARSIM has been updated to include a computer program to evaluate 

the performance of the transponder as a function of these inputs. The 

performance measure selected is the phase error of the Costas tracking 

loop. A description of the computer package is included in Appendix 5.
 

To demonstrate its value as an evaluation tool, we have used the
 

SOLARSIM package to study the effect of (1)cutoff frequency of RF
 

system function, (2)notch filter cutoff frequency, (3)notch filter
 

attenuation and (4) PN code period on the Costas loop tracking phase
 

jitter with the PN chip rate as a variable. For these examples, the
 

nominal conditions are chosen to represent .apractical transponder
 

design and they are listed in Table 11-1. The simulation results are
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Table 11-1. Nominal Parameters for SOLARSIM Example. 

PARAMETER VALUE 

fRF/Rc 
fN/ RRc 

2 
10- I 

T2 60 dB 

e/Tc At Peak 

Correlation 

K1 20 dB 

K2 20 dB 

M 104 

10% 

BL 10 Hz 

EIRP 93.3 dBW 

NF 2.5 dB 

AJR 
3m2 

15 
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plotted in Figs. 11.1 - 11.5.
 

Figure 11.1 indicates that widening the RF filter bandwidth relative 

to the chip rate improves the system performance. However, the improve­

ment margin becomes smaller as fRF/Rc (fRF is the 3 dB cutoff frequency) 

increases, indicating there is a region of diminishing return beyond 

fRF/Rc = 2. This is to be expected since most of the pilot signal energy 

is concentrated for f < 2R0 . In the present system, the RF bandwidth 

is pretty much set by the antenna frequency response at about 20 MHz. 

A good choice for the chip rate is therefore around 10 M chips/sec. 

In the next figure, we see that the phase jitter reduces inversely
 

with the notch filter bandwidth for a fixed chip rate. This phenomenon
 

continues up to fN/Rc ; 0.5 (fN is the 3 dB cutoff frequency for the
 

notch filter) and the trend reverses itself as indicated in Fig. 11.3.
 

In the first region, the notch filter suppresses the interference with
 

a minimum distGrtion on the signal. After a critical point is reached
 

the notch filter suppresses both the interference and the signal, and
 

penalizes the latter more severely. The effect 6f the band center
 

attenuation of the notch filteris.shown in Figure 11.4. As to be
 

expected, higher attenuation improves phase jitter performance.
 

For Rc = 10 M chips/s, the phase noise contribution (suppressed)
 

becomes negligible and the performance does not improve appreciably
 

2

with increasing y2. In general, since the cost of the notch filter goes
 

up with the attenuation, it seems logical to choose a value that is
 

cost effective yet meeting the performance requirement.
 

From Figure 11.5, we can observe that the phase jitter performance
 

improves as the PN code period M is increased. As we have discussed
 

earlier M is upper bounded by Rc/BL . A reasonable choice is M % 104.
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Figure 11.1. Effect of Varying RF-Filter Cutoff Frequency.
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Figure 11.2. Effect of Varying Notch Filter Frequency Cutoff.
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2 Figure 11.4. Effect of Varying Notch Filter Attenuation. 
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2 Figure 11.5. Effect of Varying PN Code Period.
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12.0 REFERENCE SYSTEM SPS POWER TRANSPONDER
 

So far, we have considered the pilot receiver portion of the
 

power transponder in conjunction with the selection of the uplink
 

pilot signal parameters and the design of the transponder RF front
 

end. In the following sections, we shall evaluate the overall system
 

performance of the transponder. In particular, we shall proceed to
 

characteri'ze the transponder's ability to perform the phase conjugation
 

in terms of the key technical issues specific to the SPS environment.
 

Figure 12.1 represents the overall functional diagram of the SPS power
 

transponder. This includes the pilot signal receiver, phase conjuga­

tion electronics and the high power amplifier phase control subsystem.
 

In the mechanization of the SPS power transponders, two
 

receiver "types" will be required; however, most of the hardware
 

will be common between two receivers. One receiver, the Pilot Spread
 

Spectrum Receiver, is located at the center of the spacetenna or the
 

reference subarray. It serves two major functions: (1)Acquires
 

the SS code, the carrier and demodulates the command signal, (2)
 

provides the main Input ighal tothe Reference Phase Distribution
 

System, see Figure 12.1.
 

The second receiver "type" will be located in the Beam Forming
 

and Microwave Power Generating System, see Figure 12.2. Its main
 

purpose is to phase conjugate the received pilot signal and trans­

pond power via the j~th spacetenna element, j = 1,2,...,101,552. We
 

now discuss the functional diagram indicattng the mechanization of
 

the SS power transponder and discuss its operation.
 

From Fig. 12.1 we note that each SS receiverelement must be
 

capable of despreading and demodulating the received pilot signal
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based upon the gain provided by a single element of the SPS space­

tenna. The receiver consists of several major subsystems. These
 

include, (see Figs. 5.1 and 5.2): (1)the RF Front End centered at
 

2450 MHz, (2)The SS Code (PN) Sync Subsystem (PNSS), (3)The AGC
 

Subsystems, (4)The Carrier Sync Subsystem (CSS), (5)The Carrier Lock
 

Detection Subsystem, (6)Carrier Sync Acquisition Subsystem, (7)Symbol
 

Synchronization Subsystem, (8)the Viterbi Decoder (ifthe uplink
 

employs convolutional coding), and (9)The Ambiguity Resolving Subsystem.
 

Note that (8)and'(9) are not required if the pilot signal is not data
 

modulated.
 

The carrier, with nominal frequency of 2450 MHz, is first processed
 

via an RF filter. The bandwidth of this filter must be sufficiently
 

wide to pass the PN chips and the roll-off must be sufficient to meet
 

the desired rejection requirements.
 

The signal level into the first IF mixer is held constant by the
 

noncoherent AGC. The first LO is selected to run at 1960 MHz;
 
/ 

therefore, the first IF frequency, at iero Doppler, is 490 MHz. The
 

output of the first IF mixer is further filtered by the first IF filter
 

whose bandwidth is sufficiently-wide to pass the PN chips. The cascaded
 

frequency response of the RF filter and the first IF filter are collect­

ively designed to meet the desired front end rejection requirements.
 

The IF filter output serves as the input to the PN synchronization
 

system. The PN sysnchronizativn system ('PNSS) of Figure 12.1 incor­

porates a noncoherent T-dither PN acquisition and tracking design.
 

The arriving NRZ/BPSK/BI--DS/CDMA signal is despread prior to
 

filtering by the second IF filter. This gives rise to an ordinary
 

BPSK signal when the i-dither loop is locked. The output from the
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second IF filter goes to the output of the carrier recovery circuit.
 

The bandwidth of the second IFfilter is chosen to be wide with
 

respect to the data rate.
 

A Costas (I/Q) loop configuration is chosen for carrier
 

acquisition, tracking and data demodulation. This configuration
 

was chosen because it was determined to be optimum when all
 

considerations, including the ability to square perfectly over
 

temperature and signal level, are traded against lock detection arid
 

synchronization monitoring.
 

Noncoherent AGC is derived from the sum "I"and "Q" Channels
 

appearing in the arms of the Costas loop. In addition, lock detection
 

for the carrier circuit is accomplished by using the difference between
 

the "I"and "Q"channels of the Costas arms. The noncoherent AGC2
 

controls the receiver gain (prior to phase detection) with the signal
 

plus noise level appearing in the outputs of the Costas loop arm. This
 

feature is used to control the loop bandwidth and damping factor during
 

acquisition and tracking.
 

The loop filter receives the signals from the phase detector
 

(third multiplier) and supplies an error signal to the VCO which
 

control the local frequency. The loop filter sets the tracking
 

loop bandwidth and damping factor. An AGC voltage, proportional
 

to the incoming signal plus noise power, is low pass filtered and
 

amplified to drive variable gain elements in the IF amplifiers.
 

(These amplifiers are included here in the first and second IFfilters
 

for simplicity.) Additional integrate and dump circuits and threshold
 

detector circuits control the sweep and the lock indicator needed for
 

loop supervisory control. It is to be noted that the carrier sweep
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is not activated until PNSS is synchronized.
 

The carrier lock detector circuit monitors the integrate and
 

dump voltage formed at the discrete points in time by differencing
 

the squares of the inphase and quadrature arm outputs. The output
 

of the integrate and dump circuit is compared to a fixed threshold
 

level to detect lock.
 

Ifthe pilot signal is data modulated, the data can be extracted
 

from the output of the Q-channel as shown in Fig. 12.2. The 180 degree
 

phase ambiguity the Costas loop introduced can be resolved by neriodically
 

inserting a (predetermined) identification sequence in the transmitted
 

data stream; the recovered data can be checked against this known
 

pattern to correct for the phase ambiguity. When the pilot signal is
 

not data modulated, the Costas loop can be replaced by a CW loop.
 

This avoids the need for provisions in the carrier tracking subsystem
 

to resolve phase ambiguity.
 

The 490 MHz reference appearing at the pilot receiver VCO output,
 

see Figure 12.1, serves as the only input to the Phase Control System.
 

This phase characteristic is then distributed over the aperture of the
 

spacetenna. The output of the Phase Control System consists of 101,552
 

980 MHz constant phase reference signals which are used to conjugate
 

the incoming signal and to stabilize the high power amplifier (HPA)
 

outputs. This is achieved by placement of an automatic phase control
 

around each HPA, see Figure 12.2.
 

13.0 SIGNAL-AND NOISE CHARACTERISTICS
 

For the purpose of the SPS transponder analysis, the signal and
 

noise spectrum into the transponder can be represented as shown in
 

Fig. 13.1. The spectral shape of the input Bi-@-PN spread pilot signal
 

ni m
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is of the form sin4(x)/x 2 with the nulls occurring at frequency
 

multiples of 2Rc (Rc = PN chip rate). The receiver front end
 

contributes an equivalent thermal noise level equal to N0 W/Hz.
 

The phase noise interferences from the power beams (including its
 

own) can be modeled by the coherent and noncoherent terms and indicated.
 

The important RF filter and notch filter characteristics are also shown
 

in the same figure. The RF filter is used to model the bandwidth of
 

the receiving antenna (waveguide arrays). The notch filter is intro­

duced to suppress the phase noise interferences. It is clear that
 

since the portion of the signal power close to the carrier is small,
 

the signal distortion introduced by the notch filter is negligible
 

while the interferences can be significantly suppressed. The optimal
 

selection of the filter parameters have been considered in the preced­

ing sections.
 

The klystron amplifier in the power transponder generates a phase
 

noise profile that can add significantly to the downlink carrier phase
 

error if it is unattended for. Figure 13.2 shows the phase noise
 

sideband power spectral density measured on a Varian X-13 klystron
 

amplifier,* which we have adopted as our klystron model. Upon
 

reflecting to 2.45 GHz, the phase noise component that is outside a
 

bandwidth BL is plotted in Fig. 13.3. Selected values are tabulated
 

in Table 13-1. The components of the klystron phase noise around
 

the carrier frequency can be tracked with the PA phase control loop
 
a 

provided for in the reference system. With the loop around the klystron,
 

only phase noise components which have Fourier frequencies greater than
 

*The complimentary measurement is provided to LinCom by Dr. Algie Lance
 

of TRW, Redondo Beach, CA.
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Tavle 13-1. 	 Phase Noise Component Outside an Ideal Tracking
 
Loop with Bandwidth BL.
 

RMS PHASE NOISE (deg)
 

BANDWIDTH, 8L (Hz) AT 10 GHz AT 2.5 GHz 

100 KHz 102 2.5 x 10-3 

10 KHz 5 x 10­ 2 1.25 x 10- 2 

1 KHz 3 0.75 

400 Hz 20 4 
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BL will be transmitted. Components below this frequency will be
 

suppressed by a factor 1-H(s) where H(s) is the closed-loop transfer
 

function of the PA control loop. Assuming an ideal loop transfer
 

function, namely H(f) = lfor f < BL and H(f) = 0 for f>BL we can
 

predict the amount of phase noise leakage through the transmitter.
 

For example, from Table 13-1 a 400 Hz loop will introduce a rms phase
 

error of 4 degrees. When the phase noise effect is the only consider­

ation, the obvious solution is to widen the loop bandwidth as far as
 

possible. However, this also opens up the bandwidth for other noise
 

contributions through the transponder. Clearly, a tradeoff has to be made
 

to yield an optimum balance. A more detailed modeling of the overall
 

system which enables such a tradeoff will be addressed in Section 14.0.
 

Other noise sources that affect the performance of the transponder
 

includes the VCXOs, mixers, multipliers, up converters and down­

converters. Their relevance will also be discussed in Section 14.0.
 

14.0 	SPS TRANSPONDER TRACKING LOOP SUBSYSTEMS
 

At the proposed synchronous orbit, the channel Doppler profile
 

is characterized by a maximum Doppler of 25 Hz and a maximum Doppler
 

rate of 2 x 10-3 Hz/sec, at the carrier frequency of 2,450 MHz. 'For
 

this reason, loop acquisition does not pose any significant problem.
 

The loop bandwidths can be made to be relatively small (as low as two Hz)
 

-andstill guarantees satisfactory response time.
 

14.1 	PN Tracking Loop
 

The main purpose of the PN tracking loop is to despread the
 

incoming Bi- -PN signal. It is not designed for.Doppler or range
 

measurement. As such, the tracking error requirement is not very
 

critical as long as it is limited to a few percent of a chip time.
 

-69­



PN acquisition will take time from a "cold start," i.e., when
 

the local PN clock is not running. This can occur, for example, when
 

the system is powered on initially. In that case, the local clock has
 

to step over all possible code states during acquisition. However,
 

once the local clock starts running, it should be almost synchronous
 

with the ground code due to the almost nonexistent channel Doppler.
 

Ifthe local clock is left running when the system is brought down
 

for whatever reasons, the latter can be brought back up using the
 

local clock. No additional acqutsition algorithm is required.
 

Since all power transponders are experiencing the same Doppler
 

for all practical purposes, a way to cut down the acquisition time
 

and individual acquisition hardware requirement is to include a separate
 

telemetry receiver that tracks the uplink pilot. This pilot signal is
 

constantly tracked by the telemetry receiver and the state of the
 

local PN clock can be transferred to the individual transponders to
 

start the PN loops. In that case, no acquisition aid on the trans­

ponders are required. However, data links between the telemetry
 

receiver and the transponders must be established.
 

In the reference system, a T-dither loop is used to avoid the
 

gain imbalance problem commonly found in the standardelay-lock loop
 

implementation. Fig. 14.1 gives an alternate implementation [8] of
 

the delay-lock loop which is immune to gain imbalances and is equivalent
 

to the classical delay-lock loop. The delay-lock loop can potentially
 

outperform the t-dither loop by approximately 1 dB.
 

14.2 Phase Reference Tracking Loop Model
 

Fig. 14.2 shows the equivalent mathematical model of the phase
 

reference tracking loop located at the center of the spacetenna.
 

n~ z
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The phase reference tracking loop is mechanized as a long loop. The
 

statistics of the loop phase error q1 and the phase of the reference
 

are of importance to assess performance.
OR (both measured at 490 MHz) 


In the tracking mode, they are related to the input noise processes via
 

l-.Hl (S) Hs) (14-1)-

l+4Hi(- - 1+0 


1 l(s) + lHl(s) nI4+e0 (14-2) 

R l_+4Hpjs) 1+4HT(s 0Oy 

where eo is the transmit phase noise including the ionospheric disturb­

ances, nI is the equivalent thermal noise seen by the loop, P is the
 

transmitted power seen by the loop, 'lmodels the equivalent VCO/mixer
 

phase noise and HI(s) represents the closed loop transfer function of
 

the Costas loop. The squaring loop mechanization also introduces a
 

squaring loss wnich is a function of the arm filters and the IF filter
 

bandwidth preceding the I-Q phase detectors. This factor must be
 

accounted for, presumably in computing nI before using (14-1) and (14-2)
 

for performance evaluations.
 

14.3 Power Transponder Phasing System Model
 

The equivalent mathematical model of the individual transponders
 

is given in Fig. 14.3. The relevant tracking equations for the pilot
 

phase recovery loop are
 

n2
 
-
'2 = El-H 2(s)][6(eR+ D)-el] - [l-H2s)]1 2 - H2(s) 2 (14-3) 

and 

= l-H2s)] 2 + H2(s) [2.i+ 6(eR +D) - a, (14-4) 

where q2 'isthe tracking error, e1 the transmit pilot phase noise, iP2
 

models the equivalent VCO/mixer phase noise, n2 is the equivalent thermal
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noise, P the transmitted pilot power;' H2(s) is the closed loop transfer
 

function for the Costas loop and OD models the phase noise and
 

differential delay introduced by the phase distribution system. The
 

relevant tracking equations for the PA phase control loop are
 

C3= [l-H 3 (s)]e 2 - [1I-H3(s)](A+3) (14-5) 

t =ou [I-H 3(s)](A+1P3 ) + H3(s)02 + 4(ek+D) (14-6)
 

whereP 3 is the loop phase error, H3(s) is the closed loop transfer
 

function, 4A is the (PA) klystron phase noise, and 3 models the VCO/
 

mixer phase hoise. The noise process eou t is the single most important
 

quantity as it models the phase error process at the output of the
 

transponder and it directly affects the efficiency performance of the
 

SPS. Note that except for the klystron phase noise which is measured
 

at 2450 MHz, all other phase noise processes are measured at 490 MHz.
 

14.4 Overall Transponder Equivalent System Model for Analysis
 

The analytical model for the performance of the overall transponder
 

is given in Fig. 14.4. Notice that the inputs to the transponders are
 

GO, e, n1 and n2 ; G0 and aI represent the phase noise on the pilot
 

signal including the effects of the ionospheric disturbances and transmit
 

frequency instability and nI and n2 represents the effects of the receiver
 

thermal noise, power beam interferences (caused by mutual coupling) and data
 

distortions. The phase disturbance at the output of the transponder is
 

the ter of interest as it directly affects power transfer efficiency
 

of the SPS. We have studied this effect extensively using the SOLARSIM
 

program. All other noise components are generated within the power transponder.
 

They are the filtered version of various hardware induced noises.
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In Fig. 14.4, filters of the form H(s) are low pass filters and
 

filters of the form 1-H(s) are high pass filters. Note that oscillator
 

phase noises (including the klystrons) are all filtered by a high pass
 

filter. Since oscillator phae noise profiles are typically of the form
 

indicated in Fig. 14.5 with most of the phase noise power concentrated
 

around the carrier, one should widen H(s) as far as possible. For
 

example with our klystron model, the bandwidth of H3(s)should be
 

kept to approximately 1 KHz to limit the phase noise introduced jitter
 

to less than 1 degree. However, widening H(s) also introduces other
 

problems. As another example, opening up H2(s) and H3(s) allows
 

more phase jitter due to n2 and eI' Obviously, in order to attain the
 

optimum choice of loop bandwidths, we need to specify power spectral
 

densities of all the noise processes, and then perform tradeoffs based
 

on the system model. In view of the fact that many parameters are
 

involved, a simulation program is needed to exercise these tradeoffs.
 

A careful examination of Fig. 14.4 also reveals the following
 

important fact: some of the noise processes are irreducible. For
 

example, one can reduce the effects of n2//-by changing the system
 

designs such as reducing the bandwidths of H2(s) and H3(s), increasing
 

the uplink power-,. increasing the processing gain of the PN signal
 

or employing diplexers with improved isolation characteristic, etc.
 

However, there is nothing one can do about the random phase disturbance
 

D introduced by the phase distribution tree because a major portion
 

of *Dappears at the transponder output unmodified. From Fig. 14.4,
 

one can see that the irreducible error terms are D and the ionospheric
 

differential phase perturbations a.and el. (The processes e0 and e,
 

can have a significant portion of power within typical values of loop
 

bandwidths.) P'ni-­
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15.0 RECOM ENDATION FOR OVERALL TRANSPONDER DESIGN
 

Although A thorough simulation study is required to quantify
 

various tradeoffs, one can still make somegeneral recommendations
 

on the transponder design. From the power transfer efficiency study,
 

we know that the transponder phasing system have to hold its rms phase
 

error to under 10 degrees. Inthat case, it is reasonable to limit
 

the contributions from each individual error source to less than 1
 

degree rms. Under this guideline, we can make the following
 

recommendations:
 

(1) Klystron phase control loop bandwidth > 10 KHz. 

(2) Code loop jitter can be made negligible and is not critical 

to performance. 

(3), Costas loop bandwidth p 10 Hz. 

When these conditions are met, it is reasonable to expect that'the r-ns
 

phase error introduced by the transponder, interference and thermal
 

can be limited to less than one degree. However., this does not take
 

into account the effects of the reference phase distribution error and
 

the hardware induced differential delay variations that differs from
 

transponder to transponder. Unfortunately, these effects belong tothe class
 

of irreducible errors that cannot be controlled by the transponder
 

-design.
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APPENDIX 1 

BASEBAND-EQUIVALENT FILTERING 

Let
 

x(t) - Rem(t)e ic
 

:2m(t)e C + Im*(t)e-C 

Taking Fourier transforms, 

=
X(f) 2M(f-fc) + M*(-f-fc)
 

Suppose we pass this through a filter with real impulse response
 

H(f) = H*(-f). Then the output y(t) has transform
 

Y(f) = H(f)EI M(f-f ) + 1M(-f-f 

Now if IM(f)I = 0 for Ifl > fc, then 

Y(f) = 2 )+ CU(f)H(f)M(f-f(-f)H*(-f)M*(-f-f2 UC''fMf C 

Hence since Y(f) has conjugate symmetry 

y(t) Re f H(f)M(f-f,)e'jb~tdf 
0
 

=Re Je c f U(f+f)H(f~if)M~f)ejwtdf 

y(t) can now be modelled-as follows:
 

m tU(f+fc)H(f+fcRe(­

e 
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APPENDIX 2
 

BASEBAND-EQUIVALENT MULTIPLICATION
 

Let
 

x(t) = Re{a(t)e31I
 

=
y(t) Re{b(t)ej 2tI 

and suppose that 

z(t) = x(t)y(t). 

Then 

l+ 2)t}
 z(t) 2 Re{a(t)b(t)e (w w2)t + a(t)b*(t)e (wl-w

Now suppose that a(t) and b(t) are bandlimited so that 

A(f) = O, Ifj > BA
 

B(f) = 0, Ifl > BB
 

Then the two components of z(t) can be recovered by filtering
 

I J(w+w )t 
H (f 1Reja(t)b(t)e I 

)
x(t) z (t)-2 

}~lw)1Refa(t)b*(t)e
i 


when
 

fl > > 8A + BB > 0 

Hu(f) 1 IIfI-(fl+f 2)I < BA + BB 

0 IIfI-(flf2)I < BA B 

HL(f') I If I-(fl-f2) < BA + BB 

f jIfI-(f+f2)I < BA-+

0-, 


BB
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APPENDIX 3
 

THE PRODUCT FILTERING APPROXIMATION
 

Suppose that 

z(t) = x(t)y(t) 

and that z(t) is the input to a linear filter whose output is 

W(t), 

w(t) : f x(a)y()h(t-)d 

Now suppose that x(t) is reasonably constant over the periods
 

corresponding to the duration of the impulse response h(t). It
 

is then possible to approximate w(t) by
 

w(t) R x(t) f y(a)h(t-a)d 

This assumes h(t) is nonzero primarily near t=O.
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APPENDIX 4
 

SS CODE SPECTRAL DENSITY
 

The SS code signal cR(ut) is periodic with period MTc where
 

M is the period of the sequence {ai}. The correlation function can
 

be found simply by time averaging the correlation product over one
 

period
 
MTc-Tc/2
 

R 1 C R(Ut+T)CR(ut)dt

RR 
 - MT
c fc
 

with T(u) set to zero
 

c -Tc/ 2 

1 M-1

-aiaj P(t-iT )P(tjTc:T)dt
 

i=O a Tc/2
 

Setting T = mTc+TO, 0 < To < Tc, we can use the fact that P(t)=O
 

for all Itl < Tc/2 to simplify this to
 

R( R(a(m)Rp(To) + Ra(m+l)Rp(To-Tc)
 

where
 

R ) 1 M-I
 
a E 
 aiai+m
 

i=O
 

Rp(o) T _Tc12 P(t)P(t-to)dt
 
CJITc/2
 

It is apparent that R CR(T) is periodic with period MTc and hence
 

has a line power spectral density
 

S)M E Pn6 (n~
 
n 

-84­



where &(f) is the Dirac delta function and Pn is given by 

= -IJ MT C(R)e-J2 lnT/MTcdT 
Pn = --Tc 0 c 

2
 
Sa(nl)
= S a I =n/ Mlc 

where p(f) is the Fourier transform of P(t) and Sa (n) is the discrete
 

Fourier transform of R (m):
a
 

R(m)e-j27rnm/M
Sa(n) 1M 1 


m=O 

For the standard Bi- Manchester waveform 

p(f) = P(t)e-J 27rftdt 

= 2 s_2 (nfTc/2) 

-j wf 

whence
 

4 sin 4(fTc/2)
 

SSa(n)
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APPENDIX 5
 

THE SPECTRAL DENSITY OF Ak(ut)
 

The quantity Ak ut) is a complex-valued-multiplicative noise
 

factor appearing inthe downlink transmitter modulation for subarray k.
 

It is assumed independent of A.(u,t), jik. We shall suppress the
 

subscript k and expand Ak(ut) in an envelope and phase representation;
 

'
 
A(u,t) = IA(u,t)e je (ut) 

Lets further assume that e(u,t) is Gaussian and independent of IA(u,t)I
 

so that the autocorrelation function of A(u,t) is given by
 

RA() = RIAI(t)Rph(T)
 

where
 

Rph(r) = E{exp(j[e(u,t+r)-o(u,t)'i)}
 

Now e(u,t+t)-e(u,t) is Gaussian with mean zero and variance 2o2(l-p(T)).
 
2
 

Here a2 is the variance of e(u,t). Using properties of the characteristic 

function of a Gaussian random variable, it follows that 

RphT = exp{-cF 2(l-p(T))},Rph(T) 9
 

where p(T) is the normalized autocorrelation function of e(u,t).
 

We assume that the specification on the downlink transmitter's
 

rms phase error is 100, and that it is due mainly to transmitter
 

generated oscillator noise. Then
 

2 232)2
 
a8 = = .0305 rad 

Notice further that 
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2 

E{e e8u t1) = e= .98 

Hence the covariance function of ej0(ust) is given by
 

2 

Kph () Rph() - e
 
2a 2 

e [ee -P()]
 

For our assumed value of phase variance, this isaccurately approximated
 

by
 
2 

Kph(T) A e ap r). 

The random variable exp{je(u,t)I has a variance-to-squared mean
 

ratio a given by
 
2 
a 2
e = a
eKph(O) 


Assuming that IA(u,t)I has the same ratio a and the same normalized
 

spectral shape as exp{je(u,t)}, itfollows that'
 

R (O)R2h(T).RA() = 

Note that Rph(O) isunity and hence we define 

RA(O) = 21{s2(t)1 = 2P 

where P is the average transmitted power of a spacetenna subarray 

(P is nominally 65 kw), and 

2 

RAC() = 2P[Kph(r) + e)2
 

-2a2
 

2Pe 0[ap(T) +I2
 

The mean A and covariance function KA(T) required in section 5 are
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2
 

4Pe -2a20ap(r)KA() m 


The only parameter which has yet to be specified in this model isthe
 

normalized correlation function of the phase noise e(u,t).
 

Our computations actually use the Fourier transform of KA r),
 

namely SA(f). Hence
 
2


-2a

SAMt) q 4Pe 0 cSo(f)
 

where S0(f)is the Fourier transform of p(r). Our model for this
 

normalized density is
 

If] < 1 KHz
SC, 

-6 I Kz < IfI< 1 KHz
 ,
sof C(f/103)

0 z < If K(0-6C(f/I04)-2 , 


where the normalizing factor C turns out to be
 

.
C = (2.4x 103) "1


This model is derived from the shape of the spectral density of a
 

Varian X-13 kylstron tube indicated in Fig. A5-1. It is more pessimistic
 

than the klystron data since more power is placed outside 1 KHz.
 

(Presumably, the noise power inside 1 KHz will be notched out and
 

does not affect performance.)
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APPENDIX 6
 

OPTIMAL COMA CODES
 

This appendix surveys several known sequence sets which may be used
 

as spread spectrum codes in code-division multiple-access communication
 

systems. All of the designs basically achieve Welch's lower bound on
 

the maximum value of periodic cross-correlation between signals and
 

are optimal in this sense.
 

1. Introduction
 

In 1974 L. R. Welch [1] published a bound on inner products which
 

could be specialized to the case of periodic correlation of spread­

spectrum code-division multiple-access (CDMA) signal sets. Specifically,
 

consider a set of M sequences a, i = l,...,M, of period L,
 

i i L4 

a = at+L Vi,t (A6-1) 

The periodic cross-correlation between sequence i and sequence'j at 

shift T is defined as 

A L-1 i 

Ci(T ) = > a )* (,A6-2) 

t=0 

(.)* denotes conjugation), the maximum autocorrelation of the set is 

C1 max max ICii(T)I , (A6-3) 

i O<T<L 

and the maximum crosscorrelation of the set is
 

C2 A max max ICii I (A6-4)
 
ifj O<T<L
 

Under the assumption that the sequences all have the same "energy"
 

'per period, i.e.,
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Cii(O) = C.j(O) Vi,j , (_A6-5) 

Welch demonstrates the normalized correlation bound
 

- A max(ClC
 
2 )


Cmax = Cll(O) 4TL-l6 A-

This bound has become the standard against which a possible CDMA
 

signal set design is compared, despite the fact that C cften
max 

is not specifically a parameter inthe communication system design [2].
 

The purpose of this Appendix isto review several of the CDMA
 

sequence designs which are known to nearly achieve the Welch bound.
 

2. Optimal-CDMA Code Designs
 

A. Kasami Sequences [3,4] were designed originally as a linear cyclic
 

error-correcting codes. The underlying arithmetic in Kasami's design is
 

performed in the finite field GF(2n), n even, with Ml(z) representing
 

the minimum polynomial over GF(2) of a primitive element a of GF(2n),
 

and nr(z) representing the minimum polynomial over GF(2) of as ,where
 

s = 2n/2+1. Thus a has order 2n/2-l and is a primitive element of
 

GF(;/ 12). Hence MI (z)and 11(z) can be viewed as the characteristic
 

polynomials of binary (0,I) linear feedback shift registers which
 

generate m-sequences, b and bt of lengths 2n-I and 2n/2_1 respectively.
 

The Kasami sequence set consists of linear combinations of the two
 

sequences which, after converting to +1 sequences, are
 
Il~s 

at (-I , Vti = 1,....,2n 1A7) 

and 
2n/2= &-)b
 
t
 

Jln-n 



ot5in('Om 

This yields a set of
 

M = 2n/2 (A6-8)
 

sequences, all with period
 

L = 2n-l (A6-9) 

and 

max(Cl C2) = 2n/2 + I (A6-la) 

B. Bent sequences [5,6] posses an underlying arithmetic structure
 

inGF(2n), n divisible by 1,which is linked to the space Vn of binary
 

n-tuples over GF(2) by a basis 1,0 2'...'n for GF(2n) which has the
 

property that
 

, i=j 
tr(OO.) = 0 otherwise (A-1 

Here tr(-) represents the trace function mapping GF(2n) onto GF(2) [7].
 

This generates a correspondence between discrete Fourier transforms
 

of functions defined on V and trace transforms of the same functions
n 

defined on GF(2n). This property isexploited along with the fact that
 

bent functions [8] on Vn have a flat Fourier transform to eventually
 

give the following set of sequences:
 

ITYG(Y) YT+CTX 
a. = -- -12) 

where X is the (vector) contents at time t of a Galois-configured
 

linear-feedback shift-register with, a primitive characteristic
 

polynomial of degree n,
 

- (2-6-13)
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where L is a specially designed n/2 x n matrix, the dimension of I
 

and Y 2 being n/4, I is the representation of i as a binary n/2-tuple
 

C is a fixed non-zero constant and G(Y ) is a fixed arbitrary Boolean
 

Function of Y. This design results in a set of sequences with the
 

same M,L, and max(Cl,C 2) parameters as the Kasami sequences (see (8)­

(10)).
 

C. Group character sequences [9,11] are based on properties of the
 

group M(L) of integers relatively prime to L under multiplication
 

modulo L. In the special case when L is a prime, then
 

at O t A6-14) 

where p is a primitive L-Ist root of unity and t(t) is the modulo L
 

logarithm of t in the sense that
 

gz(t) = t modulo L , C6-15) 

g being a primitive element of M(L). The index i is restricted to 

1 < i < L-1. Of course for large values of L the use of a0 = 1 will 

make little difference in the final results. Group character sequences 

have the following properties: 

M = L-2 

L = prime number 

C = 1 -A6-16) 

C2 ='VF
 

Cll(O) : L-1
 

Generally, the ith sequence is composed of (L-l)/gcd(i,L-1) order roots 

of unity, e.g., i = (L-I)/2 is a sequence of +1's and is usually called 
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a quadratic residue sequence.
 

D. Welch and Alltop separately have proposed (unpublished to my
 

knowledge) signal designs which incorporate a cyclic difference set
 

structure [12] to determine the locations of the non-zero elements
 

of a sequencd. A (v,k,A) cyclic difference set is a collection {tjI
 

of integers inthe range 0 < d. < v with the property that the equation

-J 

ti - t. £kmod v (A6-17) 

has x solutions for 0/0 and k solutions when £=O. We view the elements
 

of the difference set as the times t at which the sequence elements
 

are non-zero. The values of the non-zero elements of each sequence are
 

chosen so that any pair of sequences is orthogonal or nearly orthogonal
 

when the shift parameter T iszero.
 

For example let {xtI} be an m-sequence over GF(q), i.e., it satisfies
 

an nth order linear recursion over GF(q) and has period qnln_. Then a
 

cyclic difference set with parameters
 
nqn-1- qn-2-

Vn- = q -1 (A6-18)q-1 ' q-1 " q-1 ' 

is given by
 

= {t: xt=O} (A6-19) 

Ifwe consider a set of sequences based on the above difference set
 

with n = 3, then the resulting design parameters are
 

L = v = q2+q+l
 

.Cll() M = k = q+l (A6-20)
 

max(C 1,C2 ) 
= x = I. 

Orthogonality of the sequences at T=O imposes the result M=k. When q 
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is one less than a multiple of 4, then the rows of a Hadamard
 

matrix [13] can supply the appropriate modulation. Inthis case if
 

the L th entry in the (qI-l) x (q+l) Hadamard matrix is denoted by bij
 

and the elements of the difference set are tl,...,tM, then
 

a ( bij 1 < i < M, 1 < j < Mat = - (6-21) 
t 0 otherwise 

Other similar designs are possible.
 

E. Discrete Linear FM sequences [14,15] of various types have been
 

studied. For example,
 

at = pit2 , 0 < t- L, 0 < i < p(L) (A6-22) 

where L is an odd number, p is a primitive L-th root of unity, and p(L)
 

is the smallest prime divisor of L. When L isprime,
 

L = p(L) (A6-23)
 

and, using Gaussian sums, it can be shown that
 

- /2  
Cmax = L (A6-24) 

Inaddition to this design Alltop [15] suggests optimal designs based
 

on phase functions which are proportional to t3 and based on difference
 

sets (although sequence elements all have unit magnitude).
 

3. Comparisons
 

Itappears that there are many designs which asymptotically
 

achieve the Welch bound on correlation as the sequence period L increases.
 

How does one choose a COMA signal set design from among the class of
 

"optimal" designs?
 

Ifyou are restricted to binary (+i) modulation, the obvious
 

candidates are the Kasami sequences and the bent function sequences.
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The choice may be dictated by L which is 4k_ for Kasami sequences
 

and 16k-I for bent sequences, k being an arbitrary integer in each
 

case. The sequences are comparable in terms of implementation com­

plexity for the same L but the bent sequence set has two distinct
 

disadvantages:
 

(1) 	The Kasami sequences have a linear span on the same order
 

of 3n when GF(2n) is the basic field, while bent sequences
 

apparently have linear spans which can nearly achieve Key's
 

upper bound [16],
 

n)
1(A6-25)
 

i=l
 

where d is the degree of the bent function (d < n/4 

depending on the function chosen). 

(2) 	All of the Kasami sequences are generated by the same
 

hardware, with choice of sequence made by initializing
 

register contents. Thus it is difficult to initialize
 

a generator to begin producing a copy of a particular Kasami
 

sequence at some arbitrary point within the sequence. On
 

the other hand bent sequence generators have "time"
 

controlled by a shift register and sequence selection
 

performed by an independent setting. Hence bent sequence
 

generators are easily set to produce a given sequence.
 

It is worth noting that Gold codes [17] which are now in use in several
 

sys-tems, e.g., [18], have the same drawbacks as Kasami sequences. In
 

addition, while Gold codes are a largercollection (M=2n+l) of binary
 

sequences for the same period (L=2n_1), they do not come close to
 

achieving the Welch bound.
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The ability to generate and correlate multiphase sequences consider­

ably enlarges the variety of periods L for which optimal designs are
 

known. The number of distinct phases which must be handled is a function
 

of the number of sequences actually required as well as the peri'od
 

length. For example the group character sequences of length L=257 are
 

composed in general of 256th roots of unity, but the ith sequence in the
 

set is made up of 256/gcd(256,i)th roots of unity. Hence inthis case
 

the 128th sequence is the binary quadratic residue sequence, the 64th
 

and 192th sequences are composed of 4th roots of unity, and in general
 

there are 2k-l sequences using 2kth roots of unity k=l,...,7, with the
 

remainder using some primitive 256th roots of unity.
 

In comparing the group character sequences with the discrete linear
 

FM sequences, one must consider the problem of mechani-zation for large
 

L. The FM sequences have a relatively simple algorithm (A6-22) for
 

determining the phase of each bit. On the other hand group character
 

sequence generation is based on computing the logarithm of t modulo L-l.
 

In most cases this is a difficult computation [19].
 

The main detractions of the difference set design are: (1)irregular­

ity of the transmitter power, and (2)the requirement of phase coherence,
 

despite the on-off nature of the signal. The orthogonal +1 modulation
 

of the non-zero pulses is easily achieved, especially when the number k
 

of pulses per period is a power of 2.
 

Ultimately, with the variety of designs available, it appears that
 

convenience of mechanization may very well be the deciding factor in a
 

design.
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APPENDIX 7
 

SOLARSIM SUBROUTINE SIDR
 

The SOALRSIM subroutine SIDR is developed to compute the Costas
 

loop phase jitter as a function of the pilot signal and RF front end
 

parameters. Figure AT-I is a sample run for SlDR. The inputs to
 

the program are described as follows:
 

F3 - 3 dB bandwidth of the RF filter normalized to the 
chip rate Rc 

DELTA ­ 3 dB bandwidth of the notch filter normalized to R 
2. c 

GAMMA ­ -y is the notch filter attenuation at band center 

M - PN code length 

K1 - Coupling coefficient for noncoherent phase noise 

K2 - Coupling coefficient for coherent phase noise 

The other inputs are self explanatory from Fig. A7-1. There are some
 

intermediate outputs besides the resultant Costas loop phase jitter
 

SIGMA. They are:
 

POWER - Received pilot signal power in W 

ALPHA - Time constant of the RF filter normalized to Rc 

TC - Chip time 

NEQ - Equivalent thermal noise level after despread 

LF - Fractional loss in pilot signal power 

A software package is also developed to plot the computer output
 

(as shown in Figs. 11.1-11.5) on an HP-plotter.
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Figure A7-1. A Sample Run of the Pronram SIDR in SOLARSIM.
 


