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SYNOPSIS

In this research, the perfonnance of a novel initial code acquisition technique, called 

sequential detection, for direct-sequence spread-spectrum systems suitable in low SNRs is 

analyzed using a Monte-Carlo computer simulation approach. This technique employs a 

variable-dwell time discrete step serial-search which is optimum in the sense of minimum 

mean acquisition time for a given probability of detection and false alarm. A new variant of 

the sequential detector using quantization of the log-likelihood function is considered and its 

performance analyzed. This sequential detector employs a uniform quantizer with the 

minimum number of quantization levels 0  = 32, which are determined to give the 

performance closer to the ideal sequential detector. Three variants of the sequential detector 

namely, the quantized log-likelihood sequential detector, an ideal log-likelihood sequential 

detector and a biased square-law sequential detector are considered and their comparative 

performance is analyzed for various channel impairments in the predetection SNR range 

-4dB to lOdB.

All three variants are optimized with respect to critical system parameters namely, the upper 

and lower thresholds, input SNR and design SNR, and the optimum or a range of near­

optimum values of these parameters are determined. The acquisition performance of all three 

variants are also analyzed and compared for the cases with data modulation and no data 

modulation. In addition, the effect of code rate Doppler offset and residual carrier Doppler 

offset on the acquisition performance of the sequential detector is also analyzed and 

compared for both the cases with data modulation and no data modulation for all the variants 

of the detector when operating at their optimum design SNR. The degradation in the 

acquisition performance due to the presence of a CW jammer and a pulse jammer waveform 

is also analyzed and compared for all variants. Finally, the perfonnance of the sequential 

detector is compared with other common types of serial search methods using a fixed-dwell 

serial search and a digital matched filter, and its performance is shown to be superior 

particularly at lower SNRs, which is a promising performance for the new detector.
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CHAPTER 1

INTRODUCTION

Most modem communication systems conventionally aim at the optimum utilization of the 

basic communication resources namely, the power and the bandwidth. In many situations, 

however, various channel impairments, which may be intentional or unintentional, impose 

severe degradation in the performance of these systems to render them practically unusable. 

Communications in a tactical military environment and channels with severe multipath 

fading and interference are examples of such situations. Spread-spectrum systems, which are 

classical wideband systems, exhibit better immunity in such circumstances and provide 

survivable communications while conventional communication techniques degrade 

significantly or fail to operate completely.

Spread-spectrum systems typically employ an rf bandwidth, which is much in excess of the 

information bandwidth, achieved by means of modulating the data with a spreading function 

(which is usually a high-rate pseudorandom code sequence). The common methods of 

achieving this are by using a direct-sequence (DS) spreading or by frequency-hopping (FH), 

however, other forms of spreading are also employed depending upon the application. The 

information from these spread signals is usually recovered by a despreading process using a 

correlation receiver using either active correlation or matched filtering. This despreading is 

achieved by using a code sequence which is a replica to the one used in the transmitter and 

synchronized with the received signal. In general, spread-spectrum modulation can be 

considered as a two stage modulation in which the information signals are modulated by a 

spreading function as well as an rf carrier employing common modulation techniques (either 

PSK or FSK or analog modulation) and this can be compared with a conventional wideband 

system such as FM or PCM in which data modulation directly spreads the spectrum of the 

signal. The generic spread-spectrum system is shown in figure 1.1.

Spread-spectrum signals exhibit certain unique characteristics compared with conventional 

communication signals generated by the common modulation techniques. Usually, the cost
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of using spectrum spreading can be traded against the benefits associated with eneigy 

spreading. However, in certain circumstances, when communications are intermittent in an 

interference-limited environment, spread-spectrum systems can even be spectrally efficient as 

the multiple accessing interference contributed by the low duty users can be reduced by 

inherent user inactivity (as for the case of micro cellular mobile radio schemes and certain 

data communication networks) [1,2]. Thus, spread-spectrum signals find various 

applications namely:

a. low power density signalling (satellite communication down-links)

b. low probability of interception, LPI (covert communications)

c. anti-jam applications

d. interference rejection

e. multipath protection (fading and mobile channels)

f. multiple accessing (code division multiple access, CDMA and ffequency-hop 

multiple access, FHMA)

g. secure communications (military and civilian)

h. improved spectral efficiency (for special cases) and

i. ranging (satellite navigation and chirp radar)

This wide range of applications is made possible by a number of characteristics of spread- 

spectrum signals which are achieved from the unique nature of the spreading and 

despreading processes. For example, as the information signal is spread out over a much 

wider rf bandwidth, the power spectral density of the spread-spectrum signal is reduced and 

it is then quite difficult to identify spread-spectrum signals in normal levels of background 

white noise, and this provides protection against interception. When the received spread- 

spectrum signals undergo despreading at the receiver, the channel noise in the information 

bandwidth is spread over the spread bandwidth while the desired signal is despread into the 

data bandwidth. Thus, the actual channel noise which gets in to the demodulator is reduced 

significantly relative to the desired signal power after the despreader. This provides the 

spread-spectrum process with a processing gain which can be manipulated to achieve either 

the anti-jamming and interference rejection capabilities or the multiple access capability 

which can be achieved by using a set of orthogonal spread-spectrum codes. These 

capabilities directly depend on the spreading ratio or the processing gain. However, spread-



spectrum processing does not combat the effects of white noise (as in case of FM or PCM) in 

the channel as the bandwidth expansion is achieved by a function which is independent of the 

information signal, rather than being uniquely related to the information signal. Therefore, 

the requirement on the information signal-to-noise ratio (SNR) for demodulation of a spread- 

spectrum signal is unaltered. As a multiple accessing system, spread-spectrum techniques 

can also provide graceful degradation as the number of users of the system increases by 

trading bit error rate for number of users. This may be compared with TDMA or FDMA 

systems in which the maximum number of users is generally fixed by the available total 

number of time slots or frequency slots (assuming no demand-assignment). When used as a 

ranging signal, the spread-spectrum signal is capable of resolving the time delay ambiguity 

more accurately, thus improving the precision in ranging.

Thus, the major characteristics of spread-spectrum signals achieved by spectral spreading and 

despreading can be summarized as: reduced power flux density, low detectability, anti-jam 

capability, anti-interference capability, anti-eavesdrop and anti-spoof capability, multiple- 

accessing capability and precision ranging.

Even though spread-spectrum techniques have been used in the military scenario for 

communication and radar applications for a long time, with the well known earliest 

developments taking place in the 1950’s, these have begun to find wide-spread use in civilian 

applications over the last decade. In satellite communications, with increasing demand for a 

reduced power flux density, spectral spreading is found to be attractive, particularly on the 

down links [3]. With the emerging global navigation systems such as GPS, RDSS etc., 

spread-spectrum techniques provide precise ranging and position location to an accuracy of 

the order of 10 metres for a number of civilian land mobile and avionic applications [4,5]. 

Satellite based data communication networks employing CDMA for improved spectral 

efficiency have already been in commercial use [10]. Spread-spectrum multiple accessing 

has been proposed and studied for cellular land mobile radio and various forms of 

transmission techniques namely, FH-DPSK, FH-MFSK etc., are in the experimental or in the 

trial stage [6-8]. Spread-spectrum mobile radio has also been used for countering fading 

dispersive channels like hf radio etc., [9]. Recently, spread-spectrum techniques have been 

widely considered for various satellite based data networks [10], local area networks [11], 

indoor wireless communications (portable radio telephones) [12,13], mobile satellite 

communications [14] and wide-band packet radios for multipath environments [15]. In



addition, some spread-spectrum multiple access systems have also been reported to have 

been implemented using integrated-circuit (IC) realizations for various commercial 

applications [16].

1.1 "types of spectrum spreading

Depending upon the type of data spreading used, spread-spectrum signals can be classified 

into four major types.

a) Direct-sequence (DS)

b) Frequency-hopping (FH)

c) Time-hopping (TH)

d) Chirp

Figure 1.2 shows the schematic diagram of a DS spread-spectrum system. In digital direct- 

sequence (DS) spread-spectrum systems, a high-rate pseudorandom code is modulo-2 added 

either synchronously or asynchronously with the information-bearing digital signals. In the 

case of analog information rather than digitized information this is directly multiplied with 

the pseudorandom code to generate the spread signal rather than modulo-2 added. This 

operation performs spectrum spreading but to avoid excess utilization of the bandwidth, the 

transmit signals are normally filtered over the null-to-null rf bandwidth of the spread- 

spectrum signal, as approximately 90% of the total energy is contained within this bandwidth 

(assuming rectangular pulses with no pulse shaping). The power spectral density of a typical 

DS spread-spectrum signal is shown in figure 1.3. At the receiver, the incoming signal is 

despread by correlating with a local replica code which is synchronized to the one at the 

transmitter and the information signal is recovered from the despread signal using the 

appropriate data demodulator. The processing gain of the DS spread-spectrum system is 

normally expressed as the ratio of the pseudorandom code rate to the data rate (or sometimes 

the ratio of spread bandwidth to the information bandwidth).

In frequency-hopped (FH) spread-spectrum systems, the carrier frequency is hopped between 

the frequencies which are selected pseudorandomly from a set of contiguous or non­

contiguous frequencies. In the frequency-hopping system, as shown schematically in figure 

1.4, the carrier is generated by an agile frequency synthesizer whose frequency is digitally 

controlled by a data word representing one of the hop frequencies. These numbers are 

generated pseudorandomly and are the n-tuple data words from a conventional PN code
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feedback shift register generator and the data bit to be transmitted. The data bit is normally 

impressed on the carrier using FSK modulation by adding it as one of the bits in the n-tuple, 

generally as the least significant bit to produce smallest frequency change (with the n-1 bits 

coming from the code generator). In the receiver, a local frequency synthesizer synchronized 

to the transmitter synthesizer ensures that the incoming signal is translated to a single IF 

frequency.

The processing gain of an FH system is determined by the number of frequencies over which 

the carrier hops while the hop rate depends upon the agility of the synthesizer, the number of 

hop frequencies and the final data bit error rate. Depending upon the hop rate, the frequency- 

hopping can be considered as slow hopping, medium hopping or fast hopping. The slow 

frequency-hopping system uses a single hop per several data bits while fast frequency- 

hopping system employs several hops (multiple hops) per data bit The medium hopping 

system, however, uses the intermediate situation where hop rate is almost same as date rate. 

Fast frequency-hopping takes advantage of the frequency diversity gain and this provides a 

better error rate and improves immunity to partial band jamming.

The output spectral width of the frequency-hop modulator is dependent on the frequency 

spacing and the number of tones. Usually, tones are spaced far enough apart so that the 

transmitted signals are orthogonal. The specific frequency spacing and the bandwidth of the 

dehopped signal are decided by the hop rate (chip rate) or the data rate, depending upon the 

application (slow, medium or fast hopping) while the highest hop rate is usually limited by 

the switching speed of the synthesizer. In slow hopping the minimum frequency spacing is 

decided by the data bandwidth while in fast hopping it is decided by the chip rate. However, 

in FH systems, it is often possible to use overlapping channels with significant overlap of the 

transmit spacing (for example, the centre of one channel might fall at a null of the adjacent 

channel) when the rf bandwidth is restricted while keeping the chip rate high. In frequency- 

hopping, any interference on one hop may destroy all of the data bits in that hop causing very 

high bit error rate (BER), thus, the use of error correction coding is essential to recover the 

lost data bits to avoid excessive increase in the BER. This interference may be easily caused 

by the self generated inter-symbol interference within the receiver itself due to the settling 

time of the synthesizer or due to multipath interference or by any deliberate jamming and 

interference signals.

A third method of spectrum spreading is time-hopping (TH) in which a burst of information



carrier is transmitted for a short time duration, with the time slot selected pseudorandomly 

under the control of a high rate PN code, from a slotted time frame. It is similar to a simple 

pulse modulation system with the transmitter being turned on and off using the code 

sequence. The fourth type of spectrum spreading which is not common in communication 

systems but is often used in radar applications is the chirp waveform which spreads the 

bandwidth by sweeping the carrier frequency. Chirp signals are characterized by pulsed if 

signals with the frequency during the pulse period, varied according to some known way. 

Normally, this form of modulation uses either linear frequency modulation or nonlinear 

frequency modulation to generate either up-chirp or down-chiip waveforms. Despreading is 

done by compressing the chirp signals using matched filters, employing dispersive delay 

lines (frequency dispersive filters). The processing gain of chirp signals is determined by 

their time-bandwidth product. Thus, these signals realize spread-spectrum modulation 

without necessarily employing coding and are advantageous in radar applications as 

significant power saving is possible. In addition to these direct form of spread-spectrum 

techniques various hybrid forms viz., DS/FH, DS/TH, FH/TH, DS/FH/TH etc., can also be 

used depending upon the application.

1.2 Merits and demerits of spread-spectrum signal types

There are certain specific merits and demerits in using different types of spread-spectrum 

modulation. Direct-sequence spread-spectrum signals offer best noise and anti-jam 

performance (for a wideband jammer), best discrimination against multipath and are the most 

difficult to detect However, in a multiple-access environment, where several users 

communicate with a common base station simultaneously, they suffer from a near-far 

problem. This is due to the nearer, and hence stronger signals swamping out the weaker 

signals by using up the available processing gain. Direct-sequence systems require a 

wideband channel with relatively less phase distortion. They also require fast code 

generators and limits on the available bandwidth limit the processing gain to only 20dB - 

30dB. In addition, synchronization of transmitter and receiver code generators is a vital 

process for signal reception and this can be a lengthy process in direct-sequence systems.

Frequency-hopping systems provide the greatest amount of theoretical spreading or 

processing gain as it is dependent mainly on the number of frequencies available from the 

synthesizer. It does not always need a contiguous spectrum. It is less affected by the near-far 

problem as the FH system is an avoidance type system rather than an averaging type of



system as in case of the DS. It is also relatively fast to achieve initial code acquisition due to 

its considerably lower chip rate since coarse acquisition is normally achieved by methods 

like camp and wait techniques which can dismiss the incorrect cells quickly unlike methods 

that use a long dwell-time for the dismissal of each incorrect cell (like serial-search with 

active correlator which will be discussed in chapter 2). However, it needs a complex 

frequency synthesizer and requires error correction to improve the bit error rate. As the FH 

receiver normally uses non-coherent message demodulation, it is 3dB poorer against thermal 

noise compared to a coherent DS receiver. It is also not useful for ranging applications.

Time-hopping has high bandwidth efficiency, simpler implementation than FH and no near- 

far problem if coordinated (as it is also an avoidance type system). However, it is preferable 

when the transmitter is average power limited rather than peak power limited since the 

transmission is in bursts which causes the peak power to be usually high. It also needs error 

correction due to its potential mutual burst interference. The initial acquisition time is 

similar to that of DS type for a given bandwidth, which is usually long. The hybrid forms of 

spread-spectrum signals can combine the averaging and the avoidance nature of each spread- 

spectrum technique to take the best advantage of the particular methods while avoiding the 

disadvantages associated with each technique.

1.3 Codes for spread-spectrum signals

The spread-spectrum signals are normally generated using pseudorandom codes which are 

usually at high-rate for DS signals, however, the code rate for FH signals is usually much 

lower as it depends on the hop rate. For all types of spread-spectrum signal, successful 

despreading at the receiver requires these codes to have an impulse like periodic correlation 

function (two level) to give a maximum auto-correlation when the code delay is zero 

(inphase) and a minimum auto-correlation when the code delay is more than one chip (out of 

phase). The code set to which these codes belong should also possess minimum cross- 

correlation to provide minimum mutual interference. Normally, these codes are selected from 

a set of maximal length PN sequences (m-sequences) or Gold codes. Maximal length PN 

codes provide a triangular correlation function, with a minimum and uniform cross- 

correlation. Gold codes also provide a triangular correlation function, but they also exhibit 

minor side lobes with a varying degree of correlation for different code delays. However, 

these codes provide a larger code set than maximal length PN sequences for a given code 

length, and hence find wide-spread use in multiple accessing applications. Other families of



codes having good correlation properties such as Quadrature Residue (QR) sequences, Hall 

sequences, Kasami sequences and Knonecker sequences (rapid synchronization capability) 

also find application in spread-spectrum systems, the precise application being dependent 

upon the exact properties of the code set being used.

1.4 Reception of spread-spectrum signals

The fundamental requirement of the spread-spectrum receiver is the correct recovery of the 

information bearing signals from the noise corrupted low power density spread-spectrum 

signal. The main task of a spread-spectrum receiver is to despread the information from the 

high-rate, low power density received spread-spectrum signal to a high power density, low 

bit rate information signal. For direct-sequence spread-spectrum systems this is normally 

achieved by using a correlation receiver which may use either active or passive correlation. 

The active correlator employs the multiplication of the received signal with a local code 

replica followed by integrate and dump filtering whereas the passive correlator uses either 

matched filtering or convolution (using CCD or SAW convolvers). For successful data 

recovery, the despreader output needs to be maximized to provide the best demodulator 

performance. The energy in the despread signal is maximized when the received PN code is 

phase synchronized with a local replica PN code (in case of active correlation) since this 

results in the maximum correlation between the two codes. Thus, one of the primary 

functions of the receiver is to achieve accurate synchronization of the transmitter and local 

codes as rapidly as possible to minimize the down time of the communication link. Once the 

correct synchronization of the PN code is achieved, then the despreader performs the 

correlation of the incoming signal with the synchronized local code and recovers the 

information signal. Code phase acquisition is normally carried out before the carrier phase 

synchronization (using non-coherent detection) and hence, it is done at very high noise 

levels typically at input SNRs less than -30dB, depending on the processing gain.

The process of acquiring code phase synchronization imposes severe constraints particularly 

at very low SNRs due to excessive false alarms and poor detectability. Spread-spectrum code 

synchronization is normally carried out in two stages. In many spread-spectrum systems, the 

receivers use either active or passive correlators to carry out the synchronization process and 

employ search logic to acquire the coarse initial alignment of the locally generated replica of 

the PN code with the incoming PN signal. This coarse code alignment is called initial 

acquisition, in which synchronization is normally acquired to within an accuracy of about



half a code chip. The remaining code phase error is then corrected in a closed loop tracking 

system to achieve minimum possible phase error. This process of fine synchronization is 

normally called code tracking. Tracking loops such as the delay-lock loop and tau-dither 

loop etc., are popularly used for this puipose.

The other problem of spread-spectrum reception is in its efficient data recovery after the 

despreading process for which various modulation techniques (BPSK, QPSK, MSK etc.,) in 

conjunction with a variety of error correction coding techniques (block or convolutional) can 

be employed. The analyses of such techniques and their performance have been presented by 

many researchers. The anti-jamming and interference rejection capabilities in the presence of 

various types of jammers or interferers for such spread-spectrum receivers have also been of 

research interest recently.

1.5 Initial PN code acquisition

Code synchronization is the most critical aspect of the receiver functions and within this, 

initial code acquisition is the most sensitive component as it takes the longest time to 

achieve. Consequently, it has attracted intensified research interest in modelling, analysis 

and optimization. Initial code acquisition can be achieved using one of a number of methods 

all of which make use of the triangular auto-correlation function of the PN sequences to 

indicate whether coarse lock has been achieved or not. The randomness of the acquisition 

process arises mainly because of the initial uncertainty about the code phase offset 

However, the correlator output, on which the lock decision is made, is also affected by 

various other factors such as the front-end receiver additive white Gaussian noise (AWGN), 

unknown carrier phase (non-coherent receivers), possibly the carrier frequency offset 

(Doppler), the possible presence of random data during acquisition, channel distortion (eg., 

fading channels) and additive interference and jamming. A less evident cause of randomness 

in direct-sequence spread-spectrum systems stems from the partial correlation between the 

incoming code and the local code which causes spurious correlation signals.

The key components of the acquisition system are the search strategy and the detector 

structure. The detectors employ either coherent or non-coherent detection and may use either 

an active correlator with a fixed or variable dwell-time (integration time) or a passive 

matched filter. They also use a specific statistical testing philosophy namely, Bayes or 

Neyman-Pearson or others. The search strategies commonly employed are the serial search 

or maximum-likelihood (parallel) or sequential estimation. In all these cases the overall



acquisition performance depends on the optimum search strategy and the optimum detector 

performance. Often, it is the trade off between the acquisition performance and hardware 

complexity that governs the choice of a search strategy. The choice of the detector is 

dependent on the type of the receiver’s decision criterion and also on the choice of the search 

strategy itself.

A significant amount of research work concerning the optimization of search strategies can 

be found in the literature. As the main interest has always been to improve the speed and/or 

lock probability (or overall acquisition probability) of the search in low SNR environments, 

the serial search strategy has been adopted in many cases rather than either sequential 

estimation which fails at low SNRs or the maximum a posteriori probability (MAP) 

technique (described in chapter 3) which is considered to be prohibitively complex to 

implement. Among the serial search strategies, the single and multiple dwell and the 

expanding window variable dwell types have received considerable attention and many 

generalized analyses and unified approaches to the analysis of these strategies, have been 

presented. However, detector optimization has not received equal attention and needs to be 

explored further. The use of non-coherent detectors with various dwell time integrators, such 

as single, multiple and variable dwell times, employing either active or passive correlators 

have been analyzed by a number of researchers. However, the serial search disregards any 

information gathered during the search which could also be used to alter the direction of the 

search to further reduce the acquisition time. For this reason, the serial search is theoretically 

suboptimum compared to maximum a posteriori technique and hence further gains in 

performance are still possible by employing optimum detectors and optimum searches with 

the serial search. Although the variable dwell time expanding window search can reduce this 

gap to some extent, the sequential detector, which also uses a variable dwell time, offers good 

improvement and a better promise both in terms of performance and simplicity.

The sequential detector on the other hand is conceptually known to be optimum in the sense 

of minimum mean dismissal time for a given probability of detection and false alarm 

compared with any other detectors, including sequential or non-sequential types (without 

considering the detectors that use any form of adaptation). This type of detector has been 

used generally in radar detection for sequential range processing but its use in 

communication systems is very limited indeed. The theoretical analysis for the performance 

of the sequential detector has been found to be quite difficult because of the multiple integral
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equations, the solutions for which are very difficult, if not impossible. Further, the solutions 

have a complex relationship with the threshold levels, bias and input SNR and for many 

cases they are unwieldy. The various approximate theoretical analyses for the sequential 

detector available in the literature fail to satisfy the moderate to high SNR situations and 

hence, in this thesis the Monte-Carlo computer simulation has been used to investigate the 

optimum performance of the sequential detectors for spread-spectrum acquisition under these 

conditions and also in low SNR conditions. The various practical difficulties affecting the 

acquisition performance namely, presence of data modulation, Doppler shift and jamming or 

interference have also been simulated in this work and the performance of a number of 

variants of sequential detector is analyzed.

1.6 Goals of the present research

The main objectives of the research reported in this thesis are:

i) to investigate the optimum acquisition characteristics of the sequential detector for 

direct-sequence spread-spectrum code acquisition using a Monte-Carlo computer 

simulation

ii) the simulation and analysis of a quantized log-likelihood sequential detector 

(QLD) to obtain the minimum number of quantization levels and to assess its 

performance under these conditions

iii) the simulation and analysis of a biased square law sequential detector (BSD)

iv) the comparative analysis of the QLD and BSD with the ideal log-likelihood 

sequential detector (LLD) in the absence and the presence of data modulation.

v) the analysis of the QLD, BSD and LLD in the presence of code rate Doppler offset 

and residual carrier Doppler offset, and data modulation.

vi) the analysis of the degradation of acquisition performance for the QLD, BSD and 

LLD due to CW interference and pulse jamming.

vii) a comparative evaluation of the LLD with the single-dwell detector and the digital 

matched filter.

1.7 Organization of the thesis

The thesis is organized into eight chapters. The first chapter has introduced the different 

types of spread-spectrum signals with their advantages and disadvantages. The problems
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associated with the reception of spread-spectrum signals have been addressed and the critical 

aspects of code synchronization and its significance in the reception has been discussed. The 

critical problem of this research interest, namely the faster initial code acquisition in low 

SNRs for direct-sequence spread-spectrum signals using optimum sequential detectors has 

also been introduced and the aims of this research have been outlined. An introduction to the 

organization of the rest of the thesis is also presented in this chapter.

In the second chapter, the classification of the PN code acquisition schemes based on two 

different criteria will be introduced. Based on these classifications, various types of code 

acquisition techniques commonly in use are reviewed and their analytical performances 

compared. The generalized analysis methods employed in the analysis of these techniques 

namely, the unified theory using flow graph techniques, the equivalent circular state diagram 

approach and the direct method using algebraic combinatorial approaches are discussed and 

the important results on the application of these methods to each of the acquisition 

techniques is presented. The analytical difficulties involved in using these methods with the 

sequential detector will also be highlighted.

In the third chapter, the statistical decision theory applied to hypothesis testing of the general 

signal detection problem, with particular emphasis on the sequential detection problem, is 

introduced. The decision criteria and the optimum decision rules for an optimum detector are 

described and the merits and demerits of these decision rules (eg., Bayes, Neyman-Pearson, 

minimax, MAP etc.,) highlighted. Sub-optimum detection (nonparametric detection) is also 

introduced briefly with the performance measures and the significance of the receiver 

operating characteristics (ROC) outlined. The fundamental differences between a fixed 

sample size and a variable length test are described together with the sequential probability 

ratio test (SPRT). The major performance criteria of a sequential test viz., the operating 

characteristic function (OCF) and the average sample number (ASN) function are introduced. 

The applications of sequential detection theory to the code acquisition of spread-spectrum 

signals is described and the existing research work in this area is reviewed. In addition, the 

complexities in the analysis of sequential detection are highlighted and the biased square law 

detector with its low SNR approximations is described.

In chapters 4-7, the computer simulation models employed are presented together with the 

various observations and analyses of the performance of these code synchronization systems. 

In particular, the fourth chapter presents all the computer models and the signal models used
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to simulate the three variants of the sequential detector for the acquisition of direct-sequence 

spread-spectrum signals in the presence and the absence of data modulation, and the code 

rate and residual carrier Doppler frequency offsets together with their mathematical 

representation are presented . The software techniques used to realize the various functional 

blocks in the system model for both transmit and receive sides are described along with the 

channel models employed for simulating the various channel impairments namely, Gaussian 

noise, jamming and interference. In addition, the computer models for a more conventional 

single-dwell detector and a digital matched filter detector are presented. Finally, the Monte- 

Carlo computer simulation procedure developed to assess the statistical performance of all 

the detectors is explained.

In the fifth chapter, first, the performance of three variants of the sequential detector in the 

absence of data modulation is presented. The effect of the number of quantization levels of 

the uniform quantizer, Q, on the acquisition performance of the quantized log-likelihood 

sequential detector, is shown and compared with the performance of an ideal log-likelihood 

sequential detector, leading to the choice of minimum acceptable number of quantization 

levels. Using an approximate model to the ideal log-likelihood function, the biased square 

law sequential detector, is also analyzed and the performance of three variants of the 

sequential detector are compared. In the second part of this chapter, the optimization of the 

three detectors with respect to various critical system parameters is presented from which the 

optimum system parameters or the range of near-optimum values are derived. Two stages of 

optimization with respect to: i) the upper and the lower thresholds, and ii) the input SNR and 

the design SNR is shown together with the three dimensional optimization characteristics for 

each pair of the system parameters.

In the sixth chapter, first, the effect of data modulation on the acquisition performance of the 

QLD and BSD are compared with that of the LLD. The data modulation degradation for 

each variant of the sequential detector with identical system parameters is assessed and new 

results on the acquisition performance of the sequential detector in the presence of random 

data modulation is presented. In the second part, the analysis is extended to include the 

presence of residual carrier and code rate Doppler frequency offsets and the acquisition 

performance for all three variants of sequential detector is then compared. This analysis 

examines, for the first time, the effect of both carrier and code Doppler on the mean 

acquisition time of a sequential detector. The degradation in the acquisition performance due
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to the presence of data modulation and Doppler shift is also analyzed with each detector 

operating at its optimum design SNR in predetection SNR range -4dB to lOdB.

The seventh chapter is also organized into two parts. The first part presents the acquisition 

performance of the sequential detector in the presence of CW interference and pulsed 

jamming. Results on the degradation of acquisition performance due to CW interference and 

pulse jamming with various duty factors are presented for a range of jammer-to-signal power 

ratio (J/S) and input SNR due to Gaussian noise. In the second part, the Monte-Carlo 

simulation is extended to two other common forms of serial-search PN code acquisition 

namely, the single-dwell detector and the digital matched filter and the acquisition 

performance is compared with that of the sequential detector. The critical dependence of the 

mean acquisition time on the threshold and dwell-time for both the digital matched filter and 

the single-dwell detector is also analyzed and the optimization of these parameters, carried 

out to obtain minimum mean acquisition time, is presented. The theoretical performance of a 

single-dwell serial-search acquisition, evaluated numerically using a two-dimensional 

optimization of the mean acquisition time, with the threshold, dwell-time and input SNR is 

also presented and compared with its simulated acquisition performance, and shown to be in 

a close agreement.

The eighth chapter presents the synopsis of the simulation results and a discussion from 

which final conclusions are reached. The significant achievements of this research are 

highlighted and the scope for further work outlined.

1.8 References

1) J.P. Costas, "Poisson, Shannon and the Radio Amateur", Proc IRE, vol. 47, pp 

2058-2068, Dec 1959.

2) B.R. Vojcic, R.L. Pickholtz and I.S. Stojanovic, "A comparison of TDMA and 

CDMA in microcellular radio channels”, ICC’91, vol. 2. pp 866-870, June 1991.

3) W.K.Alem, "Spread-spectrum acquisition and tracking performance for shuttle 

communication links", IEEE Trans, on comm., vol-com-26, no. 11, pp 832-840, 

November 1978.

4) E.D. Holm and E.E. Westerfield, "A GPS fast acquisition receiver", NTC’83, pp 

214- 218, November 14-16,1983.



R.D. Briskman, "Radio determination satellite service", Proceedings of the IEEE, 

vol. 78, no. 7, pp 1096-1106, July 1990.

P.M.C. Lai, V.S. Palsule, K.V. Ravi, "Applications of frequency-hopped spread- 

spectrum techniques: An overview", IETE Technical Review, vol. 3, no. 5, pp 

210-220,1986.

G.R. Cooper and R.W. Nettleton, "A spread-spectrum technique for high capacity 

mobile communications", IEEE Trans, on comm., vol-VT-27, pp 264-275, 

November 1978.

D J. Goodman et a l , "Frequency-hopped multilevel FSK for mobile radio", BSTJ, 

vol. 59, pp 1257-1275, September 1980.

P.J Munday et a l , "Jaguar-V frequency-hopping radio system", DEE Proc, Pt F, p 

213, June 1982.

N.Abramson, "VSAT data networks", Proceedings of the IEEE, vol. 78, no. 7, pp 

1267-1274, July 1990.

C.T. Spracklen et al, "Spreadnet- A spread-spectrum local area network", Jou. of 

IERE, vol. 57, no. 1, pp 12-16, January/February 1987.

K. Yamada, K. Daikoku and H. Usui, "Performance of portable radio telephone 

using spread-spectrum", IEEE Trans, on comm., vol.com-32, no. 7, pp 762-768, 

July 1984.

K. Pahlavan and M. M Chase, "Spread-spectrum multiple access performance of 

orthogonal codes for indoor radio communications", IEEE Trans, on comm., 

vol.com-38, no. 5, pp 574-577, May 1990.

K.S. Gilhousen, "Increased capacity using CDMA for mobile satellite 

communication", IEEE Sel. Areas in comm., vol. 8, no. 4, pp 503-514, May 1990.

J.H. Fischer et al% "Wide band packet radio for multipath environments", IEEE 

Trans, on comm., vol.com-36, no. 5, pp r564-576, May 1988.

D.C. Kemdirim, J.S. Wight, "DS SSMA with some IC realizations", IEEE Sel. 

Areas in comm., vol. 8, no. 4, pp 663-674, May 1990.



CHAPTER 2

CODE ACQUISITION IN DIRECT SEQUENCE 
SPREAD SPECTRUM RECEIVERS

2.1 INTRODUCTION

Despreading of the pseudo-noise modulated spread-spectrum signal is usually accomplished 

by means of a local replica of the PN code in the receiver which is synchronized to the one 

superimposed on the incoming waveform. Correlation of the incoming signal with the 

synchronized local PN code replica then produces the desired despreading process. The 

process of synchronizing the local and received PN signals is normally achieved in two 

stages. Initially, a coarse alignment of the two PN signals is produced to within a small 

(typically less than a chip) residual relative timing offset This process is referred to as PN 

acquisition. Once the incoming PN code has been acquired, a fine synchronization system 

takes over and continuously maintains the best possible waveform alignment by means of a 

closed loop operation. This process is referred to as PN tracking.

The problem of code acquisition has attracted considerable research attention recently and 

many results have been reported. However, with the increasing need for spread-spectrum 

receivers to operate in lower SNR environments, and with longer code lengths, the need for 

more efficient acquisition under severe noise conditions is also growing. Two important 

parameters that constrain the choice of an acquisition scheme are the mean acquisition time 

and the hardware complexity. In this chapter, various acquisition schemes suitable for rapid 

acquisition of direct-sequence PN signals in low SNR environments are reviewed. The 

acquisition performance of some of the latest proposals pertaining to the rapid acquisition 

schemes are also considered and analyses of their performance are compared. The optimum 

acquisition method using a variable integration time for faster acquisition namely, sequential 

detection will also be discussed.
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2.2 ACQUISITION TECHNIQUES - A CLASSIFICATION

The common denominator among almost all the PN acquisition techniques is that the 

received signal is first correlated with the local replica PN signal to produce a measure of 

correlation between the two signals. These methods make use of the large correlation output 

when the codes are in synchronization and the low correlation value when the codes are out 

of synchronization by one chip or more. This correlation measure is then processed by a 

suitable detector/decision rule and search strategy to decide whether the two codes are in 

synchronism and what to do if  they are not. Thus, the differences between the various 

schemes depend on:

i) the type of detector (and decision strategy) which is dependent on the form of the 

received signal and the particular application,

ii) the nature of the search algorithm which acts on the detector outputs to reach the 

final verdict

2.2.1 Based on the type of detector

All known types of detectors for PN acquisition can be classified into either coherent or non­

coherent. The non-coherent detectors assume no knowledge of the carrier phase and 

consequently, they generally comprise a bandpass filter centered at the frequency of the 

received PN signal followed by a square-law envelope detector, an integrate and dump circuit 

which operates over a finite time interval and a simple threshold device. The coherent 

detector assumes that the receiver is capable of determining good estimates of the carrier 

phase and frequency, thus the carrier must be demodulated prior to PN despreading. This is 

usually very difficult because the power in the carrier has been spread to result in a very low 

power density. The coherent detector typically employs a low pass filter followed by an 

optimum Bayes detector or, instead, just a simple threshold device.

Depending upon the integration time the detectors can also be classified as either fixed or 

variable integration time types. The fixed integration type can be further subdivided into 

single-dwell and multiple-dwell types based on whether the detector’s decision is made on 

the basis of a single fixed time observation of the received signal plus noise or many such 

observations. Depending on the duration of the observation, single-dwell detectors can be 

further differentiated according to whether they use partial or full period code correlation. 

The multiple-dwell detectors make decisions based on the threshold comparison test



- 1 8 -

following a threshold exceedance of the first dwell output, which is then verified using the 

additional dwells in combination with further threshold tests in accordance with a specified 

verification algorithm to produce a final decision. The verification algorithm can be of the 

type in which the code phase position is immediately rejected (Di Carlo and Weber) [1] or 

dismissed as soon as any dwell output fails to satisfy its threshold exceedance test. Other 

types of verification modes, often referred to as search/lock strategies (Hopkin’s) [2] {or 

non-immediate rejection) either employ algorithms which require repeated threshold testing 

of a given dwell output or use a majority logic type of decision based on the outcome of each 

of the total set of multiple-dwell threshold tests.

For the case of variable integration time detectors, the dwell time, being the time for a 

continuously integrated stochastic process to exceed a threshold, is a random variable. This 

kind of acquisition scheme, with a variable integration time detector, typically employs the 

classical method of sequential detection which finds its roots in the detection of radar signals 

[3] and will be discussed in section 2.3.4.

Based on the rate at which the decisions are made on each code phase under test, detectors 

can be classified as high decision rate detectors or low decision rate detectors. The matched 

filter (passive correlator) PN acquisition systems typically fall under the high decision rate 

detectors as these structures make decisions on the out-of-sync code phase offsets between 

incoming and local codes at the PN chip rate or an integer multiple of i t  Low decision rate 

detectors employ active correlation and make these decisions at a rate much slower than chip 

rate often at the code repetition rate or a multiple of i t

A final classification of detector types is based on the criterion for deciding between in-sync 

and out-of-sync hypotheses. For example Bayes decision criterion minimizes the average risk 

whereas the Neyman-Pearson criterion minimizes the probability of missed detection (error 

of the second kind) for a given probability of false alarm (error of the first kind). Figure 2.1 

presents the summary of the various classifications based on the detector types.

2.2.2 Based on the type of search algorithm

PN acquisition schemes can be classified into three categories based on the search strategy 

employed:

i) Maximum-likelihood (parallel))

ii) Sequential estimation
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iii) Serial search.

This classification of search strategies is summarized in figure 2.2.

2.2.2.1 M aximum-likelihood

These algorithms correlate the received PN signal with all possible code positions (or 

perhaps fractional code positions) of the local code replica. All the correlations are 

performed in parallel with the corresponding detector outputs pertaining to the observations 

made on the same received signal. The local code phase position that produces the 

maximum detector output is chosen as the correct PN code.

The maximum-likelihood algorithm can also be implemented in a serial fashion, by 

correlating the received signal serially with all possible code positions of the local code 

replica and storing the corresponding detector outputs. At the end of the test the correct code 

position is chosen as the one with maximum detector output. Thus, in both cases a clear 

advantage is that a definite decision is made after only a single examination of all code phase 

positions, or a single search through the entire code period. However, for longer codes, the 

complexity of parallel implementation or the time required to search the entire code and 

reach the synchronization decision in the serial version is often prohibitive.

22,2,2 R apid acquisition by sequential estim ation (RASE)

This scheme, first introduced by Ward [4] makes the best estimate of the incoming PN signal 

and loads the first V  received PN code chips (n being the number of stages in the code 

generator) into the receiver code generator and this forms the initial state of the local code 

generator. The receiver code thus generated is correlated with the incoming signal and the 

threshold is examined at the end of a predetermined examination interval. The correlation is 

continued if the test passes, otherwise, a new estimate is made and the test is repeated. An 

obvious advantage with this scheme is that the acquisition is rapid as long as the V  

consecutive estimates are correctly made. However, at lower SNRs the probability of 

correctness with which the initial estimate is made (Pc) is reduced and the probability of 

estimating the n consecutive bits falls drastically, and hence the technique looses its 

advantage. In general, rapid acquisition is only possible with moderate SNRs, ie., down to 

-15dB.

A modified RASE called Recursion Aided Rapid Acquisition Sequential Estimation,
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RARASE [5], employs a sync-worthiness-indicator (SWI) formed by the addition of the 

estimated code chips to determine when the shift register should switch from the reload to 

the track condition. Compared with RASE, which only has a simple detector, RARASE can 

achieve an acquisition time reduction by a factor of 7.5 (for n = 15 shift register). Other 

modifications of RASE using the recursive relation of the PN codes to improve the initial 

n-chip estimate have also been investigated which use majority logic voting on independent 

n-chip estimates [6], threshold decoding type of estimator [7] and by replacing the simple 

threshold decisions with a Bayes detector [8]. Nevertheless RASE, RARASE and their 

variants can only offer good performance down to moderate SNRs.

2.2.23 Serial search

First proposed by Sage [9], a serial search is performed by linearly varying the time 

difference between the PN modulation on the incoming carrier and the PN waveform 

generated at the receiver. A continuous decision process is used to determine when 

synchronization is reached. Such a continuous search system is referred to as sliding 

correlator PN acquisition. Since the test for synchronization is based on a continuous 

decision process, this method can yield a shorter acquisition time when compared with the 

serial realization of the maximum-likelihood technique as the search can terminate anywhere 

within the uncertainty region rather than having to wait until the end of the code period. 

Often, however, several passes of search through the uncertainty region are required to 

achieve lock, particularly when the SNR is poor. When compared with the RASE system, 

the serial acquisition technique can provide shorter acquisition time for input SNRs worse 

than -15dB. Thus, this type of technique is attractive for low SNR environments.

In recent years, the trend has been to accomplish the variation of time difference between 

incoming and local PN waveforms by a discrete stepping process wherein the phase of the 

local PN code is stepped at uniform increments in time, advanced or retarded by a fixed 

amount (typically a fraction of a chip). This discrete-step serial search of the uncertainty 

region can be accomplished by a uniform search from one end to the other or by a non- 

uniform search (making use of a priori information), typically starting at the minimum code 

phase uncertainty, and expanding as a function of time to higher uncertainty. Such an 

expanding window search or the simpler Z-type search strategies are well suited for 

applications with very long codes in which it is not feasible to search the entire code, but it 

does require some a priori information regarding the code phase, through some means. One
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method of obtaining this is to have very accurate crystal clocks both in the transmitter and 

the receiver which are initially synchronized and maintain accurate time even when not phase 

locked. Other situations are when a short preamble code is used or while resynchronizing 

from the successful acquisition previously held.

A further subclassification of search strategies depends on time elapsed before reaching the 

acquisition. Systems in which the search is allowed to proceed as long as necessary to 

achieve acquisition with a given fidelity are classified as having nonlimited acquisition time. 

These are the systems typically employed in applications where information modulation is 

always present Search strategies with limited acquisition time are usually used in systems 

where the information modulation only commences when the PN code acquisition has been 

achieved, viz. push-to-talk systems. In such cases, acquisition must be achieved within a 

fixed time (usually less than a second or so) to a high overall probability of acquisition.

The detector classification can also be based on the way false alarm states are handled, and 

thus the serial search strategies can be classified as being of the returning state or absorbing 

state types. In normal circumstances the occurance of noise causes a false alarm state to be 

generated and after a given amount of time (false alarm penalty time) which is a random 

variable, (but is often mathematically modelled as being fixed) the system will return to the 

acquisition mode and continues searching where it last left off. Such a recoverable false 

alarm state is referred to as a returning state. Occasionally entry into a false alarm state is 

catastrophic as the system cannot recover from this event In this instance code acquisition is 

completely lost and thus this type of false alarm state is referred to as an absorbing state.

2.3 PERFORMANCE OF ACQUISITION TECHNIQUES

The primary requirement of the acquisition scheme is to reduce the mean acquisition time for 

a given level of background noise and interference. Various factors contribute to the poor 

acquisition performance of the receiver, namely, the presence of data modulation on the PN 

carrier, Doppler shift, jamming and interference etc. The performance of a particular 

acquisition scheme is governed by the various parameters relating to the search/lock 

strategies employed, the detector type and integration time used. In this section, the 

parameters influencing each of the acquisition schemes described are identified and analytical 

results for the acquisition performance are discussed. The various methods employed for the 

analysis of the search techniques are also described.
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Performance measures

A common measure of performance is the mean-time to acquisition, defined as the average 

time elapsed from the initiation of acquisition to the completion of i t  However, for the case 

of burst-mode communication systems, a more appropriate criterion is to consider the 

probability of successfully acquiring an anticipated spread-spectrum burst within a given 

time. Thus, the probability of detection and probability of false alarms will be more suitable 

criteria. The related parameters, such as false alarm penalty time, mean-time to lose-lock 

etc., also need to be considered wherever appropriate. However, to obtain the complete 

statistical description of the acquisition process, the probability density function (pdf) of the 

acquisition time is required from which various moments can be obtained. This pdf cm  be 

analytically obtained from the generating function formed by the transition probabilities of 

the acquisition process modelled as discrete Markovian process. However, obtaining the 

generating function and the closed loop solutions for the pdf arc not easy in all the cases and 

often approximations are required. In some cases, the solutions are normally limited to the 

first two moments of the acquisition time.

23.1 Serial search acquisition techniques

In a simple serial search acquisition system using a sliding correlator with continuous 

decision, the mean acquisition time in ideal conditions when the signal is not corrupted is 

simply:

where L is the length of the PN code in chips and A/c is the difference in clock frequency 

between the local code generator and the incoming PN code. However, the presence of noise 

causes the decision reliability to deteriorate because it reduces the probability of detection 

and furthermore causes false alarms to occur due to the noise on the correlation signal 

samples exceeding the threshold. The mean acquisition time in such circumstances depends 

on the probability of detection Pd, probability of false alarms Pfa (or equivalently the false 

alarm rate n/a), the false alarm penalty time 7> and the specific search/lock strategy used to 

counter the false alarms.

Numerous researchers have investigated these problems and derived expressions for the 

mean acquisition time and its moments with different search/lock strategies and have also
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analyzed the statistics of the acquisition time function. All these analyses are reviewed here 

with respect to each search technique.

2 3 .2  Continuous search sliding correlator

In the continuous sweep serial search, the local PN generator runs at a frequency f c + A/c 

which differs from the clock frequency f c = l/Tc of the incoming PN code by a small amount 

Afc ^  /c- Thus, the epoch difference between both the codes vanishes at instants of time 

which are L /Afc apart (L being the PN code length in chips) generating a train of impulses at 

the correlator output which are triangular pulses of width 2/A/c. These pulses are detected by 

the non-coherent detection circuit and tested against a preset threshold. The first detected 

impulse declares the hit and sets the local clock to f c and activates the tracking loop. For the 

sliding correlator with Af c as the slip rate between the two codes, the probability of false 

alarms and miss detection have been derived as a function of the carrier-to-noise ratio and 

search rate by Sage [9]. The effects of false alarm and miss detection were accounted for and 

the expressions for the mean acquisition time were derived by Pandit [10] as:

Vacq = -T7" 0  + rt/fl Tp) 7 — 0 .5
"d

(2.2)
*fc

where Pd is the probability of detection, nfa is the false alarm rate and TP is the false alarm 

penalty time.

The quantities Pd and nfa depend on the SNR at the receiver input and the threshold level set 

by the acquisition circuit and can be determined using the methods of signal detection theory 

or measured experimentally. The effects of self-noise and decorrelation on the sliding 

correlator was found to place an upper limit on the search rate and this problem was studied 

by Ormondroyd and Comley and analytic expressions were fitted to extend the observations 

for cases with longer code lengths [11].

2 3 3  Discrete search sliding correlator

The sliding correlator with discrete search (or the stepping correlator) has received major 

attention recently and various schemes with uniform stepping and non-uniform stepping 

have been considered. For the case of uniform stepping, both single-dwell systems and 

multiple-dwell systems with immediate rejection verification mode have been analyzed. The 

non-uniform stepping strategies have also been analyzed using a unified approach based on 

the use of equivalent circular state diagrams [18] and generalized algebraic characterization
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[20].

23.3.1 Single-dwell serial search

In this type of system the received signal plus noise is actively correlated with the local 

replica of the PN code and then passed through a predetection bandpass filter. The filtered 

output is passed through a standard type non-coherent square-law envelope detector to 

remove the effects of data modulation. The detector output is next integrated for a fixed time 

duration xd called the dwell time in an integrate and dump circuit (post-detection integration) 

and then compared with a preset threshold. Equivalently, a low pass version of a single- 

dwell search scheme employs in-phase and quadrature-phase carrier reference signals and the 

despread and demodulated signals in both the channels are passed through low pass filters, 

square-law detecting the low pass signals and summing to produce the required signal for 

post detection integration. Both these detectors are shown in figures 2.3 and 2.4.

Through a Markov chain model of the acquisition process, Holmes and Chen have derived 

the mean-time to acquisition with and without code rate Doppler [12]. A more complete 

description of the single-dwell acquisition has been presented by Di Carlo and Weber [13] by 

deriving an alternate system performance viz., the probability of successful synchronization 

as a function of all critical design parameters of the acquisition system.

The total time uncertainty to be resolved is = NUTC, where Nu is the number of code chips 

in the uncertainty region and is normally set equal to the code length, L. Typically, the 

received and the local PN codes are aligned to within half a chip period (Tcl2) and hence the 

total number of code phase alignments (which are usually referred to as cells) would be 

q = 2NU. The mean acquisition time, 7 ^ ,  of the single-dwell acquisition scheme, in the 

absence of code Doppler, due to the method presented by Holmes and Chen assuming that 

the number of cells to be searched q »  1 is:

(2-Pd)(l+KPfa) _
Tacq = -------^ -------- qtd (2.3)

<t
where Pd and Pfa are the detector decision probabilities, K is the false alarm penalty factor 

(false alarm verification time, 7> = Kxd sec) and xd the dwell time.

The variance of the acquisition time o j^  has also been derived as:

= x J d + j f /v . ) 2? 2 1 1 + 1
d r a j12 Pd ' P2

(2.4)
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The effect of Doppler on the acquisition performance is twofold. First, it smears the relative 

code phase during the acquisition dwell time which has the effect of increasing or reducing 

the probability of detection depending on the code phase and algebraic sign of the Doppler 

rate. Secondly, Doppler also affects the effective code sweep rate which in the extreme case 

can reduce it to zero causing the search time to increase greatly. Though it is very difficult to 

exactly account for the Doppler, as far as the effective sweep rates are concerned the 

Doppler has been accounted for and the modified expressions for and to a first 

approximation are given as:

(2 -P d)(l + KPfa)NuxdT =1 acq AT*
2Pd I + xd &fc A/c P/a

* C

(2.5)

(1 +KPfa)2N2
<j2 =^  acq

_ 1 _

12
_1_ J _  
Pd + Pd

A Tr
+ XdAfc +KxdAfcP/a

(2.6)

where

ATc/Tc= step size of search in fractions of a chip (typically h)

Afc = code Doppler in chips which can be either positive or negative 

Afcxd = PN code phase timing shift due to code doppler during dwell time 

AfcKxd -  code phase shift during list verification

The mean acquisition time with Doppler | DoppUr and its variance | DoPPur can be 

expressed in terms of \ M^)oppur and | DoPPur respectively as shown below:

' acq I DoPPUr ~

®acq I DoPPUr ~

' acq | no -DoPPler

I i + -j£-A/eT<(i+ir/>/0)

®acq | no-DoPPler

1 + jy” A/c Xd(l+ K  Pfa)

(2.7)

(2.8)

Nu AT.
where —r  = represents the mean search update (denoted p) in the absence of Doppler

q Tc

(or equivalently the step size of the search in fractions of a chip) with q' as the number of 

cells in the absence of Doppler {q =q for A fc -  0).

Similarly, by the substitution of the equivalent mean search update, into the original 

equations the Doppler rate can also be taken into account [14].
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The probability of detection Pd and probability of false alarm p*  depend on SNR, the

acquisition system parameters, namely xd and the type of detector, and can be derived based

on signal detection theory [15], as given below:

If the envelope detector output is sampled at a rate 1 IT where B is the predetection filter 

bandwidth, which ensures sufficient sample decorrelation, then the samples can be treated as 

independent identically distributed (iid) random variables. Then the detector probabilities can 

be approximated with a Gaussian assumption of the integrator output (for a large BT) and 

given by:

Pfa = GtW (2.9)
Pd = GKMBvrWi+ZY] (2.10)

where Q [x] is the Gaussian probability integral with p and y given by

3 = <.r\-BXd)l'lBxI (2.11)
Y = A212a1 (2.12)

where A is the rms amplitude of the correlator signal and a2 = NaB 12 is the variance of the

noise process where N0 is the single-sided noise spectral density. For a required Pd, P/a, given

Y, B and t\ the necessary dwell time xd can be determined easily. However, the basic design

problem is to choose the optimum threshold and the dwell time that can provide a minimum

mean acquisition time for a given input SNR. Since both Pd and Pfa are functions of the

threshold, dwell time and y, and they are transcendentally related; the optimization problem

requires the equations to be solved numerically. The optimization of the single-dwell

detector is considered in chapter 7.

23.3.2 Search/lock strategy (SLS)

An accurate analysis of code acquisition must explicitly account for the strategy by which the 

search and lock functions are monitored. The transition from search mode (coarse 

acquisition) to lock mode (tracking) is important as it has twofold effect on the overall code

synchronization process. First, it yields a verification which establishes the validity of a hit

produced by the search algorithm before the control is taken over by the tracking. This is 

important as the false alarms, if unchecked, can have significant impact on the acquisition 

time due to the longer integration time used during lock mode to assure high probability of 

detection and thereby ensuring that the detector does not declare loss of synchronization 

prematurely. Secondly, it continuously monitors the lock mode and determines when to 

reinitialize the search mode based on loss of synchronization. Hopkins [2] has analyzed such 

a search/lock strategy (SLS) for a single-dwell acquisition system, as shown in figure 2.5,
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using identical dwell-times (i^i) for both search and lock modes. In this, the first test of a cell 

(state 1) causes a hit to the next state (stage 2) and a hit in state 2 to enter the lock mode. In 

the search mode a miss in state 1 results in immediate rejection of the cell and a phase step to 

the next cell, a miss in state 2 causes a return to state 1. Once the lock mode is entered a 

single miss will not cause a return to search. This SLS is analogous to a counter with four 

possible counts 0 ,1 ,2  and 3 and an initial count of 1 with 3 for the lock mode. This type of 

SLS is called an up-down counter strategy. A significant feature of this SLS is that the 

detector parameters are changed upon entering the lock mode to ensure a very high 

probability of detection (Pd). A Maikov chain model with absorbing boundaries (states with 

no transition, ie., starting and ending states), was employed to analyze the SLS and the 

expression for mean time to acquisition was derived as:

Nuxd T = ———*acq  «
2 -Pr

(2.13)

where PL is the probability of entering lock and xd is the mean dwell time for an incorrect 

cell.

The variance of the acquisition time was found to be:

_2
Gacq “

J _  J ____1_
12 P i  Pl

(2.14)

The probability of acquiring lock PL is determined from the knowledge of state transition 

probabilities (in fact, PL is the probability of going from state 1 to state 3 and can be related 

to probability of detection for the search mode). xd is the mean time to reach state 0 to 6 and 

can be related to the dwell time and the probabilities of false alarm in the search and lock 

modes [2]. To include the effects of code Doppler or its derivatives, the modifications to the 

mean search update, p can be made as suggested earlier.

2.3.3.3 Equivalence of single-dwell search with continuous sweep

Often, the performance results obtained for the discrete stepping search system can be 

extended to the continuous sweep procedure, using an equivalence of the system parameters. 

Thus qxd is equivalenced with LIAfc to equivalently search one code period. Further, KPfa = ( 

Kxd)(Pfalxd), hence for the continuous system Kxd is equivalenced to the false alarm penalty 

time TP and Pfa/xd is equivalenced with the false alarm rate nFA = P/a(qAfclL).

2.3.3.4 Double dwell serial search acquisition

The mean acquisition time of the single-dwell serial search system depends on the mean
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dwell time for each cell with incorrect code phase and the false alarm penalty time factor AT. 

When both xd and Pfa are large, this can lengthen significantly. In order to reduce the 

acquisition time of the serial search it is required to discard the cells containing no signal (ie., 

the out-of-sync and the potential false alarm states) as soon as possible, still keeping the 

advantage of longer integration time for the cell containing the wanted signal in-lock signal 

to improve the decision reliability. This technique reduces the required mean dwell time, 

simultaneously improving the probability of detection. Thus a double-dwell system, in 

which the search is performed during the first dwell time xd\ and the verification is performed 

in the second dwell time xd2, significantly improves the acquisition performance over the 

single-dwell scheme as those cells without the wanted correlation signal can be rejected in 

the search mode itself.

Double-dwell search schemes with a search/lock strategy, similar to Hopkin's up-down 

counter strategy, however, employing two different integration times in the search mode and 

three verification stages which can employ longer integration time, has been analyzed by 

Holmes and Chen [12] and Di Carlo and Weber [1], and expressions for mean acquisition 

times were obtained as a function of various search parameters and system parameters. The 

analysis by Di Carlo and Weber derives expressions for more general multiple-dwell 

schemes and obtains results for the two-dwell system as a special case, while Holmes and 

Chen extended the analysis using a Maikov chain model of the acquisition process of a 

single-dwell scheme to that of the double-dwell scheme.

The expressions for mean acquisition time and variance without code Doppler for a double- 

dwell search scheme are given by [1,12]:

with q*>Pfa2K (AT+1) and q*> 1

where 

xdl = first dwell time 

xd2 = second dwell time

Pd = Pdi Pdi product of detection probabilities of dwell times one and two, respectively 

pf.  i = false alarm probability of the first dwell 

Pfal -  false alarm probability of the second dwell

(2.15)

<S2acq ~ * d  1 + * d 2 r f a l  (1 + AT fa2)2 q2
1 (2.16)

12 Pd + P\
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K -  penalty for a false alarm at the second detector (number of xd2 units of time)

The equations can also be modified to account for code Doppler by replacing q by NJ\i where 

p. is the mean search (code phase) update in chips given by:

ATC
M- = ~jT- +^dl^fc +Pfal Zd2 A/c + P/al Pfal&fc (2.17)

* c

23.3.5 Multiple-dwell serial search

The multiple-dwell serial search strategy is a more general type of serial search in which the 

examination interval is not constrained to be a fixed period of time. Instead, the examination 

interval consists of a series of shorter dwell periods with the decision being made after each 

dwell time. Thus, an incorrect waveform alignment can be discarded in a shorter period of 

time than is possible with the single-dwell time technique. This capability to quickly discard 

the incorrect alignments significantly reduces the overall acquisition time, especially when a 

large number of possible alignments are to be examined.

The general form of the N-dwell serial search acquisition system (as referred by Di Carlo 

and Weber) is shown in figure 2.6. The received PN signal, plus noise, is multiplied by the 

local PN signal and the output is fed to each of the N non-coherent detectors. The i* detector 

is characterized by a detection probability, P&, a false alarm probability, Pfai, and the dwell 

time x T h e  detector dwell times are assumed to be ordered such that:

T,/i ^ Xd2 ^ —....... — tdN  (2.18)

The decisions are made by sequentially examining the N detector outputs (starting with the 

first) and applying the following algorithm.

Step 1: If all the N detectors (tested in succession) indicate that the present cell is correct 

(produces a threshold crossing) then the decision is made to stop the search.

Step 2: If any one of the detectors fails to indicate that the present cell is correct (fails to 

produce a threshold crossing), then the decision is made to continue the search and the local 

code generator is updated (retarded), whereupon the next cell is examined.

The N integrate and dump (I & D) circuits initiate their integration at the same time but 

dump at later and later time instants.

Though this represents the conceptual realization, in practice the N ,I &D circuits would be 

realized by a single continuous-time integrator whose output is sequentially sampled (but
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not dumped) at time constants xd u xdi+xd2, , ^ 1+ ^ 2+ •+** depending on the

outcomes o f the first i -1  threshold comparisons.

The false alarm penalty time, 7>, when all N detector outputs exceed their respective 

thresholds for a cell which does not correspond to the correct code alignment, can be 

modelled as an integer multiple of the additional time required by the N* dwell

Tp = Kf/ixjff -  Xjff-i) (2.19)
The statistical properties of the acquisition strategy are obtained using a Markov chain model

and a flow graph representation of the W-dwell system by Di Carlo and Weber [1] and the

expressions for mean and variance of the acquisition time were found to be:

j~ 1
t j  fai +  P  FA Tp §jN

«=1
q »  1

12
_L JL 
P d + p i

N

Z 'y
7=1

7 -1

II Pfai + PFA Tp §jH 
*'=1

(2.20)

(2.21)

where tj is the additional time necessary to make the j*  decision given that the present cell 

has not been rejected at the (/-!)* decision.

tj — Xdj ,
if the detectors are reinitialized after each decision (integrate and dump) and

t j — x dj —x dj _ i , y= i,..jv  
if the detectors are not reinitialized.

(2.22)

(2.23)

PD and PFA are the overall system detection probability and false alarm probability which are 

expressed, in terms of the conditional probabilities per cell basis, as:

N

Pd = 23 P*ti
i=l

N

P  FA ~  2  Pfed
i=1

(2.24)

(2.25)

P# = conditional probability of detecting the correct cell given that it has been 

successfully detected by previous O'-l) detectors.

Pfai = conditional false alarm probability which is the conditional probability that the Ith 

detector chooses an incorrect cell given that the previous (i-1) detectors have also chosen i t  

hju = the Kronecker delta function defined as

rl i= j
8*'“  10 i * j (2.26)

For the special case o f N = 7, K x - K  the above expressions readily reduce to those of the 

single-dwell search system. When compared with the single-dwell search, it is apparent
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from the expressions that for the same false alarm penalty time, i.e. Kxd = KN (x^ -  x^v_i), the 

//-dwell system can yield a smaller acquisition time than the single-dwell system if

N

z
7=1

7-1
IT ̂ fa,

L i-1
(/tdj-'tdj-i)<'td (2.27)

Thus, the ability to design the N-dwell system to satisfy the above equation depends on the 

functional relationship between the conditional false alarm probabilities and dwell times. 

The system detection probability PD, and false alarm probability PFA can be approximated 

from the signal detection theory as in the case of the single-dwell detector.

From the computation results of cases with, N  = 1 ,2 ,3  by Di Carlo and Weber a significant 

conclusion was reached that the reduction in average acquisition time obtained by increasing 

the number of dwells is significant from one to two. Additional but only nominal 

improvement is gained when more than two dwells are used.

23.4 Variable dwell time schemes or sequential detection

These schemes employ sequential detection methods stemming from the original work by 

Wald [3] which has been applied to radar detection theory. The design philosophy is based 

on the minimization of the acquisition time by quickly dismissing the false sync positions, 

allowing it to integrate over a much longer time interval during the single cell which contains 

the correct code alignment

Though multiple-dwell schemes achieve this by increasing the integration time in discrete 

steps, sequential detectors allow the integration time to be continuous and replace the 

multiple threshold tests by a continuous test o f a single dismissed threshold.

The corresponding search strategy is designed so that the mean time to dismiss the false sync 

is much smaller than the single-dwell system. Thus, since the search spends virtually all its 

time dismissing false sync positions, the mean acquisition time of sequential detection PN 

acquisition system will be much less than that of the single-dwell system.

The generalized sequential detection acquisition system is shown in figure 2.7. This employs 

a square-law envelope detector to remove the data modulation and operates identically to a 

single-dwell system except that the integrator or accumulator samples are a transformed 

version of the envelope detector samples. The output of the integrator would, typically 

follow along the integrated mean of the square-law detector output (N0Bt or N0B(l+y)t), 

depending upon whether the cell under test corresponds to noise only or signal plus noise.
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For both these hypotheses the integrator output would tend to increase with time, but at 

different slopes. By subtracting a bias voltage b, such that N0B <b < N0B (1+y), the integrator 

output will tend to decrease linearly with a slope (N0 B -  b), when the noise only is present, 

and increase linearly with slope (N0B(l+y)-b) when the signal plus noise is present, as 

illustrated in figure 2.8. By setting a negative threshold a code epoch is dismissed when the 

integrator output falls below i t  The smaller the magnitude of this threshold, the faster the 

integrator output will dip below it if it contains no wanted signal. This provides the basis of 

a quick dismissal. However, since the smaller magnitude of threshold can more likely dismiss 

the signal plus noise also (ie., a false dismissal), a compromise threshold value must be 

chosen for a relatively quick dismissal of the false sync, but which tends to allow the true 

sync position to remain above threshold.

There are two ways of determining a true sync event (and a false alarm). One way is by 

designation of truncation time, say x0. On reaching this interval without declaring the wrong 

epoch causes the declaration of the signal. This is called a truncated sequential test and the 

test truncation time x0 is referred to as the time-out of the sequential detector. The time-out 

feature in some cases is replaced by a test against a second positive threshold in which case 

the signal is declared to be present as soon as the integrator output rises above the positive 

threshold, rather than remaining above the lower negative threshold for all 0 < t < x0. This is 

the two-threshold sequential detection system and indeed, is the more classical type, 

representing a direct application of the sequential hypothesis testing originally discussed by 

Wald. A complete description of two-threshold sequential detection scheme with optimum 

decision criteria will be discussed in chapter 3.

2.4 GENERAL ANALYSIS OF SERIAL SEARCH SCHEMES

Various researchers have used combinatorial arguments or simplified flow graph techniques 

with transform domain methods for analyzing straight serial search strategies from a 

characteristic function or a generating function. In some cases, the analysis is extended to 

optimized expanding window searches and the derivations are obtained through laborious 

steps. These analyses use many assumptions [16]-[22] and their results are valid only for the 

specific cases assumed.

Generalization of the serial search analysis to include many other specific cases has been 

carried out using unified theory and circular state diagrams in transform domain by
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Polydoros and Weber [17], and, Polydoros and Simon [18]. A time domain method using a 

rapidly converging infinite series to obtain the pdf and the first two moments of the mean 

acquisition time has also been presented by Meyr and Polzer [23]. A direct approach for the 

analysis of strategies for serial search using both time domain and the transform domain 

techniques has been presented by Jovanovic [21]. Pan, Dodd and Kumar [22] have recently 

presented an analysis for straight serial search strategies with fixed dwell times using a 

modified flow graph which permits the use of a generalized lock strategy and allows the false 

alarm time to be treated as a random variable. In this woik, the distribution of the acquisition 

time has been obtained directly by use of an extended generalization of Bernoulli trials. This 

analysis is more general and requires fewer assumptions and approximations compared with 

the other analyses which use a fixed penalty false alarm time. It is also suitable for single and 

multiple-dwell schemes and can be extended for Z-search and expanding window searches.

The following sections describe these general analysis methods used for analyzing the serial 

search strategies and the results obtained using these methods are also discussed.

2.4.1 Unified approach to serial search

This is a general theory of analysis applicable to serial search acquisition schemes proposed 

by Polydoros and Weber [16]. It provides a general extension to the previous state diagram or 

flow graph technique originally suggested by Holmes and Chen [12]. The theory is based 

strictly on transform domain techniques and is formulated to be general enough to 

encompass the past theoretical methods as well as the more recent ones and allows for 

significant freedom when modelling the receiver structure. It accounts for arbitrary choices 

for: 1) cell logic (verification mode), 2) search logic (serial search strategy), 3) prior 

information and 4) the foim of spectral spreading such as DS or FH.

Using this approach the generating function is obtained by substituting various path gains of 

the flow graph, representing all possible state transitions as appropriate to the acquisition 

scheme, in the generalized characteristic (or generating) function, from which the mean 

acquisition time and its variance can be obtained. The applicability of the proposed 

theoretical framework was illustrated, by considering the cases of simple examples, viz. 

single and multiple dwell. The various branch gains were defined and the expressions for 

mean acquisition time were obtained which readily agree with the previous results. 

Following a similar approach, a matched filter non-coherent acquisition system was also 

analyzed and the mean acquisition time for both uniform and worstcase assumptions were
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derived.

In a parallel effort, Holmes and Woo [24], Weinberg [19] and Braun [20] have used 

combinatorial arguments to derive expressions for a more sophisticated serial search strategy 

which is a class of expanding window technique (which will be discussed in the next 

section). The unified theoretical framework has also been later generalized to provide results 

for any arbitrary serial search strategy, such as the Z-search and the expanding window 

search by Polydoros and Simon [18].

2.4.2 Equivalent circular state diagram approach

The circular state diagram method was first used as a tool for modelling and analyzing the 

complete acquisition behaviour of straight (uniform) serial search schemes using the unified 

theoretic approach by Polydoros and Weber. The method was generalized using equivalent 

circular state diagrams and extended to include arbitrary serial search strategies by 

Polydoros and Simon [18] in which two classes of non-uniform serial search strategies, viz., 

Z-search and expanding window search, were considered. In this woik, also the generating 

or characteristic function of the stochastic process is derived through a transform domain 

description.

The advantage o f this technique is that it circumvents the complicated combinatorial 

arguments used in the analyses employing a transform domain description o f the stochastic 

acquisition process by Braun [20] and Weinberg [19]. It allows a simple and more 

systematic evaluation o f the generating function o f the process using the well-known flow 

graph reduction techniques.

2.4.3 A direct approach to analysis of serial search strategies

A direct approach to obtain the statistics of the mean acquisition time of serial search 

strategies was presented and various Z-search and expanding window search strategies were 

compared by Jovanovic [21]. This technique combines the idea o f algebraic 

characterization o f the search with the transform domain methods and is a general unified 

technique yielding many other known results as special cases.

One o f the major advantages o f this technique is that the effect o f the search strategy on the 

moments o f the acquisition time can be isolated from the effect o f the detectionJverification 

time.



Using this approach several conclusions regarding the comparative performance of the 

continuous/broken, centre/edge Z-searches and expanding window search have been 

confirmed. Two alternative search strategies namely, i) uniformly expanding alternate (UEA) 

and ii) non-uniformly expanding alternate (NUEA) were also proposed and their 

performances were compared. Both these strategies perform tests by jumping sequentially 

on cells following the order of decreasing a priori probability. An optimum search strategy 

based on the maximum a posteriori (MAP) method was also analyzed to establish an 

absolute and uniform basis of comparison with the suboptimal strategies.

Based on these comparisons it was shown that the non-uniformly expanding alternate 

(NUEA) strategy achieves a performance which is indeed very close to the theoretical limit 

showing essentially the same performance as the MAP search.

2.5 NON-UNIFORM SEARCH STRATEGIES

The straight serial search strategies (uniform) considered hitherto have assumed that the a 

priori pdf of the signal location across the uncertainty region is uniform, ie., the correct cell 

is equally likely to occur in any of the q cells searched in one complete pass. When the a 

priori pdf signal location is in some sense peaked rather than uniform ie., non-uniform then 

the optimum search strategy should begin with searching in the region where the likelihood 

of finding the signal is the highest The expanding window search and the Z-search schemes 

achieve this objective. Both these search strategies can employ either continuous or broken 

(with a fast rewinding) searches and also can start at either the centre or the edge of the 

uncertainty region. These search strategies are shown in figure 2.9.

The analyses of the non-uniform search strategies have been carried out by a number of 

researchers using the above general approaches and by using combinatorial methods. The 

analysis of two subclasses of Z-search (continuous/centre and broken/centre) and expanding 

window search schemes using the equivalent circular state diagram approach was presented 

by Polydoros and Simon [18] and the results are discussed here. In their analysis, the unified 

approach was applied to the non-uniform search case simply by translating the motion o f the 

specific search strategy under consideration into a circular motion along an equivalent 

circular state diagram, analogous to the one used for the uniform search.

A. Continuous/Centre Z-search

This search, as shown in figure 2.9, is initiated at the centre of the code phase uncertainty
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Figure 2.9 Z-search and Expanding window search schemes
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region and proceeds until the end in the direction of decreasing a priori probability and 

reverses its direction every time the boundaries are reached. Assuming the location of the 

true sync state is at the centre (for a triangular a priori distribution), the search process will 

meet it once during each sweep.

Following the steps of flow graph reduction techniques, the generating function can be 

derived from which acquisition statistics can be obtained. Thus, the mean acquisition time 

for continuous/centre Z-search can be found to be [18]

2^
Tacq I cont ~

_1_ 2(1 + KPfa)q (3-3Fd+Pd ) 
Pd * iP d(2-Pd)

for large q (2.28)

B. Broken/Centre Z-search

This is similar to the continuous/centre Z-search with the exception that the same cells are 

not searched twice in a row (figure 2.9). Instead, when one of the boundaries is reached, the 

local code is quickly rewound to the centre and the search continues in the opposite direction. 

Following the identical steps using circular state diagrams the mean acquisition time has 

been obtained as

Tacq  I broken '
1

1 +
’ 4-3Pd " Tr (1 +KPfa)q

i-T T  Pd
Pd L 2 J %d J Pd 1 2

for large q (2.29)

The improvement in the mean acquisition time using a broken rather than a continuous/centre 

Z-search can be approximated to (for large q)

1 acq | cont 

^acq I broken

2(3-3/\,+PjS)

J_P 
12 4

(2.30)
3(2-Pd)

The maximum improvement factor occurs for Pd= 1 and has the value 1.6, ie., a 375%  

saving in acquisition time.

For more general cases where the a priori probability distribution, n -s is arbitrary but 

symmetric (Pd = 1, q large), the improvement factor is

Pacq | cont

qa a
2  X  jKj +■£

;=i L
q !2

T acqU roken  2  ^  ^ . +  £

y=i 4  

which is lower and upper bounded by

(2.31)

Pacq | cont 

^acq I broken
=  2 (2.32)

corresponding to a priori distributions
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ni= itq = h  
Kj = 0 ; j  * \,q

(2.33)

and

(2.34)

Thus regardless of the a priori probability distribution, the broken/centre Z-search potentially 

offers an improvement o f at least 20% and at most 100% over the continuous centre 

Z-search. Of course, for/*,/ < 1 these improvements will decrease accordingly.

C. Expanding window search

This method was, first, analyzed using combinatorial methods and laborious derivations by 

Holmes and Woo [24], Braun [20] and Weinberg [19] as an optimum serial search strategy 

and the improvement in the acquisition time in comparison with the uniform window search 

was shown. However, a more general approach using equivalent circular state diagrams was 

presented by Polydoros and Simon [18]. Results of this method are discussed briefly here.

Polydoros and Simon considered a class of expanding window search strategies with two 

representative cases which differ in the way the search is continued once the entire 

uncertainty region has been searched without success. In one case, search repeats by starting 

from the smallest window while in the other case it starts repeating from the largest window.

Using this method, the expanding window single-dwell serial search strategy was optimized 

in terms o f the required number o f partial windows, parameterized by the prior distribution 

o f the phase uncertainty. From the results, it was observed that there exists an optimum 

number o f sweeps Nopt for Pd < 1; while for Pd = 1, Nopt = 1 implying that the 

continuous!centre Z-search is the optimum. The effect of peakness of the prior distribution 

on the performance was also studied for a truncated Gaussian distribution and it was seen 

that the more peaked the distribution the more one gains by using expanding window search 

rather than the Z-search. The value of Nopt was also observed to increase with decreasing Pd 

and it was concluded that as the reliability o f individual cell tests decreases one has to rely 

more on the prior information and, thus, spend more time around the peak (more windows). 

The higher peak distribution was also observed to result in a large Nopt than the more 

dispersed one. Thus, optimizing the system at lower Pd was found to be essential in view of 

the gain in acquisition time reduction.
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2.6 RAPID ACQUISITION BY SEQUENTIAL ESTIMATION (RASE)

The sequential estimation acquisition scheme, first proposed by Ward [4], can provide 

significant improvement in the mean acquisition time as long as the SNR is not very low. 

Rapid acquisition is achieved by directly loading the estimated initial status into the local 

code generator of the PN despreader as shown in figure 2.10. This technique presumes that 

the incoming signal is baseband, thus correlation is done at baseband and the Gaussian noise 

is the only interference. The implication for direct-sequence PN receiver is that the coherent 

carrier phase tracking has to be established before code acquisition.

The scheme in its original form is extremely vulnerable to interfering signals because the 

decisions are made at the chip rate rather than at the data rate. This means that the detector 

operates in the very poor SNR at the input of the spread-spectrum receiver. Errors in 

detecting the n consecutive bits lead to the wrong initial code state being inserted into the 

local code generator with which the system try’s to acquire lock. After the examination 

period a new set of n bits are loaded (if the test fails) and the process is repeated. Thus, the 

system is not particularly useful for multiple access or in tactical radio environments 

characterized by bursty communications in severe jamming. However, it can be useful for 

precision ranging or for continuously operating strategic links in relatively good SNR 

conditions.

Ward has derived the expressions for acquisition time as a function of false alarm, false 

dismissal probabilities (PfaPfd), and examination time, Te, as

T“**ASE= P2(l-Pfa)(l-Pfd) (2'35)
where Pc is the correctness probability of the estimated bit which is a function of input SNR.

Pfa and Pfd are functions of the threshold, examination period and Pc.

The experimental performance has been compared with that of the stepping correlator and the 

improvement factor is found to be (for large SNR) a function of SNR.

Tacq—  = 2(-n~1)P* (2.36)
PacqJtASE

where n is the shift register length.

For large SNR, the improvement factor approaches half the number of bits in the sequence, 

while for very small SNR the average acquisition time of sequential estimator is twice that of 

stepping correlator.
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The effects of Doppler and self noise have been also accounted for and the expressions for 

acquisition time and the threshold then takes the form:

T.
~,M SE  p * ( U p la )(l_ 4 d,fc)

f c, the nominal frequency and f d, the frequency difference due to Doppler.

(2.37)

2.6.1 Recursive Aided RASE (RARASE)

Ward and Yiu [5] have suggested an improved method o f sequential estimation by using the 

recursive relation of the PN sequences to determine if a short estimate of the state of the

received PN signal is probably correct, thus discarding the high proportion of incorrect initial

state estimates with relatively simple logic. The modified scheme is shown in figure 2.11. 

The average acquisition time for RARASE has been derived as

r« ,JM*UE = -^-(P? + 3(lW>£)J) (2.38)
* c

for one 3 input mod-2 adder in the sync-worthiness-indicator (SWI) as shown in figure 2.11. 

The improvement factor over RASE system is

rf ™  = />? + 3 (1 -/> C) 2 (2.39)
1 acqJASE

The number of checks can be increased to more than one bit for better decision reliability by 

adding more number of adders and thus for m, 3 input mod-2 adders in SWI [5]

T ^ jmase = (p? + 3(1_Pc)2)„ (2 40)
1 acqJtASE

The analytical expression for the probability of attempting to track for a general overlapping 

SWI implementation is difficult. However, for a particular case of fully overlapped SWI 

implementation with a single 3 input mod-2 adder and a counter which requires n successive 

attempt tracking outputs from the mod- 2  adder before placing it in track mode, the 

improvement factor is given by

I'acqJtARASE 1 (2.41)
I'acqJtASE P *

The improvement for n-15 is an impressive factor o f 40 at higher SNRs and the improvement 

is shifted towards smaller values o f SNR compared to the non-overlapping RARASE 

implementation. However, for typical SNRs it varies from 2 to about 20 with largest for 

SNRs o f -3dB to -6dB and may be significant as low as -20dB.
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2.6.2 Modifications to RASE/RARASE

RARASE schemes employing sequential detection as a phase checking system have also 

been analyzed by Ward and Yiu [5] in which each sync-worthy phase estimate is checked 

with a variable examination time made up of a series of examination intervals. At the end of 

the examination interval a hard not-in-lock decision or a soft probable-in-lock decision is 

made. The not-in-lock decision results in a continued search for the sync-worthy phase 

estimate, while the probable-in-lock decision results in continued examination of the same 

phase and the resetting of the threshold parameter. After a certain number of successive 

probable-in-lock decisions have occurred a hard-in-lock decision is made, resulting in no 

further examination. The average number o f examination intervals (NEI) used per sync- 

worthy phase estimate has been derived as:

where Q=\-Pc with Pc is the probability that a phase presented to the detector is correct and 

P/dkf P/ak are the probability of false dismissal and false alarm at the end of k* examination 

interval. The steps for computation of these probabilities were presented and the NEI was 

computed [5].

The analysis of sequential detection RASE becomes more complicated due to the 

interrelation between phase estimation and phase checking times. Thus, the explicit 

formulation o f improvement factor has not been derived. However, computer iteration 

procedures have been employed to solve the problem.

Alem and Weber have applied the optimal Bayes detector for the acquisition of a baseband 

PN code using sequential estimation [8 ]. The performance of the system in terms of Pfa and 

Pfd in the range of SNR = -20db to -30db has been numerically calculated. Kilgus [6 ] 

suggested obtaining a number (n) of independent estimates of each of the n chips and making 

a majority logic vote among all n estimates to determine the initial n chip estimate. Pearce 

and Ristenblatt [7] suggest a threshold decoding type of estimator similar to that used for 

block codes. Recently, Chiu and Lee [25] have suggested an improved sequential estimation 

(ISE) based on an extended characteristic polynomial which can extend the use of RASE for 

both the m sequence and the converted m sequence. The mean acquisition of ISE has also 

been derived through the generating function flow graph technique as:

j  * j  i
NEI = 1 + Pc £  n (  1 -  P&) + Q I  TIPfak (2.42)

i-1  *=1 i= l *=1

acqJSE (2.43)
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where

T, = (m +\+L)Tc (2.44)
Tc, chip duration, m - shift register length

Pc, chip correctness probability 

with rest of the symbols as defined earlier.

2.7 PN CODE ACQUISITION USING MATCHED FILTERS

Active correlators integrate over a period of time which may be of the order of a few code 

lengths which is called dwell-time, xd for each threshold test. This imposes a basic limitation 

on the search speed since the reference code can be updated only after intervals of xd. The 

search rate of a DS acquisition scheme can be significantly increased with a passive 

correlator device such as m atched f ilte r  (MF) which provides the real time search capability 

(for each incoming code chip, code phase is searched within a code chip period or even less). 

In the matched filter correlator each Tc segment (chip time) of the received waveform 

participates in MTC/ATC decisions where ATc is typically of the form 2~*TC (for n = 0,1,2,....), 

M  is an integer constituting a fundamental design parameter as MTC/ATC is essentially equal 

to the number of memory locations in the correlator’s shift register. This m ultiple use o f  the 

rece ived  w aveform  is the key to  the rap id  acquisition  idea.

The non-coherent matched filter detector makes a decision every Tc sec; at the same time the 

decision is based on a correlation time of MTC sec. In the continuous case, the incoming PN 

code plus noise is involved in the correlation with a finite segment of PN waveform (M 

chips) and the continuous time output is tested against a threshold to determine when 

acquisition has occurred. The input continuously slides past the stationary (not running in 

time) stored PN waveform replica until the two are synchronized, at which point the 

threshold would be exceeded and the local PN generator enabled. As the PN spreading 

waveform is typically biphase modulated on a carrier whose phase is as yet unknown, the 

matched filter acquisition system must be implemented either in a bandpass version or an 

equivalent low pass version. In the bandpass case , a bandpass matched filter is used whose 

maximum output is detected by a square-law envelope detector, while in the lo w  p a ss  

version , in-phase and quadrature-phase carriers with arbitrary phase but known or estimated 

frequency are used to demodulate the received signal, followed by baseband matched 

filtering of each demodulated signal. The matched filter outputs are then non-coherently



combined to produce the desired correlation measure for threshold testing. Both these 

versions are shown in figures 2.12 and 2.13.

Conceptually, PN matched filters can be implemented as a tapped delay line followed by a 

passive filter matched to a single PN chip waveform. Attempts to develop advanced 

concepts which allow the matched filters to be programmable have led to intensive 

investigations of Surface Acoustic Wave (SAW) convolvers, Charge Coupled Device (CCD) 

correlators and digital techniques. The basic limiting factors are the length and hardware 

complexity of the matched filter which grows proportionally with the length of the sequence 

to be detected.

Many schemes have been proposed for PN acquisition with matched filters and some 

implementation results have also been reported in the literature. Grieco has proposed the use 

of CCDs [26] and has also analyzed the inherent limitations of CCD matched filters [27]. 

The design of CCD pseudo-noise matched filters has been presented by Magil et al [28], 

whilst Milstein et al have proposed the use of an SAW devices for spread-spectrum receivers 

[29]. Dostert and Pandit have presented the performance of a PN synchronization circuit 

employing SAW tapped delay line matched filter [30] and a wideband spread-spectrum 

modem, using a pair of SAW convolvers as programmable matched filters, has been reported 

by Hjelmstad and Skaug [31]. A similar implementation scheme using SAW convolvers as 

programmable matched filters for a hybrid DS/FH spread-spectrum scheme has been 

implemented by Kowatsch [32]. Milstein, Gevargiz and Das have also proposed a rapid 

acquisition scheme, using parallel SAW convolvers [33]. Use of subsequence matched 

filtering (SMF) has been proposed to improve acquisition performance by Marie and Blake 

[34].

In the development of the structure of matched filters, Baier has proposed a non-coherent low 

cost digital matched filter (DMF) with binary quantization which shows good performance 

for signals with a large time-bandwidth product [35]. A comparison of the SNR degradation 

with non-coherent DMF with one bit quantization suggested previously by Turin [36] has 

been carried out and the results show that the extended DMF outperforms Turin's DMF by as 

much as 3dB. Couturier, Wight and Pearce [37] have implemented a non-coherent four phase 

DMF and experimentally verified the Baier's theory of complex valued envelope matched 

filtering while Levita [38] has analyzed the performance of the digital matched filter for 

multilevel signals.
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Glisic has proposed an automatic decision threshold level control (ADTLC) for DS spread- 

spectrum system based on matched filtering [39,40]. Fischer et al have described a wideband 

packet radio for multipath environment using DS spread-spectrum incorporating SAW 

convolvers as programmable matched filters coupled with binary post processing [41]. 

Recently, Su has suggested four rapid code acquisition algorithms with parallel and/or serial 

search using fixed/sequential detection employing PN matched filters [42].

Polydoros and Weber have presented a rapid acquisition scheme using matched filters [43] 

and have also analyzed the performance of matched filter acquisition using their unified 

approach [17]. A simple expression for the PN matched filter acquisition time has been 

presented by Pandit [10] which is given by:

T = —  
Vc

p<i i+s  (2v+i)pdv+i n a -  p
V=1

where Pdv and Tv are given by

(2.45)

Pdv = Pd exp (-nfaTy) (2.46)
r v = min (rvr, [v+ 0.5] L/fc) (2.47)

where Tv is the duration of the time interval, characterized by the property that a false alarm

in the interval (rv -  Tv, /v) prevents the Vth correlation impulse from achieving lock and rv is

the instant of time at which the Vth correlation impulse actually occurs. Tvr is the false alarm

verification time which is same as the penalty time defined earlier.

The quantities Pd and nfa have to be computed from relevant system data or determined 

experimentally. In this thesis, reported in chapter 7, Pd and nfa are obtained for the digital 

matched filter by means of a computer simulation. Pandit’s analysis (and the simulation 

results in chapter 7) provide a comparison between the matched filter performance and the 

single-dwell serial search and shows that above a certain value o f the input SNR the matched 

filter yields faster acquisition but below this value the single-dwell system is faster.

Analysis of the matched filter PN code acquisition receiver by Polydoros and Weber [15), 

using unified theory, assumes a non-coherent correlator/detector followed by a coincidence 

detector (CD). Upon a tentative decision of the in-sync condition the signal is passed 

through a coincidence detector which operates with the local code generator updated by the 

stored PN segment and repeated threshold tests are carried out over a fixed time. To 

strengthen the reliability of the verification operation performed by the CD these tests are 

now conducted over disjoint MTC sec time intervals of the received waveform and are thus 

statistically independent. Upon successful completion of a majority logic decision on these
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tests, the tracking loop is activated, whereas upon unsuccessful completion, the local code 

segment is again held fixed and the search continues. By means of their analysis using 

unified theory, the acquisition performance was derived for uniform and worst case a priori 

probabilities for both the non-coherent correlation detector and the coincidence detector and 

both exact and approximate results were presented. From the numerical results for typical 

system parameters, it was found that 2 out of 4 majority logic decisions were the optimal 

choice of the coincidence detector. Further, it was observed that even for the optimized 

system there exists a rather sharp thresholding effect in the sense that below a certain value of 

EJNa the performance degrades rapidly.

2.7.1 Parallel and hybrid code acquisition schemes

A natural extension from the serial search techniques is to use two or more paths to search 

more than one code phase at a time with the hope that by increasing the complexity, the 

acquisition time might decrease in direct relation to the number of paths used. Though the 

maximum-likelihood detection represents a complete parallel structure, in recent times a few 

researchers have proposed and analyzed different forms of parallel and hybrid search 

acquisition schemes.

Milstein, Gevargiz and Das have proposed an acquisition scheme employing parallel SAW 

convolvers and have analyzed the performance both in search and lock modes [33] to arrive 

at key performance parameters. Cheng has proposed a class o f parallel and hybrid schemes 

and has analyzed their performance in the presence of data modulation [44]. Su has 

presented performance analysis for four classes o f parallel serial acquisition schemes 

employing either fixed dwell or sequential detectors [42] with non-coherent integration 

technique enabling the operation in the presence of data modulation.

The technique by Milstein et al [33] is based upon the parallel processing of the received 

waveform of DS-SS system with multiple SAW convolvers. In this scheme, the full period 

of sequence, L, is divided into subsequences of lengths Af, assuming LIM an integer and the 

search is carried out using N convolvers each employing one of the subsequences as its 

reference input. From the analysis it was shown that the parallel processing results in a 

reduction o f the search time which is proportional to M times N.

A  similar approach using pseudonoise matched filters (PNMF) with different detectors and 

hybrid search logics was considered by Su [42]. Several of the proposals using PNMF fall as
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the special cases of these algorithms. Performance analysis for four algorithms using PNMF 

was presented viz.,

1) PL-FDD Parallel search with fixed dwell detector

2) PL-SD Parallel search with sequential detector

3) PS-FDD Parallel-serial search with fixed dwell detector

4) PS-SD Parallel-serial search with sequential detector

All the algorithms use two stage procedures with the difference in the second stage and in the 

verification mode which employ either single-dwell or sequential detection algorithms. PL- 

FDD is based on maximum-likelihood estimate and makes a parallel decision which is 

optimum in the sense of minimizing the error probability. The second stage is the well 

known serial search algorithm. The PS-FDD algorithm makes a parallel decision within each 

section and examines each section in series. The PL-SD algorithm follows the steps of PL- 

FDD but uses sequential detection while the PS-SD algorithm follows the steps of PS-FDD 

and combines the steps of PL-SD algorithm.

From the numerical results, PS-FDD algorithm was found to be superior to PL-FDD 

algorithm, although this superiority dwindles as Ec/N0 gets higher. However, PL-FDD 

algorithm was found to be less insensitive to the variation of Ec/N0. In the case of smaller 

uncertainty ranges, PS-FDD algorithm was seen to be less impressive. The performance of 

SD algorithms could not be obtained in the closed form, but tight bounds were obtained. It 

was found that the mean acquisition time of the PL-SD algorithm can be reduced to at least 7 

to 8  times that of PL-FDD algorithm, for the typical parameters considered.

From a comparison o f all four algorithms for an optimized set o f system parameters, the PS- 

FDD algorithm was found to be a better choice when the uncertainty range is large. When 

the uncertainty range is smaller and/or the EJN0 becomes higher, which may result from  

Doppler rate, effects o f large integration length, lower data rate, or an adaptive search 

algorithm, the superiority o f the PS-FDD algorithm might have to be passed on to the PL-SD 

algorithm.

The approach presented by Cheng [44] partitions the correlation time into subintervals and 

the integration results of each of these subintervals are then non-coherently combined for 

detection. Two critical design problems were addressed, viz., the choice of the number of 

subintervals, J, and the degree of parallelism and consequently a totally parallel acquisition 

scheme and two hybrid schemes have been considered and analyzed. The trade-off between
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non-coherent combining loss and data modulation degradation was found to result in the 

optimum choice of the number of subintervals, whereas the trade-off between acquisition 

speed and hardware complexity was seen to decide the degree of parallelism. This strategy 

offers a rich set of schemes, allowing easy trade-off between acquisition time and hardware 

cost. Two forms of data modulations, viz., the alternate data and random data, were 

considered and the performance of the schemes was analyzed.

From the analysis using circular state diagrams, it was also observed that a fewer number of 

subintervals are needed to combat the effect of data modulation which is because of the 

averaging effect of random data. For hybrid schemes, the selection of SNR and the detection 

threshold was seen to be important to the acquisition performance. The optimum number of 

coherent integration subintervals was found to be a function of total integration time, and the 

dependence of mean acquisition time on the number of subintervals decreases as the S/N 

increases.

2.7.2 Acquisition using partial correlation

A rapid acquisition scheme utilizing partial correlation of maximal length sequences has 

been presented by Marie and Blake [34]. This scheme uses subsequence matched filtering 

(SMF) to acquire the sync with matched filter output which is, in fact, the partial correlation 

function between the stored subsequence (the matched filter impulse response) and 

subsequences from either the same PN sequence or a different PN sequence in a multi-user 

environment. The acquisition characteristics of the scheme was derived and the performance 

was compared with that of Ward’s RASE and RARASE.

W  = (2.48)
*acq

for Tt = MTC and the probability of sync acquisition.

It has been observed from the results that the subsequence length m has to be increased as the 

number of users increases to maintain a constant false alarm rate.

Comparison with RASE and RARASE reveals that in a low SNR environment the SMF 

technique offers rapid acquisition compared with RARASE. However, the system needs to be 

designed to operate below a threshold SNR to avoid steep increase in acquisition time.

A modified two level acquisition scheme similar to that of Mark and Blake [34] was proposed 

by Wilson, Rappaport and Vasudevan [45]. The scheme is a modification of the two level
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coarse code acquisition scheme proposed by Rappaport and Schilling [46]. These schemes 

were described for use with FH systems and are said to be applicable for alternate spread- 

spectrum schemes also. Rappaport and Schilling’s proposal employs a passive correlator in 

tandem with a bank of active correlators in which a threshold exceedance of the passive 

correlator initiates an interval of active correlation if any of the active correlators are idle. 

The scheme combines the rapid search capability of passive correlator with the decision 

reliability of (long) active correlation. The modified two level scheme [45] uses a bank of 

passive correlators followed by a bank of active correlators. By using multiple passive 

correlators, unlike the single passive correlator in the earlier proposal, this scheme reduces 

the probability of missing the short sync prefixed at the start of the coding (preamble), 

particularly in a fading environment. Analysis was done, based on queuing and detection 

theory, using a Gilbert model to characterize the fading signal. Performance in the presence 

of noise and jamming has been treated. The reduction in the miss probability using multiple 

prefixes as preamble has been compared to a single passive correlator case.

2.8 OTHER RESEARCH WORKS INTO CODE ACQUISTITION 

TECHNIQUES

In addition to the schemes and analyses reviewed hitherto, techniques suitable for FH, 

FH/DS, and FH/TH hybrid modulations were proposed by Elhakeem, Takhar and Gupta [47]. 

These techniques employ autoregressive spectral estimation to recover the FH code, 

quadrature processing for the DS code and simple threshold tests in conjunction with the 

adaptive filter (used for spectral estimation) to recover TH gating code.

These techniques require acquisition times only o f the order o f the shift register generator 

length whereas other schemes o f serial and parallel search schemes require acquisition 

times o f the order o f the code lengths.

A comparison of schemes for coarse acquisition of FH signals was presented by Putman, 

Rappapoit and Schilling [48] in which serial search, matched filter and two level schemes are 

compared. A review of basic acquisition methods and the limitations on the technology to 

realize them in various forms was presented by Rappaport and Grieco [49]. The mean 

acquisition time and its statistical moments were obtained by Baer [50] stochastic modelling 

of the square-law detector for a Bayes and Neyman-Pearson type of detectors. A bound on 

the acquisition time probability distribution was derived by using Chebyshev’s inequality to 

obtain the variance of the acquisition time for a Hopkins type receiver by Leung and
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Donaldson [51]. An all digital acquisition circuit using single-dwell serial search was 

analyzed and acquisition parameters were obtained for the case of correlated noise by 

Cherubini and Pupolin [52].

2.9 CONCLUSIONS

The common types of code acquisition technique for a direct-sequence spread-spectrum code 

acquisition have been reviewed. The general analysis techniques proposed for unifying the 

analysis of serial search acquisition strategies applicable to both uniform and non-uniform 

serial searches have been discussed. A variety of parallel and hybrid acquisition schemes 

using either totally parallel or parallel-serial schemes and their analyses have been described. 

Parallel search techniques using subsequence matched filters were addressed.

Though parallel architectures using maximum-likelihood techniques and matched filters can 

provide minimum acquisition time, this improvement needs to be traded against the 

increased hardware complexity. Simpler but optimum techniques using variable-dwell time 

and optimized search strategies offer better potential. Hitherto, much of the research in code 

acquisition has been centered around performance analyses and improvements in the search 

strategies. The problems relating to the detector structures and their optimality have 

received less attention. In this research the optimum detector is addressed and various 

realization techniques and their performances are analyzed. This work will be discussed in 

the subsequent chapters of this thesis.
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CHAPTER 3

SEQUENTIAL DETECTION PN CODE ACQUISITION

3.1 INTRODUCTION

In this chapter the application of statistical decision theory to hypothesis testing is 

introduced. The application of decision theory to signal detection problems (called detection 

theory) is described and the signal detection problem is introduced. The elements of a 

statistical decision problem is identified and the generalized statistical hypothesis testing is 

then described. The decision criteria and the optimum decision rules of the detection 

problem are described and the merits and demerits of different decision rules, namely, Bayes 

decision rule, Neyman-Pearson and the minimax decision rules etc., highlighted. The 

significance of the receiver operating characteristics (ROC) for the detection problem are also 

discussed. In addition, the basic differences between parametric detection and non-parametric 

detection (sub-optimum detection) are also identified and a comparative measure of detector 

performance namely, asymptotic relative efficiency (ARE) is described.

The fundamental differences between a fixed sample size test and a variable length test are 

presented and the concept of a sequential test is defined. The advantages of sequential 

hypothesis testing over a fixed sample size test are brought out and the sequential probability 

ratio test (SPRT) is described. The major performance criteria of the sequential test viz., the 

operating characteristic function (OCF) and the average sample number (ASN) function are 

discussed. The complexities in the analysis of the sequential detection are highlighted and 

the biased square law detector is introduced together with its low SNR approximations. 

Finally, the application of sequential detection theory to the acquisition of spread-spectrum 

PN codes is described and the existing research work in this area reviewed.

3.2 STATISTICAL DECISION THEORY

The reception of signals in real-life channels presents many problems to a communication 

systems theorist as the waveforms appearing at the channel output may be perturbed and 

contaminated to such an extent that they only faintly represent the transmitted signal.



- 5 4 -

Therefore, any reliable communication system must use optimum processing to recover the 

information, which is embedded in the noise, in the most efficient manner. The reception 

problem is concerned with finding these strategies for processing the received data to combat 

the pernicious effects of the channel.

The reception problem can be viewed in two ways. One problem of signal reception is to 

detect the presence or the absence of the signal, that is, to detect whether the noise corrupted 

signal represents either the signal or the noise. This is conventionally called signal detection. 

The other problem of signal reception is to estimate the signal as a continuous function of 

time as accurately as possible which is called signal estimation. Signal estimation is a 

process of signal smoothing and filtering. This is an analog process in which the signal to be 

estimated can have a continuum of values for each instant of time. The receiver estimates the 

values of a waveform which may be viewed as a sample function of the random process.

In signal detection, the receiver knows a priori the set of symbols and their associated 

waveforms and makes a decision on which of the symbols was being transmitted during the 

observation interval. Since these decisions are based on the processing of the corrupted 

signal, the receiver usually makes errors. Optimum reception of the signal is based on the 

general theory of statistical inference by means of hypothesis testing which has been 

expanded into statistical decision theory with the pioneering works of Bayes, Neyman and 

Pearson, Wald [1-3] and others. Both detection and estimation can be formulated as 

problems in statistical decision theory. The development and analysis of the optimum 

methods required to estimate the signal correctly leads to estimation theory whereas the 

analyses of the optimum detection methods form detection theory.

3.2.1 Elements of a statistical decision problem

The basic elements of a general statistical decision problem are:

i. a set of hypotheses that characterize the possible true states of the process (ie., a 

priori knowledge about the waveforms/symbols).

ii. a test in which data is obtained from which the truth is to be inferred (ie., 

sampling).

iii. a decision rule that operates on the data to decide optimally which hypothesis in 

fact best describes the true hypothesis.
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iv. a criterion of optimality that reflects the cost of correct and incorrect decisions.

3.2.2 Statistical hypothesis testing

One of the most important statistical tools for making decisions is hypothesis testing. 

Hypotheses are the statements of possible decisions that are being considered. In the 

communication detection problem, for example, this corresponds to whether the signal is 

present or absent. Corresponding to each hypothesis there is a probabilistic description of 

the possible outcome. This probabilistic description, coupled with a criterion or a measure of 

goodness that the decision will satisfy on the average, dictates a dichotomy (for two 

hypotheses) of the sample space over which the outcome of the experiment is defined. This 

dichotomy represents the best (optimum) decision rule subject to the criterion of goodness.

In a binary communication system which transmits either a pulse s(t) or no pulse in an 

interval of time T, the hypothesis that the received waveform does not contain a signal has to 

be tested against the hypothesis that the received waveform does contain a signal. The first 

hypothesis is called the null hypothesis normally denoted by H0 while the second hypothesis 

is called the alternative hypothesis which is denoted by Hi. If the signal to be detected is 

deterministic, that is, its structure is completely known, then H x is called the simple 

alternative. When the signal to be detected is a member of a finite or infinite set of signals 

then Hi is called a composite hypothesis. In this case even if the hypothesis is decided, 

we can only conclude that one member of the signal class is present whose identity is not 

revealed by the test.

Figure 3.1 shows a general decision problem in terms of mathematical representation in 

vector spaces. The vector spaces considered are defined as follow:

Signal space, ft: This is defined as a space in which the class of possible signals can be 

represented as points s, with each point in space representing a waveform with a particular 

combination of the signal parameters such as amplitude, phase, doppler and so on. A 

probability of occurance is assigned to each combination of signal parameters which is 

normally contained in a joint a priori probability density function o(s) over all the points s in 

signal space ft.

Noise space, N: This is defined as a space in which all possible waveform realizations of the 

noise process within the observation interval are represented as points n. From the statistical 

and spectral properties of noise, an a priori joint probability density function p(n) can be 

deduced which describes the probability of occurance of waveforms in this space.
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Figure 3.1 General decision problem in vector spaces
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Observation space, r : This space is defined by means of points v which represent all 

possible joint combinations of signal plus noise waveforms. The probability of occurance of 

these waveforms in this space are described by an a priori probability density function which 

is written as a conditional probability p (v Is) and shows explicitly the dependence of the 

waveform v on the signal s. For convenience, the null hypothesis, s = 0, is also included as a 

point in r .

Decision rule: An essential feature of statistical decision theory is the decision rule which 

depends only on the observed waveform v and not on the signal s. A decision rule is one that 

leads to decision d as a result of observation v, and is denoted by D (d/v). The decision rule 

D(d/v), mathematically describes the conditional probability of deciding d having observed

v.

Decision space, A: The set of possible decisions d (normally d0 = no and d x =yes) in a 

statistical decision problem can be described as points in a decision space A with decision 

rule D (d/v) describing the probability of decision (each point) in the decision space for every 

possible waveform v. In a signal detection problem, the decision space contains only two 

points: signal present and signal absent.

With these definitions of the vector spaces, the decision rule can be interpreted as a mapping 

from the observation space r  into decision space A with a preassigned probability D(dlv). 

Hence, the essence of the decision problem is the decision rule that accomplishes this 

mapping in an optimum way with respect to a particular criterion of excellence.

Signal estimation problems can also be formulated as a statistical decision problem similar to 

the signal detection problem. However, in this case, the decision space is of the same 

dimensionality as the signal space unlike the signal detection problem in which the decision 

space contains only two points.

In the following sections, the optimum decision criterion and various optimum decision rules 

are described using the above notation.

3.2.2.1 Ratio criterion and Likelihood ratio:

When the samples are submitted to the observer, he employs a certain criterion based on 

which decision rule is devised. As the a priori probability density function of noise is given 

by p(vlo) and signal plus noise is given by p(v/s) (expressed as conditional probabilities) 

then a function \(v), defined as:
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X(v) =  4 T T  <3 1 >p(y/o)

represents the likelihood that the sample is drawn from the signal space relative to the 

likelihood that it is drawn from the noise space. Thus, for each sample in the observation 

space, with a threshold rj £ 0, a certain criterion A (r|), is selected (eg., minimum average 

risk or maximum probability of detection etc.,) by using which a list of samples can be 

chosen satisfying ^(v) > r|. Hence, if X(y) is sufficiently large it would be reasonable to 

conclude that the sample is from the signal space. Such a criterion of the form A (rj) is called 

the ratio criterion. Though a number of definitions are available for a certain criterion being 

optimum, each of these optimum criteria can be expressed as ratio criterion so that a receiver 

designed to give a likelihood ratio as output could be used with any of them.

3.2.2.2 Optimum decision rule:

An optimum decision rule in a statistical decision problem is the one that gives the best 

performance when compared to each possible decision rule, normally evaluated on the basis 

of its relative performance. A method of evaluating such a performance is based on the 

notion of a simple cost or loss function introduced by Wald [3] which associates a 

quantitative cost C (s,d) with each point s in signal space ft and each point d in decision 

space A. This function describes the loss incurred by the received system that results in a 

decision space d for every point s in signal space ft. One such decision rule that describes a 

receiver with least average loss is called the Bayes rule and the receiver is called a Bayes 

Receiver, however, other decision rules have also been derived based on different 

performance criteria. Depending upon the performance criteria used, the decision rules can 

be classified as follows:

1) Bayes rule

2) Neyman-Pearson rule

3) Minimax rule

4) Ideal observer criterion

5) MAP decision rule

For a general detection problem when testing hypothesis H 0 (no signal present) against H\ 

(signal present) four possible situations arise.

The detector can:
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i. accept hypothesis H 0 when hypothesis H 0 is true (correct dismissal)

ii. accept hypothesis H  i when hypothesis H0 is true (false alarm)

iii. accept hypothesis H x when hypothesis H \ is true (correct detection)

iv. accept hypothesis H 0 when hypothesis Hi  is true ( miss detection)

Decisions i) and iii) are the cornea decisions. Error ii) is called a type I error denoted by a  

and error iv) is called a type n  error denoted by P in statistical terminology, a  is also referred 

to as the level or size of the test whereas 1-p is referred to as the power of the test. In the 

terminology of communication theory, outcomes ii) and iv) are called the false alarm 

probability (Pfa) and the miss detection probability (Pmd) respectively. These errors are 

expressed as:

a  = jp(y/o)D(di/v)dv  (3.2)
r

P = !p  (y Is) D (d j v ) dv (3.3)
r

where piy lo)  and p(v /s ) are the conditional probability of observing v with signal absent 

and signal present, and D (d\/v) and D(d0/v) are the decision probabilities for decision d\ 

and dQ respectively with observation v. The average probability of error denoted by Pe, is 

often represented as

Pe = P (H0)P (P\IH0) + P(H i )P (D0/H i ) (3.4)

where P (H0) and P (H\) are the probability that hypothesis H0 or Hi  are true and P (D\IH0) 

and P(D0/Hi)  are the conditional probability of deciding d\ or da given the hypothesis H0 

or Hi  respectively.

3.2.2.2.1 Bayes decision Rule

Bayes criterion is based on the use of a systematic procedure of assigning costs to each 

decision and then minimizing the total average cost. Defining Ctj as the cost associated with 

choosing hypothesis Ht when actually hypothesis Hj is true, the four possible decisions 

defined above can be assigned four cost parameters namely Coo, Cio» C n  and Coi 

respectively. The average cost is expressed as:

C = CooP(H0)P(D0/H0) + CloP(H0)P(Dl/H0) + CoiP(Hl)P(D0/Hl) + Cn P(Hl)P(Di/Hl)(3.5) 

On substituting the probability functions and minimizing the average cost, the Bayes 

decision rule is derived as:
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/> (# i)(C oi-C n)/7(v/5 ) <P(H0)(Clo-Coo)p(y/o) (3.6)

In terms of the likelihood ratio, this can be expressed as:

m = , P i l l s ). >«*<„ f ( g «XC«rCao) (3?)
p(ylo) H° P(HtXC0l- C n )

where the symbol >Hl <Hg denotes that the hypothesis H\  is accepted if the likelihood ratio

is greater than the right hand side (R.H.S) of the equation and the hypothesis Ha is accepted

if the likelihood ratio is less than the R.H.S. Tests of this kind are also called likelihood ratio

tests and the right hand side of the equation is called the threshold of the test.

3.2.22 2  MAP decision rule or a posteriori decision rule

This decision criterion maximizes the a posteriori probability P (//t/v) which is computed 

after observation v has been made. This decision rule usually leads to a partition of the 

decision region in to two regions T° and T1 and H0 or H\  is chosen depending on a given 

observation v in either T° or T1 based on the decision rule:

P (H ' )P(V,S) >"■<„ 1 (3.8)
P(H0)p(vlo) H°

£ i v±>. P(Ho) (3.9)
p(v /o) "• /> (« ,)

Effectively, the MAP decision rule consists of comparing the likelihood ratio with the

constant, P(H0)IP(H\ ) which is called the decision threshold. As the decision threshold is

purely based on maximizing the a posteriori probabilities this is called maximum a

posteriori probability criterion. This approach has the advantage of getting more information

as the observer makes the best possible estimate of the probability of each transmitted

message (samples) that his equipment can give him [5].

3 2 .2 2 3  Ideal observer criterion or Minimum error probability criterion

The ideal observer criterion originated with Seigert [4] and consists of choosing the 

dichotomy of decision space into T° and T1 such that the total average probability of error is 

minimized. This can be used when the cost of correct decisions is assumed or known to be 

zero and the cost of incorrect decisions is taken to be one (ie., C o o = C n = 0  and 

Coi = Cio = 1). This criterion still requires the a priori probabilities to be known.

3.2.2.2.4 Neyman-Pearson Rule

Both Bayes and MAP decision rules require the a priori probabilities and the relative costs to 

be known. However, in many circumstances, when neither the cost functions nor the a priori 

probabilities are available, the Neyman-Pearson (N-P) and the minimax criterion are used.
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The main advantage of the Neyman-Pearson over the Bayes and ideal observer criteria is that 

it yields a detector which keeps the false alarm probability less than or equal to a pre-chosen 

value and maximizes the probability o f detection for the given false alarm probability. It is 

based on the Neyman-Pearson lemma of hypothesis testing [2] which is stated as follows:

The necessary and sufficient conditions for a test to be most powerful of level a0 (maximum 

detectability for a given probability of false alarm) for testing hypothesis Hc against the 

alternative H i are that the test satisfies the conditions:

for the decision threshold T|.

This criterion can be shown to be a special case of Bayes criterion with the likelihood test set 

to maximize the probability of detection, P(JD\IHi) [45].

3 2 .2 2 5  Minimax criterion

The Bayes criterion requires both cost and a priori probabilities to be known. For the 

minimum error probability criterion or the maximum a posteriori criterion only the a priori 

probabilities need to be known. For the Neyman-Pearson criterion neither costs nor the a 

priori probabilities are required. The minimax rule is used when the costs are given but the a 

priori probabilities are not known.

This decision rule minimizes the maximum expected cost. When the a priori probability is 

known, the Bayes criterion gives the minimum average cost. If the a priori probability is a 

pure guess then the cost would be always greater than the Bayes cost. However, using the 

minimax criterion the maximum possible cost when the a priori probabilities are unknown is 

minimized. Therefore, the solution involves finding the least favourable a priori probability 

among the Bayes solutions which is corresponding to the value of a priori probability for 

which the average cost is maximum. The criterion also leads to a decision rule

As the minimax rule is a Bayes rule relative to a least favourable distribution (the minimax 

average loss is the maximum of all Bayes losses), it is often criticized as being too 

conservative and the reasonableness of its use depends on the application.

/  p  (v !o) D (d i/v) dv = a0 (3.10)
r

p(v /o ) (3.11)

p(y /s ) 
p(v /o )

>HX<H0 q (3.12)
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Thus, in each case, the decision rule leads to a comparison of the likelihood ratio with 

different threshold values. A receiver that computes the likelihood ratio My) for all possible 

v compares this value with an adjustable threshold can realize any of these tests.

3.2.3 Receiver Operating Characteristics (ROC)

The performance of the decision rules are normally displayed in terms of the probability of 

detection versus the probability of false alarm for various values of the threshold. These 

curves are called ROC curves. If the type of criterion chosen for a particular application is a 

ratio criterion then the complete description of the detector system performance can be read 

off from the ROC curves [7]. From the definition of the ROC curves, the false alarm 

probability Pfa is shown as the abscissa (x-coordinate) and the probability of detection Pd as 

the ordinate (y-coordinate) as shown in figure 3.2. The operating point or the operating level 

of the detector can be derived from the ROC curve as a slope at the point given by Qd(X,Y) = 

{[Pfa[A (rOLPJA (t|)]} where the probabilities are for the selected criterion A (r|) with rj as 

operating level (or threshold). Since most proposed kinds of optimum criteria can be reduced 

to the ratio criteria, the ROC curve assumes considerable importance in the understanding of 

detector characteristics. However, in some of the statistical hypothesis tests the operating 

characteristic function (OCF) is used which is the characteristic of (1 - P d)vs  0 with 

varied, as shown in figure 3.3, where 0 normally represents the signal parameter eg., mean or 

SNR.

3.3 PARAMETRIC AND NON-PARAMETRIC DETECTION

Detection theory is often concerned with the determination of optimum detection utilizing 

the Neyman-Pearson hypothesis test or the Bayesian approach to hypothesis testing. These 

methods require the statistical description of the interfering noise process which may be 

assumed or obtained by the actual measurements. However, the resulting optimum detector 

using these hypothesis is often difficult to implement.

Another class of detectors called adaptive or learning detectors operate in a near optimum 

sense without even a complete statistical description of the background noise. This can be 

achieved by allowing the system parameters or structure to change as a function of the input. 

Due to their continually varying structure, adaptive detectors are difficult to analyze 

mathematically and must be simulated on a computer. Additionally, since the detector 

structure is a function of the input, it is also dependent on the operating environment and as a
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result they are generally complex to implement.

When the statistical description of the input noise process is not available, or when the 

optimum or the adaptive detector is too complex to implement, a non-optimum detector often 

provides a satisfactory performance. A class of non-optimum detectors called non- 

parametric or distribution-free detectors exists which is simple to implement and requires 

little knowledge of the underlying noise distribution. Non-parametric refers to a class of 

detectors where the input distribution has a specified shape or foim but still cannot be 

classified by a finite number of real parameters. The distribution-free detector refers to a 

class of detectors which makes no assumptions at all concerning the form of the input 

distributions [8 ].

3.3.1 Non-parametric versus parametric detection

The differences between non-parametric and parametric detectors can be well described by 

considering the binary detection problem. Parametric detection utilizes the known form of 

the probability density function, pdf, of the random observation samples to arrive at the form 

of the detector D. If the actual pdfs of the observed input signal v are the same as those 

assumed in determining the detector D, then the performance of the detector in terms of the 

probability of detection and false alarm is quite good. However, if the densities are 

significantly different from those assumed , then the performance of the parametric detector 

may be poor. On the other hand, non-parametric detectors do not assume that the input pdfs 

are completely known but only make general assumptions about the input, such as the 

symmetry of the pdf and continuity of the cumulative distribution function. Since a large 

number of density functions satisfy these assumptions, the pdfs of the input observation v 

may vary over a wide range without altering the performance of the non-parametric detector. 

Thus, the performance of a parametric detector depends on the actual input pdf while the 

non-parametric detector, however, maintains a fairly constant level of performance due to its 

general assumptions on the form of input pdf.

When applied to the same problem, the performance of the parametric and the non- 

parametric detectors depends on how well the assumptions of the two detectors are met with. 

For instance, if the parametric detector is based on the Gaussian assumption and the non- 

parametric detector on the symmetry of the input pdf and the continuous cumulative 

distribution function, then for Gaussian inputs the parametric detector will be significantly 

better than the non-parametric detector. However, if the input densities are non Gaussian but
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still symmetric, then the non-parametric detector performs better than the parametric 

detector.

Another important property is their relative ease of implementation when compared with 

parametric detectors. For example, an optimum parametric detector for detecting a known 

signal of positive amplitude in additive white noise on the basis of a set of observations v = 

{v i , v2, V3  ...... vB} with the noise of zero mean Gaussian density with known variance o 2 is:

D(v) =

n
i f  £ v *  <  TU

1 kV (3.13)
i f  2 > *  >  ’lo

*=1

n
where £  v* is known as test statistic and r\0 is known as the threshold of the test.

*=1

The simplest non-parametric detector is called the sign test and bases its decision only on the 

signs of the input observations. The sign detector has the form:

£>(v)=i

n
if 2>(v*) < Til 

! (3-14)
if 2 > ( v*> > “Hi

k=\

where u(vk) is the unit step function, whose value is 0  if v < 0  and 1 if v > 0 , and r\\ is the 

threshold. Clearly, the parametric detector compares the sum of observations against the 

threshold r\0 whereas the non-parametric detector simply determines the polarity of each 

observation, counts the number of positive observations and compares the total against the 

threshold r |i . Since the parametric detector requires the observations to be summed and the 

non-parametric detector requires only the positive observations to be found, the non- 

parametric detector is considerably simpler to implement. However, the most important 

property of the non-parametric detectors is the maintenance of a constant level of 

performance even for wide variations in the input noise density.

3.3.2 Asymptotic Relative Efficiency (ARE)

If two detectors D i , D 2 using the same hypothesis and the same significance level a  (or Pfa), 

and for the same power 1 -  p (or Pd) with respect to the same alternative, one detector 

requires a sample size N 1 and the other detector requires a sample size N 2 then the relative 

efficiency of the first detector D \ with respect to the second detector D 2 is given by the ratio
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e\ ,2=H2INx (3.15)

Since the relative efficiency is a function of the significance level, a, alternative H\  and the 

sample size of the two detectors (ie., a, H x, N\  and N 2), it is highly dependent on the 

experimental procedures used while taking the data. It also requires all possible values of a, 

H i,  Ni and N 2 to be computed to find a suitable N 2 particularly for a small value of N \ t 

such that the powers of the two detectors are exactly equal. Some kind of interpolation 

methods have been employed in the past, but found to be inconsistent [8,9]. Thus, the finite 

sample relative efficiency is difficult to compute as it is highly dependent on experimental 

methods and even peculiar to the mathematical techniques.

However, a simpler expression can be obtained by holding the significance level and the 

power constant while the two sample sizes approach infinity and the alternative approaches 

null hypothesis. This leads to the concept of asymptotic relative efficiency (ARE).

The ARE of the detector D \ with respect to the detector D 2 can be written as

where n\ and n2 are the smallest number of samples necessary for the two detectors to 

achieve a power of 1—p, for the same hypothesis, alternative and the significance level.

3.3.3 Historical development of signal detection

Decision theory was first studied by Thomas Bayes [1] in the middle of the eighteenth 

century. However, significant contributions to classical decision theory were made by 

Neyman and Pearson (1933) [2] who proposed tests that minimize the chances of error. The 

notions of cost and risk were introduced by Wald (1939) [3]. Seigert, Lawson and Uhlenbeck 

(1950) [4] applied these ideas to the problem of radar detection. Later Woodward and Davies 

(1952) [5] used the concept of inverse probability in the study of signal detection. The 

analysis of signal detection in terms of statistical decision theoiy was developed by 

Middleton (1953) [6 ] while the design of receivers on the basis of the likelihood ratio was 

advanced by Peterson, Birdsall and Fox (1954) [7].

(3.16)
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3.4 FIXED SAMPLE TEST AND SEQUENTIAL TESTING

The statistical decision theory so far discussed assumes that a decision is rendered after a 

fixed observation interval in which the data is collected. The observations made during this 

interval may consist of, in general, discrete or sampled (continuous) waveforms. However, in 

some systems, the observation interval is of variable length instead of being fixed and is 

dependent on the input data. This is advantageous when the observation interval is needed to 

be as small as possible.

A test procedure with a variable length observation period was developed by Wald [10] 

which is known as the sequential test. A similar concept was considered by Neyman and 

Pearson [5] in 1933 as an extension of their theory of hypothesis testing. Their test contained 

three possible decisions which are: accept hypothesis Ha, reject H0 and no decision. In 

Wald’s sequential test, it is decided whether to make a decision based upon the data already 

taken or to continue taking more data to improve the decision. The length of the observation 

interval depends on the quality of the available data. Although it is theoretically possible for 

a test to continue indefinitely, it has been shown that on average the observation interval is 

shorter in a sequential test than in a fixed test [10]. Furthermore, in practice, the sequential 

test is usually truncated after some predetermined number of observations. Though 

significant woik has been done in the application of decision theory to nonsequential tests, 

with the availability of improved signal processing techniques the sequential tests have 

gained greater significance.

3.5 SEQUENTIAL DETECTION

Bayes’ methods of statistical inference are optimum in the sense that no other hypothesis test 

can achieve a smaller average risk. However, this test assumes that the number of samples 

are fixed and determined in advance. If this constraint is relaxed then it is possible to 

construct hypotheses tests which are superior to Bayes’ tests in the sense that, on average, a 

substantially smaller number of observations is required to achieve the same type I and type 

II error probabilities. These tests are called sequential tests and the application of these tests 

to detection problems is usually called sequential detection and a receiver that performs the 

sequential test is called a sequential receiver or a sequential detector.

In the sequential tests for each sample taken, if the evidence is strong enough, then the 

decision is taken as to whether the received signal is drawn from the signal space or from the
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noise space. If the evidence is not strong then the next sample is taken and the evidence is 

rechecked. The process is continued until the resulting evidence persuades in favour of the 

one of the spaces. Thus, an essential feature of a sequential test as distinguished from the 

fixed sample size test procedure is that the number of observations (samples) required 

depends on the outcome of previous observations and is, therefore, not a predetermined, but a 

random number.

3.5.1 Notion of a Sequential test

In a sequential test, a rule is given for making one of the three decisions, namely,

i. accept hypothesis, H

ii. reject hypothesis, H

iii. continue the experiment by making an additional observation.

This test is carried out sequentially and depending upon the outcome of the test at each stage, 

the test is terminated if the decision is i) or ii). If the third decision is made then the next 

sample is taken and the test is continued. This process is continued until the first or second 

decision is made. The number of samples required for terminating the test is a random 

variable, say m. For each positive integer value m\ we can denote the totality o f all possible

samples, say (vi,V2 ,v3,......„vm), with an m-dimensional sample space r m. A decision rule

can be selected that subdivides the sample space into three mutually exclusive decision 

regions r m°, r m! and Tm2. After the first observation v \ , hypothesis H  is rejected if vj lies 

in region Ti° ; H  is accepted if it lies in the region T \ 1 ; or a second observation is made if 

vi lies in the region T i2. On drawing the second sample V2 , H  is rejected or accepted or a 

third observation is made according to the observed sample (vi ,V2 ) lying in r 2°, r 2! or r 2 2 

respectively. The test terminates only when the sample points fall in either Tm° or T*,1. A

proper choice of sets Tm°, r m! and Tm2 (m = 1 ,2 ,.... ) is a fundamental problem in the theory

of sequential detection and depends on the consequences of the test.

Two major consequences of a sequential test are:

i. Operating Characteristic Function (OCF)

ii. Average Sample Number (ASN)
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3.5.2 Sequential Probability Ratio Test (SPRT)

Let /?m(v/0 ) denote the conditional probability density function of m data samples

vi , v2 given j  signal parameters 8 1 ,8 2 , ..... , 8 j and le tpm(vlo) denote the probability

density function of m observed samples given that the signal is absent.

The likelihood ratio function,for m samples, is defined as

pmiyl 8 )
Am(v/6) = — r j - r  (3.17)

pm(yio)

which is a conditional probability ratio for testing the null hypothesis H0% against a simple 

hypothesis H\  that the signal plus noise is present Two positive constants At and 

Bt(Bt < At) are selected such that at each stage of the experiment, if Bt < Am(v/8 ) < At the 

test is continued with the next observation; if Am(v/8 ) <5 , the test terminates with the 

acceptance of hypothesis H0 and if Am(v/8 ) > At the test terminates with the acceptance of 

hypothesis H \.

The sequential probability ratio test can be summarized as follows:

i) if Bt < Am(v/8 ) < At continue test

ii) if Bt > Am(v/8 ) accept hypothesis H0

iii) if At < Am(v/8 ) accept hypothesis H\

The threshold values At and Bt can be related to the probability of false alarm a  and the 

probability of miss detection p(8 ) over the regions Tm° and r m! respectively and yields [10]

Bt(\-a )  > p(8 ) (3.18)

l - p ( 8 ) > A , a  (3.19)

3.5.2.1 Excess over boundary problem

The above inequalities can be used to establish thresholds At and Bu given the error 

probabilities a  and p(8 ). However, since the likelihood function varies discretely as a 

function of m, exact equality may never occur. This is called the excess over boundaries

problem which was discussed at length by Wald [10 ]. Usually, it is assumed that the

boundaries are not exceeded by a significant amount especially when the value of m is large 

ie., signal-to-noise very low.

When the excess is neglected

A, = 1 ~  P (9) (3.20)
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_g(0 )_ (321)
1 - a

Error probabilities in terms of At and B, can then be expressed as

1 - B t
(322)

P(9) = (3-23)

3,5.3 Operating Characteristic Function (OCF)

It was proved by Wald that the probability of a sequential test terminating is unity if the set

of observations vm are independent [10]. It was also proved that the sequential test will

terminate with unit probability for a large class of distributions when the observations vm are 

not independent. The operating characteristic function (OCF) denoted by L (0) is required for 

loss computations and evaluation of the average sample number (ASN). The OCF is defined 

as the conditional probability of accepting hypothesis H0 at the end of the test with the given 

parameter 0. From this definition

L (0) = 1 -a  (3.24)

L (0) = P(0) (3.25)

The probability that the hypothesis H \ is accepted at the end of the test (all tests are 

considered to terminate) is:

1 -L  (0) = a  (3.26)

1 -L(Q) = Pd(Q) (3.27)

If the SNR, denoted by y, is the only parameter involved, then the OCF when plotted appears 

as shown in figure 3.3. Normally, the sequential ratio test is designed for a specific set of 

parameters denoted by design parameters 0d in the parameter space 0. However, the entire 

OCF is required in order to compute the ASN for all values of 0. Wald has developed an 

approximate method for computing L(0 ) using a parametric equation which neglects the 

excess over boundaries problem.

For the purpose of computing L (0), let us consider the expression

Pm(V/9‘' ) (3.28)
. Pm(v/0 ) J

where h =/z(0,0d) is a real number, such that, the expected value of this expression (3.28) 

with h * 0  is given by:
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J Pmfyfod)
Pm(y/0)

The integrand in this equation is:

pm(v/Q)dv = 1 (3.29)

which is a distribution of v.

Pm(yMd)
Pm(y!o)

Pm(v/0) (3.30)

For the case with h > 0, let us denote H  as the hypothesis that pm(v/Q) is the distribution of v 

and H* as the hypothesis that/m*(v) is the distribution of v.

Now, consider the sequential probability ratio test with the following rules:

i) continue the test if

nh f*  W  4 A
B‘ < / /mPm(v/0)

ii) accept hypothesis H* when the ratio is equal to or greater than Af

iii) accept hypothesis H  when the ratio is equal to or greater than Bf

The ratio considered in (3.31) can be written as:

(3.31)

Pm(v/0)
Pm(v/0 ^)
pm(y!o)

(3.32)

Therefore, in the above sequential probability ratio test, equation (3.31) can be rewritten as:

„ Pm(y/Qd) ,B, <    < At (3.33)
Pm(v/0)

If the test between H* and H  results in the acceptance of H *, it implies the acceptance of H  i , 

likewise the acceptance of H  corresponds to the acceptance of H0. From this it follows that 

L(0), the probability of accepting H 0 given 0 = 0, is the same as L(0), the probability of 

accepting H  when f m is the true distribution.

From this, L(0) can be calculated by using a  and (3 which represent the error probabilities 

for test H* versus H  as follow:

a

B? = P'(0)

a  =

1 - a  
1 - B t

A f - B f
h r  Ah

P (0) =
f l f W - i )

A f - B f

(3.34)

(3.35)

(3.36)

(3.37)
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L(0) = 1 -  a  (3.38)

(At - 1)
A f - B f

l - P ' f l )  i
/  A

(3.350

L(0) =  r 2  :-----  (3.40)
1 -  3 (6 ) 3(0)

a 1 -  a
L (0 ) is the desircd operating characteristic function subject to the above condition for h 

given by equation 3.29. The case for h < 0 can also be treated in the similar manner and 

results in the same expression for L (6 ).

3.5.4 The Average Sample Number (ASN)

The average sample number (ASN) is the average of the number of samples required for the 

termination of each sequential test. The computation of likelihood ratio for a series of m 

samples, v = vi ,v2 ,....,vm, as given by (3.17) requires a multiplication of the likelihood 

ratio’s of individual samples. However, in practice, it can be simplified by taking the 

logarithm of the likelihood ratio’s which will result in a summation rather than a 

multiplication. The ASN of the sequential ratio test assuming the logarithm of the likelihood 

ratio can be derived using indirect methods and shown below.

The log-likelihood ratio for m samples, with 0 = 0d, is denoted by Zm and given by:

„  , P*(v/0 d)
2m = lo g — T T T  <3*41)Pm(v/0)

The sequential test procedure in terms of Zm is:

i) continue taking samples if log Bt <Zm < log At

ii) accept H0 when Zm < log Bt

iii) accept H \ when Zm > log At

The average value of Zm at test termination is approximately given by (neglecting the excess 

over boundaries) log Bt times the probability of accepting Ha plus log A, times the

probability of not accepting H0. Thus for a terminated test of length n, given 8 ,

E  (Z„/0) = L (0) log Bt + [1 -L  (0)] log At (3.42)

where E (ZB/0) is the expectation of the logarithm of the likelihood ratio conditioned on 0.



The average sample number of the sequential ratio test is derived as

£.(9) log B, + [1-L(0)] log A, ^
A S N =  i m   ( )

where E(z/Q) is the expectation of the logarithm of the likelihood ratio for k th sample (v*) 

conditioned on 6 .

3.5.5 Low SNR approximations and the Biased Square Law detector (BSD)

A generalized sequential test (possibly randomized) which is more general than the usual 

sequential probability ratio test of Wald and includes non-optimum as well as Wald’s 

optimum sequential tests was considered by G.E.Albert [16] from which a biased square law 

detector was obtained as a low SNR model of the sequential detector by Kendall [17]. The 

sequential test and its approximations are described below.

Let [Xi) represent a sequentially observable discrete stationary Maikov process with 

transitions governed by the probability distribution function F  (x,7x,_i). The pair of decisions 

to be made about F(x;/xt_i) are denoted by d,- = 0 , 1  and d2 is the decision to defer making 

either d0 ord\.

Choosing an arbitrary point xQ, the test is carried out by making one of the decisions dt with 

probability tc,(x0), i = 0,1,2. If either dQ or d\  is made then the test continues and the next 

sample x\  is drawn using the distribution F(x\lx0). Once again, one of the decisions d,- is 

made and the test either terminates or continues to draw x 2 using the distribution F(x2!x\). 

The process is continued until either dQ or d\  is made. To guarantee that this occurs with 

unit probability in a finite number of trials, it is assumed that there is some integer M  and 

some p < 1 such that for all m > M  the inequality

oo eo oo

J J • • • J YlK0(Xi)dF(XilXi-i) < p < 1 (3.44)
»̂X=1

is satisfied for all xQ.

Albert [16] has derived a set of integral equations whose solutions give the most interesting 

parameters of the test, namely, the probability of test truncation and the average sample 

number (ASN).

The probability that the test ends with decision d0 or d\  ie., Pi(xQ) satisfies the integral 

equation



Pfco)  = X o M  + K0(x0) J  Pi(y)dF(y/x0) (3.45)

and the average sample number (ASN) is given by average test duration, M\(x0) which also 

satisfies a similar integral equation

This formulation has the advantage that it gives exact results for a general class of sequential 

tests which need not be probability ratio tests. Furthermore, any excess over the boundaries 

which might occur is not neglected. However, a serious disadvantage is that the integral 

equations, for most cases of interest, are difficult (if not impossible) to solve, and the 

solutions are unwieldy for many situations. Kendall [17] was able to obtain exact solutions 

for the non-coherent sequential detection o f a sine wave in Gaussian noise using a biased 

squaie-law detector (BSD).

3.5.5.1 Probability of false alarm and ASN for the BSD

The biased squaie-law detector applied to the spread-spectrum code acquisition (which will 

be described in detail in the next section) is shown in figure 3.4. If yk is the k th sample from 

the square-law envelope detector, which is taken sufficiently apart, then the biased square law 

detector sample, Yk, can be obtained by:

where b is the bias, given by b =N0B (l+y/2) with y as the predetection SNR, B as the 

predetection filter bandwidth and Na as the single-sided noise spectral density [46].

These samples are statistically independent and hence, the sample sums (accumulator 

output), denoted Zit are given by:

k=l

which represent a Maikov process. Since the sample sum Z, = Z<_1+Z,-, it follows that

M  l (xQ) = Ko&o) + n0(x0) \ M i  (y) dF(y/x0) (3.46)

Yk =yk - b (3.47)

Z i = Z Y k (3.48)

dF& IZi.O Z,—Zx_i >b (3.49)

=  0 otherwise
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Decisions dQ and d\ correspond to d0 = dismissal, d\ = alarm, and the set of decision 

probabilities k,(Z*), i = 0,1,2 is stationary (ie., independent of k) and given by the following 

relationships:

*o(Z )= jo  Z < 1 \ 2 ’-3’50'*

fi
z<n, <3M>

f l  112 < Z < T|i 
*2(Z)- { o  otherwise (3-52)

where rix and rj2 are the thresholds. Letting ZQ = 0 and for ti2 < 0 < t | i , the Pfa can be 

obtained from (3.45) as:

p  = _________ exp ( -q  Vy) g  ( -o n '2 ; D b )_________
fa exp [(r) ,—Ti'2 + b')ly) ] G[ D(ti',-r |'2  + b ' ) ; Db'] 

with the normalizations as follow:

b’ = j b = J & _  (354)
2a2 N„B

• YHi YHi • 1 o i'i cc\
n , m 2 ? m N j  : 1 = 1 , 2  (355)

D = —exp (-b/y)  (3.56)
7

and function G(x;c) is defined as

G(x;c) = l + X  &  (3.57)

where N is an integer chosen to satisfy the inequality

c< N c< x< (N + l)c  (3.58)

Similarly the ASN can be obtained from (3.46) as:

ASN = M ! (0) = exp ( -r | Vy) H ( - ^ ' 2  I Db’) (3.59)

+ p 2(.o) j i - e x p [ ( i i ' , - i i '2 +&')/Y)]ff [ D ( n ' i - n -2 + 6 ' ) ;  Db 

with the function H(x;c) defined as

H(x;c) = (N + l)exp(-;E/YD)- (3-6°)

The average test duration for the case of noise only is given by

%d = ASN IB (3.61)

where Zi represent samples taken at rate 1 IB.
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A similar analysis for the case where the signal is present, is extremely difficult and is not 

available in the literature. Also for the truncated sequential tests, Albert's approach can not 

be applied.

3.6 SEQUENTIAL DETECTION APPLIED TO SPREAD-SPECTRUM 
CODE ACQUISITION

Acquisition of pseudo-noise codes plays a vital role in the detection of direct-sequence 

spread-spectrum signals. Recently, emphasis has been placed on the need for faster code 

acquisition in low input signal to noise ratio (SNR) conditions, particularly in certain satellite 

communication and navigation applications. Commonly, a serial search is employed to 

acquire initial synchronization of the PN codes, using the correlation between the incoming 

signal and the locally generated code replica, by searching through all possible code epochs 

to indicate coarse lock. This woiks well in low SNRs but the acquisition time can be 

unacceptably long. Various detectors have been used with the serial search synchronizer to 

detect the correlation signal, including single or multiple dwell time detectors and matched 

filters. However, all these detectors have disadvantages and the problems associated with 

these detectors have been discussed in the previous chapter.

The single and multiple dwell detectors take as long to dismiss each incorrect code epoch as 

to detect the correct code epoch while the matched filter, even though faster in 

detection/dismissal of the correct/incorrect code epoch, suffers from an increase in hardware 

complexity which is proportional to the length of the PN code. Sequential detectors, 

however, employ a serial search strategy but use a variable dwell time integration. These 

detectors are relatively easy to implement and are capable of dismissing the large number of 

incorrect code epochs quickly, allowing for longer integration of the correct code epoch 

resulting in reliable and faster code acquisition. For this reason, sequential detectors are the 

optimum in the sense of minimum dismissal time of the wrong code epoch for a given 

probability of detection and false alarm [1 2 ].

The schematic diagram of the sequential detection PN code acquisition is shown in figure 

3.5. As shown in the figure, the sequential detector is used to check the output of the 

discrete-step serial-search correlator for the presence of a correlation signal representing the 

coarse in-lock condition. Because of the large noise levels encountered in spread-spectrum 

systems, this correlation signal is often heavily corrupted by noise. Sequential detection 

employs the ratio of the a priori probabilities of the incoming samples (at the output of the
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envelope detector) as a measure of the likelihood of the samples belonging to the wanted 

correlation signal plus noise (corresponding to the in-lock condition) or noise only 

(corresponding to the out-of-lock condition). The n ratios of n samples are multiplied to give 

the likelihood that the envelope detector output is signal or noise averaged over n samples. 

This likelihood ratio is tested against two thresholds. If the ratio lies between the thresholds, 

a new sample of the correlator output is taken and the likelihood of it being signal or noise is 

found. Exceeding either threshold indicates the presence or absence of the correlation signal, 

respectively.

Let the input signal from the correlator (without data modulation), x (t) be represented as:

x(t) = V2 A cos(©0r + 0 C) + n (t) (3.62)

where A is the rms signal amplitude, (0o is the carrier frequency, 0C is the random phase of 

the carrier and n(t) is the noise which is an independent white Gaussian process with a 

variance, a 2  = NaB 12 where B is the predetection filter bandwidth which, in this case, is 

equivalent to the data bandwidth and N0 is the single-sided noise spectral density. The actual 

signal amplitude, however, depends on the degree of correlation between the codes and thus 

is dependant on the actual code phase misalignment. If the code phase offset is AT, then the 

correlator output is given by a(A,AT) = A(l-AT/LTcy  Thus the correlator output is a 

random variable, a(t), contributing to the correlation loss. The worstcase correlation loss is 

estimated to be 2.5dB (SNR loss) for serial search with a step size of half a chip per code cell 

[32,46].

When the signal x(t) is passed through an envelope detector as shown in figure 3.5, the 

samples at the output of the envelope detector, yk, follow a Rayleigh distribution, po(yk), for 

the case of noise only; and a Rician distribution, p\(yk) for the case of signal plus noise. 

These are given by:

, x yk 
p i(yk)= ^ T exP

= 0  

/ x yk
p °(yk)=  ^ r exP

 ̂ 2  
y i

2  a 2
+ Y

P
ty k _x_

2 a 2

otherwise

yic^  0

2  ̂
y i

yk > 0 (3.63)

(3.64)
2 a 2\

= 0  otherwise

for the cases of signal present and absent respectively where y is the predetection SNR given 

by
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y= A 212c1 (3.65)
and IQ [ ] represents the modified Bessel function of the first kind and zeroth order.

The individual samples of the envelope detector output are assumed to be sufficiently 

decorrelated by sampling at an interval T  £ MB. Following the earlier definition, the 

likelihood function of the kih sample which is the ratio of the a priori probability 

distributions, can be given by:

m =  (3.66)
Pofyk)

The likelihood ratio after i samples, which is denoted here as A; becomes:

I I  Pi(y*)
A,- =   (3.67)

n  Po(yk)
*=1

The sequential probability ratio test (SPRT) is carried out by comparing A,- with the two 

thresholds, an upper threshold, A, and a lower threshold Bt.

If Ai > At hypothesis H  i (signal present) is decided and the search is stopped.

If Ai <1 Bt hypothesis H 0(signal absent) is decided and the code epoch is updated.

If Bt < Ai < At sample A,-+j is taken and the test is repeated for the same relative phase 

between the codes.

However, in practice, the computational complexity can be reduced significantly by using 

logarithm of the likelihood function as described in section 3.5.4. Hence, by taking the 

logarithm of (3.67) and substituting the density functions the sequential test can now be 

conducted on the accumulated log-likelihood samples with the thresholds replaced by the 

logarithm of the original thresholds. The accumulated log-likelihood function over i 

samples, denoted here as v/, can then be simplified to:

Vi = t(-Y+ln[/<,(2y*V7/2o2)]) (3.68)

This accumulator output is tested against the two thresholds which are now denoted by 

Tu = In (At), the upper threshold and 7/ = In (Bt), the lower threshold and the outcomes of the 

test determine whether the coarse-lock between the codes is achieved or not.

3.6.1 Biased square law detector

The biased square-law detector (BSD) which is a low SNR approximation of the ideal log- 

likelihood sequential detector as described in section 3.5.5, normally employs a square-law 

envelope detector for ease of implementation as the square of the envelope of the received
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waveform can be easily formed in a receiver and thus it has been of considerable importance. 

Figure 3.4 shows the BSD employing square-law envelope detector. Following the steps of 

the ideal sequential detector, the log-likelihood function can be derived as the ratio of the a 

priori probabilities and can be shown to be similar to that of the ideal sequential detector as 

in (3.68) except that the argument of the In IQ [ ] function is replaced by ’ as the a

priori probabilities are now represented by non-central and central chi-square distributions in 

the presence and the absence of signal respectively [46].

For low SNRs, however, the In IQ[ x]  function in this log-likelihood function can be 

approximated by the first two terms of a power series expansion:

(369)
and this leads to a biased square law sequential detector (BSD) whose accumulated log- 

likelihood function, on substitution, becomes [46]:

Vi- Z
*=i

v . -  i
*=i

r ( ykyk i 2 
■ Y+T2 ? - 4 *

f  yk 
- Y+T2 ? 2

2 a2
(3.70)

(3.71)

v*= o . i 2)
*=i

where (3.72) represents the normalized accumulator output with b as the bias of log- 

likelihood function given by b =N0B (1 +y/2), and N0 is the single-sided noise spectral 

density.

Using this simplified log-likelihood function the BSD can be implemented with a simple 

square law device as shown in figure 3.5 and this represents the low SNR version of the 

sequential detection forPN code acquisition.

3.7 RECENT DEVELOPMENTS IN RESEARCH WORK INTO 
SEQUENTIAL DETECTION

The theory of sequential analysis was developed by A. Wald [10] in response to the demands 

of efficient statistical sampling procedures. Wald and Wolfowitz [12] have also proved the 

optimality of the sequential probability ratio test between the simple hypothesis that it 

requires on average fewest number of samples for a given probability of detection (ie., power 

of the test). Wald has also derived approximate expressions for the decision probabilities and 

the average sample number neglecting the excess over boundaries problem. These analyses
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are valid for a large average sample number or low SNRs [10,13]. Kemperman [14] has 

exploited the connection between the theory of random walks and Wald’s theory and 

obtained integral equations for the determination of the decision probabilities and the 

expected sample size of Wald’s sequential test. As the solutions for these integral equations 

are quite difficult, Kemperman and Snyder [15] have also obtained bounds for the solutions 

which may be used to obtain substantial improvements over the bounds given by Wald. 

Albert [16] has generalized Kemperman’s integral equations to apply to a fairly extensive 

class of sequential decision problems and has also derived methods to obtain practical results 

from such integral equations. These methods yield definitive improvements over Wald’s 

approximate methods for setting the decision boundaries and estimating the sample size 

moments. Kendall [17] has obtained solutions for the generalized integral equations of 

Albert for a specific case of incoherent detection of a sine wave in Gaussian noise for a 

biased square law detector when no signal is present and has derived relationships for the 

probability of false alarm and the average sample number.

The dissatisfactions associated to Wald’s sequential probability ratio test and Wald’s 

analysis of it were summarized by Siegmund [18] as follow:

i. the open ended continuation region with concomitant possibility of taking an 

arbitrarily large number of samples is intolerable in practice.

ii. Wald’s elegant approximations based on neglecting the excess of the log- 

likelihood ratio over the stopping boundaries are not especially accurate and do not 

allow one to study the effect of taking the observations in groups rather one at a 

time.

iii. the beautiful optimality property of the sequential probability ratio test applies 

only to the artificial problem of testing a simple hypothesis against a simple 

alternative.

These issues have received greater attention in statistical decision theory over the past 

decades and numerous modifications to the sequential probability ratio test have been 

proposed and their properties studied, often by simulation or lengthy numerical computations 

and complete theoretical analyses of many such proposals have been carried out [19,20]. The 

outcome of these investigations has given rise to closed sequential tests or truncated 

sequential tests defined by nonlinear stopping boundaries and often applied to grouped data. 

The truncated sequential tests have been proposed by Anderson [19] whereas Goode [20 ]
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has suggested deferred decision theory for the general problem of accelerating the decision.

The application o f sequential tests to the problem o f signal detection (called sequential 

detection) was first applied by Middleton and Van Meter [21]. Bussgang and Middleton [22] 

have studied the sequential detection of radar echoes. In their work, the problem of simple 

binary (ie., two-decision) detection using sequential tests has been extended to the case of 

optimum detection of pulsed carrier signals in normal noise. Coherent sequential detection 

of causal signals in normal noise and sequential detection of random signals have also been 

treated with an important feature of handling of correlated samples and continuous sampling 

process. Helstrom [23] has presented woik on sequential detection theory applied to the 

detection of unknown range by sampling the receiver output for a radar target detection. 

Marcus and Swerling [24] have extended the sequential analysis to multiple-resolution- 

element sequential radars and presented simulation results showing the improvement 

obtained by sequential procedures. Kendall and Reed [25] have extended the sequential test 

for radar detection to include multiple targets. Finn [26] has proposed an approach to 

sequential detection of phased array radars using a two-step approximation called energy 

variant sequential detection whereas Brennan and Hill [27] called the same procedure a two- 

step detection. The truncated sequential tests have also been applied to pulsed radar 

detection and radar surviellance by Bussgang and Marcus [28] and Bussgang and Johnson

[29]. In an application of binary sequential detection using uncertainty feedback in which the 

detector constantly feeds back its state of uncertainty concerning what is being sent, Turin

[30] has shown that the sequential detection system when compared to a nonsequential 

detection system with similar uncertainty feedback, has i) 6 dB average power advantage 

when the prescribed peak-to-average power ratio is too small, and ii) 6 dB peak power 

advantage when the prescribed peak-to-average power ratio is large [31].

Sequential detection has also been applied to spread-spectrum code acquisition by a few 

researchers in the recent past. Cobb and Darby [32] have presented the computer simulation 

of sequential detection of spread-spectrum signals by using specific hardware 

implementations of simplified detector configurations, namely, the ideal detector, envelope 

detector, biased square law detector and the absolute value detector. The simulation has been 

carried out in the moderate SNR range of -3dB to +3dB in the IF bandwidth. However, this 

simulation does not model the presence of data modulation on the carrier and simulates a 

CW signal after PN despreading. The model also assumes that the clock frequencies are
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close enough that the signal level does not change significantly over the length of the test. In 

a recent work on spread-spectrum code acquisition using sequential detection, Carson [33] 

has presented a microprocessor based implementation of a sequential detection algorithm 

together with a search rate control algorithm. Effects of both linear and square law detectors 

have also been characterized and experimental results when the average sample number is 

large (corresponding to a design SNR of -6 dB to +6 dB) has been presented.

The variable dwell time PN search algorithm and its relation to the optimum sequential 

detector has been presented by Braun [34] who has used a numerical approach to show the 

optimality of the sequential detector at low SNRs. Meyr and Polzer [35] have presented a 

method of recursively computing the probability density function of the sample number for 

the optimum sequential detector with the envelope correlator samples assumed to be 

statistically independent. Comparatto [36] has analyzed a dual threshold sequential detection 

receiver and derived a general expression which addresses the probability that the sequential 

detection procedure ceases after an arbitrary number of samples. This analysis is based on 

the approximation in which the final expression is conditioned on the previous two samples 

which was shown to be conservative by Weinberg [37].

The application of sequential detection to the interception of unknown noncoherent 

frequency hopped waveforms has also been presented by Snelling and Geraniotis [38]. The 

optimality of the sequential test has also been demonstrated and a truncated sequential test 

has been derived which shows improvement in the number of samples needed for a decision 

when the input SNR differs greatly from that assumed in the derivation of the test. 

Numerical results based on this analysis and the simulation of the interceptor’s performance 

have also been presented. The analysis of the sequential test with asymptotically correct 

approximations for the operating characteristic function (OCF) and the average sample 

number (ASN) has been presented by Tantaratana and Poor [39]. Tantaratana and Thomas 

[40] have considered a class of non-parametric sequential rank tests and derived an 

approximate analysis. Tantaratana [41] has also presented analysis of a sequential constant 

false alarm rate (CFAR) detector employing dead zone limiter. Lee and Thomas [42] have 

presented performance analysis of sequential dead-zone limiter detector and the sequential 

four-level sign detector. Recently, Lee and Tantaratana [43] have presented analysis of a 

direct-sequence spread-spectrum system using truncated sequential probability ratio test 

(TSPRT). In this analysis, approximate worst values of the partial correlation were used to
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set up the hypotheses and was shown that the maximum ASN required for the TSPRT is 

always smaller than that for the fixed dwell scheme. Their results were also compared with 

simulation results and shown to be in close agreement. Su and Weber [44] have also recently 

presented two iterative algorithms which are applicable only to limited regions of Wald’s 

approximations for evaluating sequential detector’s performance.

In the present research, the analysis of the sequential detection PN code acquisition system 

has been carried out for various channel impairments in the presence of data modulation and 

Doppler shift [47-51]. Performance in the presence of two types of jammer signals, namely, 

the CW jammer and the pulsed jammer has also been considered. Three variants of the 

sequential detector have been examined and their acquisition performances for all these 

situations have been compared. Optimization of the sequential detectors with respect to the 

thresholds, bias and the input SNR has also been carried out and the performance of the 

sequential detector is compared with that of the more usual fixed-dwell serial search code 

acquisition techniques, namely, the single-dwell detector and the matched filter.

3.8 REFERENCES

1) Thomas Bayes, "An essay towards solving a problem in the doctrine of chances", 

Phil. TYans, 53, pp 370-418,1764.

2) J.Neyman and EPearson, "On the problem of the most efficient tests of statistical 

hypotheses", Phil. Trans. Roy. Soc., A 231, p289,1933.

3) A.Wald, " Contributions to the theory of statistical estimation and testing of 

hypotheses", Ann. Math. Stat., 10, p299,1939.

4) A.J.F.Seigert, J.L.Lawson and G.E.Uhlenbeck, Threshold Signals, Radiation

Laboratory Series (Me Graw-Hill, New York, 1950), vol.24, Ch. 7.

5) P.M.Woodward and IX.Davies, "Information theory and inverse probability in

telecommunication", Proc BEE, Pt. Ill, 99(58), pp 37-44,1952.

6 ) D.Middleton, An introduction to statistical decision theory, McGraw-Hill, New

Yoik, 1960.

7) W.WPeterson, T.G.Birdsall and W.C.Fox, "The theory of signal detectability",

1954 Symposium on Inform. Theory, (also) IRE Tran. (PGIT), vol. 4, pp 179-182, 

Sep 1954.



S.A.Kassam and J.B.Thomas, (ed) Non-parametric detection-Theory and 

applications j  Dowden, Hutchinson & Ross, Inc. Pennsylvania, 1980.

J.D.Gibson and J.L.Melsa, Introduction to non-parametric detection with 

applications, Academic Press Inc, New York, 1975.

A. Wald, Sequential Analysis, John Wiley,New York, 1947.

J.Neyman and E.Pearson, "The testing of statistical hypotheses in relation to 

probability a priori", Proc. Cambridge Phil. Soc., 29,1933.

A.Wald and J.Wolfowitz, "Optimum character of the Sequential Probability Ratio 

Test", Annals of Math. Stat, vol. 19, pp 326-339,1948.

A. Wald, Statistical decision functions, John Wiley,New York, 1950.

Kemperman, H.H.B., The general one-dimensional random walk with absorbing 

barriers with applications to sequential analysis, University of Amsterdam, These 

de Doctorat, 1950.

W.S.Snyder, "Calculations for maximum permissible exposure to thermal 

neutrons", Nucleonics, vol. 6 , pp 46-50,1950.

G.E.Albert, "On the computation of the sampling characteristics of a general class 

of sequential decision problems", Ann. Math. Stat. vol.25, pp 340-356,1954.

W.B.Kendall, "Performance of the Biased Square Law Sequential Detector in the 

absence of signal", IEEE Trans. Inform. Theory, IT-11, pp 83-90, January 1965.

D.Siegmund, Sequential analysis, Tests and confidence intervals, Springer- 

Verlag, New York, 1985.

T.W.Anderson, "A modification of the sequential probability ratio test to reduce 

the sample size", Ann. Math. Stat. vol.31, pp 165-197,1960.

H.H.Good, "Deferred decision theory", in Recent developments in Information and 

decision processes, R.E.Machol and P.Gray, Eds. New York, Macmillan,1962.

D.Middleton and D.Van Meter, "Detection and Extraction of Signals in noise from 

the viewpoint of statistical decision theory", Soc. for Ind. and Appl. Math., vol. 4, 

no. 4 , Dec 1955 and vol. 5, no. 1, Mar 1956.

JJ.Bussgang and D. Middleton, "Optimum sequential detection of signals in



- 8 3 -

noise", IRE Trans, on Infor. Theory, vol. IT-1, pp5-18, December 1955.

23) C.W.Helstrom, "A range sampled sequential detection system”, IRE Trans. Inform. 

Theory, vol. IT-8 , pp 43-47, Jan 1962.

24) M.B.Marcus and P.Swerling, "Sequential detection in radar with multiple 

resolution bins", IRE Trans. Inform. Theory, pp 237-245, Apr 1962.

25) W.B.Kendall and I.S.Reed, "A sequential test for radar detection of multiple 

targets", IRE Trans. Inform. Theory, IT-9, pp 51-53, Jan 1963.

26) H.M.Finn, "A new approach to sequential detection in phased array radars", Proc. 

1963 National Winter Convention on Military Electronics (1963).

27) L.E.Brennan and F.S.Hill.Jr, "A two-step sequential procedure for improving the 

cumulative probability of detection of radars", IEEE Trans. Military Electronics, 

mil-9, pp 278-287, Jul/Oct 1965.

28) JJ.Bussgang and M.Marcus, "Truncated sequential hypothesis tests", IEEE Trans, 

on Infor. Theoiy, vol. IT-13, pp 512-516, Jul 1967.

29) JJ.Bussgang and N.Johnson, A monograph on truncated sequential tests, Rome 

Air Development Centre, Griffiths Air Force Base, Rome, N.Y., RADC- 

TR-66-705, Jan 1967.

30) G.L.Turin, "Signal design for sequential detection systems with feedback", IEEE 

TYans. Inform. Theory, pp 401-408, Jul 1965.

31) G.L.Turin, "Comparison of sequential and nonsequential detection systems with 

uncertainty feedback", IEEE Trans. Inform. Theory, vol. 12, no. 1, pp 5-8, Jan 

1966.

32) R.F.Cobb and A.D.Darby, "Acquisition performance of simplified implementations 

of the sequential detection algorithm", NTC Conference Record,pp 43.4.1-43.4.7, 

December 4-6,1978, Birmingham, AL.

33) L.M.Carson, "A microprocessor based spread-spectrum processor for low signal- 

to-noise ratios", ICC’82 Conference Record, pp 230-234,1982.

34) W.R.Braun, "Comparison between variable and fixed dwell-time PN acquisition 

algorithm", ICC’81 Conference Record, pp 59.5.1-59.5.5, Denver, CO, Jun 1981.



- 8 4 -

35) H.Meyr and G.Polzer, "A simple method for evaluating the probability density 

function of the sample number for the optimum sequential detector", IEEE Trans. 

Comm, vol. com-35, no. 1, pp 99-103, Jan 1987.

36) G.MComparetto, "A generalized analysis for a dual threshold sequential detection 

PN acquisition receiver", IEEE Trans. Comm, vol. com-35, no.9, pp 956-960, Sep 

1987.

37) A.Weinberg, "Generalized analysis for the evaluation of search strategy effects on 

PN acquisition performance", IEEE Trans. Comm, vol. com-31, pp 37-49, Jan 

1983.

38) W.E.Snelling and E.Geraniotis, "Sequential detection of unknown frequency- 

hopped waveforms", IEEE Jou. on Sel. Areas in Comm. vol. 7, no. 4, pp 602-617, 

May 1989.

39) S.Tantaratana and H.V.Poor, "Asymptotic efficiencies of truncated sequential 

tests", IEEE Trans. Inform. Theory, vol. IT-28, pp 911-923, Nov 1982.

40) S.Tantaratana and J.B.Thomas, "Truncated sequential probability ratio test", 

Inform. Sci., vol. 13, pp 283-300,1977.

41) S.Tantaratana, "Sequential CFAR detectors using a dead-zone limiter", IEEE Trans, 

com., vol. 38, no.9, pp 1375-1383, Sep 1990.

42) C.C.Lee and J.B. Thomas, "Sequential detection based on simple quantization", 

Jou. of the Franklin Institute, Pergamon Press pic., vol. 312, no. 2, pp 119-135, 

August 1981.

43) Y.H. Lee and S.Tantaratana, "Acquisition of PN sequences for DS/SS systems 

using truncated sequential probability ratio test", Jou. of the Franklin Institute, 

Pergamon Press pic., vol. 328, no. 2/3, pp 231-248,1991.

44) Y.T.Su and C.L.Weber, "A class of sequential tests and its applications", IEEE 

Trans. Comm, vol. 38, no. 2, pp 165-171, Feb 1990.

45) A.D. Whalen, Detection of signals in noise, Academic Press Inc., New York, 1971.

46) M.K. Simon et al, Spread Spectrum Communications, Vol III. Computer Science 

Press, Maryland, 1985.



- 8 5 -

47) K.V.Ravi and R.F.Ormondroyd, "Computer simulation of a quantized log- 

likelihood sequential detector for faster acquisition of spread-spectrum pseudo­

noise signals." 5th International Conference on Radio Receivers and associated 

systems, IEE Conference publication No. 325, pp 207-211, July 24-26,1990, 

Cambridge, UK.

48) K.V.Ravi and R.F.Ormondroyd, "Comparison of the acquisition performance of 

biased square law and quantized log-likelihood sequential detectors for PN 

acquisition" IEEE International Symposium on Spread Spectrum Techniques and 

Applications, Symposium Proceedings, pp 53-58, September 24-26,1990, London, 

UK.

49) K.V.Ravi and R.F.Ormondroyd, "Performance of sequential detectors for the

acquisition of data modulated spread-spectrum pseudo noise signals", IEEE 

International Conference on Communications, ICC’91, June 23-26, 1991, Denver, 

Colorado, USA.

50) K.V.Ravi and R.F.Ormondroyd, "Simulation performance of a quantized log-

likelihood sequential detector for PN code acquisition the presence of data 

modulation and Doppler shift", MILCOM’91, November 4-7,1991, McLean, USA 

(to be presented).

51) R.F.Oimondroyd and K.V.Ravi, "Performance of the serial-search PN code

acquisition techniques using Monte-Carlo simulation - A comparative evaluation", 

MILCOM’91, November 4-7,1991, McLean, USA (to be presented).



CHAPTER 4

COMPUTER MODELS, SIGNAL MODELS 
AND 

THE MONTE-CARLO SIMULATION PROCEDURES

4.1 INTRODUCTION

In this chapter the computer models used to simulate the three variants of sequential detector 

for the acquisition of direct-sequence spread-spectrum signals are described. The signal 

models employed to simulate various types of received signal structures in the presence and 

the absence of data modulation including the effects of code rate and the residual carrier 

Doppler frequency offsets are presented. The channel model employed to simulate the 

various channel impairments viz., Gaussian noise, jamming and the interference are also 

described. In addition, the analytical description of each of the functions required in the 

system model for both the transmit and the receive sides has been presented and the software 

techniques used to realize various functional blocks representing all received signal models 

employed to analyze the performance of the detectors are described.

In order to assess the relative performance of PN code acquisition using the sequential 

detector, a single-dwell detector and a digital matched filter detector were also simulated and 

their performances for the equivalent system parameters were also obtained. The system 

models used for both these detectors and the software realization of their functional blocks 

are also presented. Finally, the Monte-Carlo computer simulation procedure employed to 

assess the statistical performance of each of these detectors is explained.

4.2 COMPUTER MODELS

The transmitted and the received signals are assumed to be at baseband and consequently, a 

baseband direct-sequence spread-spectrum transmitter with a non-coherent receiver using 

various detection systems was simulated. Various serial-search detector algorithms using 

their equivalent baseband models were employed. The serial-search technique using 

sequential detection algorithms corresponding to three variants of the sequential detector
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were simulated. The three variants of the sequential detector considered for simulation are:

i. ideal log-likelihood sequential detector (LLD)

ii. quantized log-likelihood sequential detector (QLD)

iii. biased square law sequential detector (BSD)

In addition, two common serial-search techniques with a single-dwell detector and a digital 

matched filter detector were also realized in software. Both the transmitter and the receiver 

were simulated as the finite state machines with the state of the machine depending upon the 

the shift registers of the PN code generators. The simulation was carried out on the Gould- 

Unix main frame computer and HP 9000 Series 835 mini computer using Fortran-77 as a 

primary programming language. Various functional blocks of the transmitter, channel and 

the receiver models are described in detail in the following sections.

4.2.1 TVansmitter model

The schematic block diagram of a direct-sequence spread-spectrum transmission system is 

shown in figure 4.1a. The spread-spectrum transmitter consists of a PN code generator and a 

data generator whose outputs are modulo-2 added together to represent a simple BPSK 

modulated direct-sequence spread-spectrum signal in the baseband. In the simulation, the 

transmitter spreading sequence was assumed to be a maximal-length pseudo-random noise 

(PN) code clocked at a rate Rc = 100 Kb/s with a code length L -  127 chips. A pseudo­

random sequence of length 15 was used as a data sequence with the data transitions 

synchronized with the PN code clock, however, the occurance of each bit was chosen to 

occur randomly with respect to the start of the PN code (incoherently added). The data bit 

duration was made equal to the PN code length resulting in a data rate Rd = RJL = 100/127 

Kb/s = 787 b/s and a provision to select or deselect the data was also provided. This choice 

of code parameters allows the spread-spectrum system to provide a processing gain of 21dB 

assuming ideal filtering and OdB implementation loss.

The code rate and the code length were chosen to keep the computer simulation time within a 

manageable limit in order to obtain a sufficiently large number of runs needed for the Monte- 

Carlo simulation technique. For the code rate of 100 Kb/s chosen, a sampling rate of 200 

Kb/s was used which represents each PN code bit with two samples. As the local code phase 

was slide past in steps of half a chip and the random initial code phase uncertainty was 

always set to be a multiple of a cell (half a chip) duration this provides sufficient accuracy.
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The case of continuously random initial code phase uncertainty has not been modelled to 

keep the simulation time in practical limits.

4.2.2 Channel model

The transmission characteristics of the channel were simulated under the assumption of 

additive white Gaussian noise (AWGN) using a Gaussian random number generator routine 

with zero mean and a controllable variance. A random number generator with uniform 

distribution was generated using the linear congruents method and from this distribution the 

Gaussian distribution was obtained using the Box-Muller method [1]. The randomness of 

this distribution was verified by conducting many runs and plotting the probability density 

function as well as the cumulative density function and from this it was found that the 

distribution was tightly normal over the range ±3a. This was also found to be as good as a 

distribution obtained by the direct application of central limit theorem with fairly a large 

number of samples drawn from the same uniform distribution. Since this functional block 

was particularly important in the simulation process, several sources of random numbers 

were also used and the resulting Gaussian distributions were compared. Figure 4.2 shows the 

cumulative frequency plotted against the bin number on a normal probability paper for three 

distributions generated by using the following methods.

i. Box-Muller method using uniform distribution by linear congruents method [ 1 ].

ii. Box-Muller method using Prospero uniform distribution [2].

iii. Direct application of central-limit theorem using Prospero uniform distribution.

For all three methods, the cumulative probability lies approximately on a straight line, as 

expected for the Gaussian distribution. The mean and variance can also be seen to be closely 

in agreement for all three distributions (for a zero-mean, unit variance in the range ±3a). The 

mean was verified by obtaining the bin number corresponding to 50% cumulative frequency 

which is also 50 for 100 bins considered. The standard deviation was obtained by the 

difference in the number of bins corresponding to the 50% and 84% cumulative frequency 

which is close to 17 for a ±3a over 100 bins. However, based on the best agreement of data 

with the straight line fit, the Box-Muller method using the uniform distribution generated by 

linear congruents method was chosen for the present research.

The continuous-wave (CW) interference and the pulsed tone jamming which were used to 

model the typical spread-spectrum interference (intentional/unintentional) and jamming
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strategies were also generated and used together with the Gaussian noise. Both these jammer 

waveforms and their mathematical models are discussed in section 4.4.

4.2.3 Receiver model

The schematic diagram of a spread-spectrum receiver is shown in figure 4.1b. As the main 

emphasis is on the initial acquisition, the code acquisition aspects of the receiver were 

simulated and consequently the acquisition models employed are described in this section. 

Figure 4.3 shows a schematic diagram of the generalized PN code synchronization in the 

spread-spectrum receiver with the code acquisition system explicitly shown.

Both the serial-search techniques using the sequential detection and the single-dwell 

detection simulated, use common signal processing during the signal correlation phase and 

then the correlator samples are processed according to the each type of detector. Therefore, 

the receiver model employs common functional blocks until the envelope detector/sampler 

and these samples are then processed according to its specific sequential detection algorithm 

corresponding to each of its variants or the fixed-dwell serial-search algorithm as appropriate. 

However, the serial-search using the digital matched filter employs a slightly different model 

which will be described subsequently.

4.2.4 Common signal processing modules

The functional blocks common to all the variants of sequential detector and the single-dwell 

detector are:

i. Correlator/multiplier

ii. Predetection filter

iii. Local code generator

iv. Envelope detector

v. Sampler

The software techniques employed in realizing all these functional blocks are described 

below:

4.2.4.1 Correlator

The correlator is the first functional block in the receiver modules and was simulated as a 

simple multiplier of the corrupted received samples with a locally generated code chips or 

code cells. In the present simulation, cells of half a code chip duration are assumed and
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consequently coarse acquisition is achieved to an accuracy of better than half a code chip. 

The output of this multiplier was then filtered by the predetection filter to extract the 

correlated signal which will provide a measure of synchronization between the incoming 

signal and the local code replica.

4.2.4.2 Local code generator

The local code generator works at the same code rate and the code length as the transmit code 

generator using the same code polynomial with the known starting state but is asynchronous 

to the transmit code as the code phase is unknown in the beginning. The local code phase 

could be incremented in steps of one cell relative to the transmit code phase whenever the 

test failed. The sliding of code was carried out by keeping track of the code states as well as 

the cell under comparison and updating the contents of the local code generator. Both 

transmit and receive code generators were each assigned a flag to monitor which cell was 

being processing. The flag was toggled whenever the cell was incremented. This method 

allows a simple realization of local code delay of one cell whenever the test fails, by simply 

holding the local code flag from being toggled.

4.2.43 Predetection filter

This filter plays an important role as the detector performance critically depends on the filter 

bandwidth and the predetection SNR. A digital low pass filter realization was employed to 

simulate this filter. Infinite impulse response (HR) techniques using the bilinear 

transformation method were used to realize a third order Butterworth configuration [4,5]. 

This filter was found to provide satisfactory performance compared to a first order 

Butterworth filter whose cut-off characteristics are not shaip enough or a third order 

Chebyshev configuration which shows poor phase characteristics. The design of the 

predetection filter is discussed in the appendix 4.1 in some detail.

4.2.4.4 Envelope detector and Sampler

In practical spread-spectrum acquisition systems it is common to use square-law envelope 

detectors to remove the effects of data modulation on the correlation signal. However, this 

presents the designer with serious problem as the correlation signal is distorted due to the 

non-linearity of the squaring process (which is commonly known as squaring loss) resulting 

in a reduced predetection SNR. The linear envelope detectors are a better solution, however, 

realization of such a detector with wide dynamic range is quite difficult. The absolute value
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detectors are sometimes a good choice as it is easy to realize digitally. In this work absolute- 

value detector is assumed and realized by simply removing the sign bit of each sample.

The filter output was passed through an absolute-value detector whose output was then fed to 

the sampler. The envelope detector output need to be sampled at a rate RS<B where B is the 

predetection filter bandwidth which is, in this simulation, equal to the data rate Rd. This is 

required to ensure sufficient decorrelation of the samples to the sequential detector as the 

detector woiks on the assumption of uncorrelated samples. Consequently, a sampling time 

equal to T = 2/Rd was employed in the simulation.

4.2.5 Sequential detector models

4.2.5.1 Ideal log-likelihood sequential detector (LLD)

The LLD, as shown earlier in figure 3.5 (chapter 3), was simulated by using the ideal values 

of the ’ln/0 [ ]’ transformation required in the computation of the log-likelihood function as 

given by equation (3.68) in chapter 3 which is reproduced here for convenience.

V, = £ ( - 7 +  ln[/0(2>Wy2a2 )]) (4.1)
*=1

where

y = A2/2o2 (4.2)
and y is the predetection SNR.

Vi = i ( - *  + ln[/.fcxy*)]) (4.3)
k=l

where b is the bias and g is the gain of the log-likelihood function.

The log-likelihood value corresponding to each k* sample output yk was computed by using 

the sample value which was weighted by the gain, g in the argument of the ’ln/c [] ’ 

transformation and then adding a bias, b to this transformed value. These log-likelihood 

values were accumulated and the accumulated value v, was compared against the upper and 

lower thresholds Tu and Tt. Depending on the outcome of these comparisons the test was 

either terminated or continued by taking a new sample until either the presence or the

absence of the signal was detected. On detecting the presence of the correlator signal an in­

sync condition was declared, however, if the test indicated the absence of signal, then the out- 

of-sync condition was declared and the local code was stepped up by one cell to search for 

the next code phase, and the test was repeated.
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4.2.5.2 Quantized log-likelihood sequential detector (QLD)

For the QLD, the signal from the sampler was passed through a uniform quantizer as shown 

in figure 4.4, in which the number of levels Q was a variable. The quantized sample was then 

passed through ’In I0 [ ]’ transformation as in the case of the LLD and the quantized value of 

the sample was transformed using which the log-likelihood function was computed.

This provides the flexibility of testing the performance of the QLD with various quantization 

levels namely, Q=10,16,32,40,50,100 to determine the minimum number of quantization 

levels required for a practical realizatioa In effect, the QLD models an implementation of a 

log-likelihood detector using a look-up table (possibly stored in a ROM).

4.2.5.3 Biased square law sequential detector (BSD)

The log-likelihood function of the BSD as shown earlier in figure 3.4, was derived in chapter 

3 and the result is reproduced below:

where (4.6) represents the normalized accumulator output with b as the bias of the log- 

likelihood function, given by b =N0B(l + y/2), and N0 is the single-sided noise spectral 

density.

In the case of the BSD, the square-law envelope detected samples were directly used and the 

bias, b was added to i t  This approximate likelihood measure was accumulated and the 

sequential test was carried out.

For all the three sequential detector models the thresholds and the bias can be fixed at any 

desired value to achieve the optimization of the detector.

A baseband PN modulated signal in the presence and absence of data modulation and 

Doppler shift was generated and corrupted by Gaussian noise. The Doppler frequency 

offsets on both the code clock and/or the carrier frequency were simulated to examine the 

performance of all the detectors in various channel conditions. The received signals were 

also assumed to have been jammed by an intentional/unintentional jammer/interferer and the

(4.5)

(4.4)

= (4.6)

4.3 SIGNAL MODELS
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performance of the detectors was obtained in the presence of a CW jammer and a pulsed tone 

jammer. The models employed for generating the signal structures represent each of the 

various combinations of these features.

The transmitted signal with BPSK data modulation can be represented simply by:

s ( t )  = '$2S c ( t ) d ( t )  coscocr (4.7)
where c(t) is the PN binary waveform and d(t) is the data waveform given by

c(/)=C* kTc Z t £ ( k + l ) T c (4.8)
C* 6 -1,1 k an integer

and Ck is the PN code sequence with Tc as the code chip interval.

d ( t ) = d m nTo Z t < ( n + l ) T 0 (4.9)
dHe  - 1,1 n a n  integer

and dn is the PN code sequence with T0 as the data bit interval.

The data and the PN code clocks are assumed to be coincident such thatN = T0/Tc, where N  is 

the processing gain which is 127 in the present simulation.

At the receiver, the received signal is a composite structure after Doppler shift and channel

impairments and can be viewed as being from two classes (for the purpose of clarity), one

containing data modulation and the other with no data modulation. Six types of composite 

received signal structures were thus considered in the simulations (without considering the 

cases of jamming which will be discussed in the subsequent sections) and their mathematical 

models are shown below:

Signal type 1: DS spread-spectrum signal without data modulation.

r \  (t) = V2S c ( t - t j c) cos(coct + 0C) + n (/) (4.10)
This is the simplest form of signal with no data modulation and Doppler shift which is used

as the reference signal to establish the comparative degradations when the data modulation

and/or Doppler shift are present

Signal type 2: DS spread-spectrum signal with code Doppler frequency offset without data 

modulation.

r 2 (t) = S2 (0 cos((Qct + Qc) + n (t) (4.11)
/  \

(4.12)Sz 0 ) = V25e

This signal represents the code rate Doppler shift, £ ’/Tc, by incorporating the change in the 

code duration caused by the Doppler shift as a translation in the time of occurance, 

proportional to the Doppler shift under the assumption of an ideal code rate Doppler.
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However, in practice, the non-uniform Doppler shift on various spectral components can lead 

to the distortion of the original spectrum as well as the waveform. This signal type prevails

in practice when the carrier Doppler is well compensated and the residual carrier Doppler is

quite negligible, however, the residual code Doppler is still considerably harmful.

Signal type 3: DS spread-spectrum signal with code and carrier Doppler frequency offset 

without data modulation.

^3  (0 = S3 (0 cos(cocf) + n (0 (4.13)
/  \

S ,W = V 2Sc  — ‘— r  -  V e cos(ov + 8J (4.14)

This signal provides both code rate Doppler offset and carrier Doppler frequency offset Even 

though, in many applications such as satellite communications the carrier Doppler shift is 

generally well compensated the residual carrier Doppler shift is still considerable and this 

model addresses these issues.

Signal type 4: DS spread-spectrum signal with data modulation.

r4 (0 = V2S d (t-  ST, -  c ( t - p c) cos(cocf + 6,) + n (<) (4.15)
This signal models the random data modulation which is synchronous to PN code clock.

Signal type 5: DS spread-spectrum signal with code Doppler frequency offset and data 

modulation.

rs (0 = S5 (t) cos((Dct + 0C) + n (t)
f  \  f

S5 (t) =V25 c —^ -r -^ T c
1-C

t-Ti
1-C

T -& o

(4.16)

(4.17)

This signal models the data modulation and the code rate Doppler shift assuming the 

situations in which the carrier Doppler is fully compensated and the residual Doppler on the 

carrier is negligible.

Signal type 6: DS spread-spectrum signal with code and carrier Doppler frequency offset 

with data modulation.

r6 (0 = ̂ 6 (0 cos(coc0  + n (t)
r \  f

S«(<) =^2S c
t-Ti

11-Cr - y . COS(G)df + 0C)

(4.18)

(4.19)

This signal represents the worst case situation with the data modulation and both code rate 

Doppler and the residual carrier Doppler shift

The symbols used in the above equations are defined as: S is the rms signal power, d{t) and 

c (0 are the data and code sequences with Tc the chip time of the PN code, T0 is the data bit
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duration which is assumed to be an integral multiple of Tct £Tc the received code phase offset, 

£r0 + Cjc the received data bit phase offset assuming that the data stream timing is 

synchronized to the code chip time, f  /Tc is the received code frequency offset, (od is the 

received carrier radian frequency offset, r, represents the beginning of the integration 

interval, coc and 0C are the carrier radian frequency and random phase, and n (t) is the additive 

white Gaussian noise with one-sided power spectral density N0.

For the purpose of simulating these signals at baseband, the carrier frequency was assumed to 

be zero. The output of the correlator at baseband representing a sample value on the 

correlator curve for the case with data modulation and both code and carrier Doppler 

frequency offsets (signal type 6) can be given by

x{t) = u(t) cos(0c) + n (t) (4.20)r \ ( ~ \ f
u{t) =V2Ac

T T - *
' Tt -%Tc

I i-C
' t - T Tc

1— X
(4.21)

where xTc represents the local code phase offset and x represents the local code frequency 

error with £ ' - t' c  1.

It is this correlator signal which is envelope detected and whose samples are directly 

emphasized by the nonlinearity function ’In I0[ ]’ of the sequential detector or fed to the 

single-dwell detector.

4.4 JAM M ER MODELS

Two types of jammer signals were considered; namely, the CW jammer and the pulse 

jammer. In case of the CW jammer, the baseband equivalent of the jammer at the exact 

centre frequency of the spread-spectrum signal (carrier frequency) was assumed with the 

jammer-to-carrier power ratio, J/S varied. In case of the pulse jammer, the fraction of time 

that the pulse jammer was present (pulse duty factor) was varied for each value of J/S 

assuming that the average pulse power is constrained. The noise component contributed by 

the jamming signals can be derived as follow:

The received signal r(/) in the presence of the jamming signal J(t) is represented (assuming

noiseless situation) as:

r(t) = s(t) + J(t) (4.22)
where s(t) is the transmitted direct-sequence BPSK signal given by (4.8). The receiver

multiplies this signal by the PN waveform c(t) to obtain the correlator signal *(/), which is

given by:
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x<0 = c(fl[ j(fl  + /( f l]  (4.23)
x{t) = & A d(t) cos coc t + c (4.24)

since c2(r) = 1 the first component in the above equation represents the unspread BPSK signal

and the second component c (t)J(t) represents the effective noise waveform due to jamming.

However, the noise term contributed by the jammer after correlation clearly depends upon 

the number of PN chips over which the integration is carried out. For BPSK modulation, the 

equivalent noise component after correlator is given by:
T„

c (0 /  (i) cos (0ct dt (4.25)

. N _x (*+i )Te

* = \ h r  J J (0 cos (Oct dt (4.26)
\  1 o k=0 kTc

where C0,Ci, ,CAf_1 are the N PN code chips with chip duration Tc and T0 is the data bit

duration. The jamming component can then be defined as:

r - K -  (Jk+1)rc
Jk = \ l - z r  J / ( 0  cos (Oct dt (4.27)

V  l c kTc

The resultant noise component in terms of jammer component can be written as

(4-28)
As the PN sequence can be approximated as an independent identically distributed binary 

sequence with (probability of occuranee,/? = 1/2), the noise component for any fixed jammer 

sequence J  = ( 70, J \ ...... Jn-i) is a sum of independent random variables.

4.4.1 CW Jammer model

The most harmful jammer waveform is the one that maximizes Jk (jammer component) for

each value of k. The jammer does not know the PN sequence {C*} and therefore, it should

place as much energy as possible in the cosine coordinate of the signal to cause maximum

damage which can be achieved by a CW signal. Generally, the jammer does not know the

transmitted carrier phase also, thus, a deterministic CW jammer waveform model normally

employs a random phase which is given by:

J(f) = Vl/cos (coct + 0,) (4.29)
with /  as the jammer power and 0; as the phase parameter. The jammer component, thus,

becomes

Jk = V/?7cos (0y) (4.30)
for all k, which is maximized when 0y- = 0.

The received signal in the presence of CW jammer (in Gaussian noise) representing the worst 

case jammer with its entire power being placed in the exact signal coordinates viz., the carrier
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ffequency and the phase, can be given by

r  (0 = V2S c (t +C,Tc) cos(©ct + 0C) + cos(©cf + 6C) + n (t) (4.31)
The correlator signal at baseband becomes:

X (0 = [ A c or +Crc) + VI7 ] c (f +xrc) cos ec + n (0 (4.32)
4.4.2 Pulse Jam m er model

The pulse jammer with a time-averaged power of J is assumed to have the peak power Jp

during the pulse interval given by

Jp =Jlp ; p < 1 (4.33)
where p is the pulse duty factor which is the fraction of time the jammer is on.

The performance in the presence of any arbitrary jammer is normally expressed relative to 

the performance in the presence of a wideband jammer with uniform power spectral density, 

which is referred to as its base line performance. In the case of a pulse jammer, the jammer 

power spectral density, Njlp where Nj = JIWa with W„ as the spread bandwidth, is used to

compare its performance with an equivalent base line jammer with spectral power density Nj. 

The pulse jammer is normally expected to prevail over an interval of a few data bit durations 

with the assumption that the cases where the jammer might be on only for a small fraction of 

the transmitted data bit duration are ignored.

The received signal in the presence of a pulsed tone jammer waveform for the case of no data 

modulation can be represented as

r(r) = V2J C(r+crc)cos(<Dcr + 9e) + ^  £  PA*-*Tj)cos(ra,t + 6/) + n( t)  (4.34)

where

0<t<xj  

= 0 otherwise 

Tj = pulse width

Tj = time between successive pulses 

with the rest of the symbols defined as earlier.

When the frequency difference between the desired spread-spectrum signal and the tone of 

the pulsed jammer is small enough ie., Aco= I coc-tQ/1 =0, then any bandlimiting of the 

jammer is considered negligible and the jammer carrier is assumed to be phase-locked to the 

desired signal. The received phase-locked jammer signal is thus given by

r(0  = J2S c(t+tfc) + -JTip £  Pj(t-kTj-Aj) cos(cocr + 0C) + n (t) (4.35)
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with 0 £ Ay £ Tj which is the random pulse delay. The correlator output with the pulse 

jammer can be represented as

x(f) = ^2 A c (t +^TC) + 'Uip 2  Pjif-kTj-Aj) c (t +xTc) cos (0C) + n (0 (4.36)

The correlator outputs in (4.32) and (4.36) contain the equivalent noise components 

contributed by the jammer signals. This signal is envelope detected and the sampled output is 

passed to the sequential detector.

The signal-to-jammer power ratio S/J and the bit energy to jammer spectral power density 

Eb/Nj of a pulse jammer are related by:

Eb S/Rb W J R b N
Nj J /W a  J/S J /S

(4.37)

= PG + S /J  (in dB) (4.38)

where N  and PG represent the processing gain in number of PN chips and in dB respectively. 

The rest of the symbols are as defined earlier.

A critical fraction of time the pulse jammer is on p = p* (the critical duty factor) exists that 

leads to the worst case bit error probability Pb as the Eb/Nj is varied and defined as [3]

P” = -F17T E>>INi > °-709 (4-39)EbINj
= 1 Eb/Nj < 0.709

This critical duty factor was also employed to observe the acquisition performance with 

Eb/Nj.

4.5 THE MONTE-CARLO SIMULATION PROCEDURES

The Monte-Carlo simulation is generally used to obtain the statistical behaviour of the 

detectors by counting the number of detections and false alarms for several runs of the 

detector [6-10]. This has been recognized as a well known adjunct to the analysis of 

communication systems when the analysis through closed form solutions is either very 

difficult or the solutions are unwieldy. Further, it provides a more realistic and complete 

understanding of the system behaviour for a practical range of system parameters. Even 

though the methods cannot be easily applied to provide generalized solutions, the 

applicability can be extended using quasi-analytic methods based on the observations for the 

limited ranges of interest. In the present work, the Monte-Carlo simulation procedure has 

been employed to obtain the performance of serial-search detectors for spread-spectrum code 

acquisition in various conditions.
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43.1 Simulation of the sequential test procedure

The sequential test was simulated with the incoming sequence of a random starting phase and 

the search was carried out by examining the correlator output corresponding to each code 

cell. The correlator samples were accumulated after the appropriate log-likelihood 

transformation depending upon the each variant of the sequential detector and one of the 

three decisions namely; i) in-sync, ii) out-of-sync and iii) no decision (indeterminate) was 

made. The test was terminated on the decisions i) and ii) while continued by taking a new 

sample whenever the decision (iii) was made. At the end of each test, if the out-of-sync was 

detected (decision ii) then the local code phase was updated by one cell and the next test was 

carried out with the same incoming signal. If the in-sync was detected (decision i), then the 

input signal with a new arbitrary random phase was taken and a new sequential test was 

carried out.

At least 100 such trials, each with a different starting code phase, were employed and the 

number of detections and miss detections were determined. For every sequential test the 

number of false alarms and the successful dismissals were also obtained. At the end of 100 

trials, using these results, the probability of detection and the probability of false alarm were 

computed. For every sequential test the number of samples needed for each out-of-sync 

decision was also obtained and the average sample number (ASN) over the 100 tests was 

computed.

All these observations were carried out for a range of system parameters by varying the upper 

threshold Tu, lower threshold Th bias b, design SNR and the input SNR in the appropriate 

ranges of interest. Usually, the input SNR was varied from -lOdB to -25dB corresponding to 

a predetection SNR range +10dB to -4dB (as the process gain is 21dB) and the performance 

with different thresholds and bias values were obtained. With the PN code length of 127 and 

a total of 100 tests, each with an arbitrary code phase, these tests achieve Pd with an accuracy 

of lxlO-2 and Pfa with an accuracy better than 1x10"* [11-13]. However, from the statistical 

confidence level, these accuracies are one order less.

4.5.2 Computer model of the single-dwell detector

The schematic diagram of a single-dwell detector is shown in figure 4.5. As shown in figure 

the single-dwell detector uses a similar computer model as the sequential detector until the 

envelope detector/sampler and the sampled output is then, fed to a single-dwell serial search 

algorithm. This detector accumulates (integrates) the sampled outputs of the envelope
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detector for a fixed duration which is called the dwell time and compares the sample sum 

with a threshold at the end of the dwell time. If the integrator output crosses the threshold, 

then the coarse in-sync is declared else the out-of-sync is declared and the search continued.

As with the sequential detector, 100 tests were carried out with each fixed-dwell test starting 

with the incoming code sequence of an arbitrary random phase and the Pd and Pfa were 

obtained from which the mean acquisition time was computed. The simulation was carried 

out for a range of threshold and the dwell time and the optimization of the detector 

performance over these parameter ranges was performed.

4.5.3 Computer model of the digital matched filter

The simulation of a digital matched filter employs the same transmit model as the single- 

dwell and sequential detectors. However, the receiver employs a digital matched filter model 

for code acquisition which is quite different from both the sequential detector and the single- 

dwell detector.

The schematic diagram of the digital matched filter is shown in figure 4.6. It consists of:

i. a hard limiter or 1-bit A/D converter

ii. a digital correlator

iii. a replica code register

iv. a threshold detector

As shown in figure the digital matched filter uses a hard quantizer or a 1-bit A/D converter 

which converts the corrupted received baseband signal into a bipolar signal which was then 

fed to the digital correlator. The length of the correlator is same as the code length L = 127. 

The correlator compares the incoming signal with a stored local replica and computes the 

correlation between the two codes using the autocorrelation function computed as:

a c f = - ^ ! L - i  (4.40)

where nagr is the number of agreements over a code length and acf is the auto correlation 

value for a given code delay.

The correlation value was tested against a threshold to decide whether the synchronization 

was achieved or not. If the threshold was not crossed, then a new incoming chip was loaded 

into the correlator and the comparison was carried out. The decisions were made at a rate 

equal to the code rate (or a multiple of the code rate) and hence, for each comparison, L -l
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Figure 4.6 Schematic diagram of a digital matched filter at baseband.
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previous data bits participate along with the received data bit For each comparison, a 

parallel comparison with the uncorrupted version of the received signal (clean transmit 

signal) was also earned out and the uncorrupted correlator output (ideal case) was generated. 

This ideal correlator signal was employed to check either the in-sync or the out-of-sync 

conditions to decide the number of miss detections and false alarms (or equivalently the 

correct detections and correct dismissals).

For each test, the number of false alarms and the successful dismissals were obtained and the 

search was carried out until the synchronization was achieved. For each set of system 

parameters, 100 such tests were carried out and the Pd and Pfa were obtained from which the 

mean acquisition time was computed. The tests were repeated by varying the input SNR in 

the range -lOdB to -30dB for a range of threshold values and various performance 

characteristics of the digital matched filter were obtained, and the optimization of the detector 

was achieved.
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APPENDIX 4.1

Design of a third-order Butterworth low-pass filter

The third order Butterworth low-pass filter has been designed as an infinite impulse response 

(UR) filter using bilinear transform method.

The transfer function of the analog filter in the transform domain is

G(s) = (s2+s+l)(s+l) (A.l)

On denormalizing the transfer function using s -> sfcoca where coca is the cut-off frequency of

the analog filter, G(s) becomes

G(s) =

G(s) =

G)ca \  ctm J
+ -^ -+ 1

Oca
coL

CO,...v *•“ y
fl

(A.2)

(A. 3)
^ 2+C0caJ+C02aJ[j+G)c«J

By using prewarping, coca can be expressed in terms of the cut-off frequency of the digital 

filter (ocd and the sampling frequency f s with a sampling time, T = Vft .

coca = y  tan
'©  cdT ' = 2/,tan

f  \  
<*cd

2fs

Using bilinear transform

(A.4)

2 (z-1) _ 2 (1—z )
T (z+1) T (1+z"1)

The transfer function of the digital filter can thus be expressed as

(A.5)

co;
G (z) = 7
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T\  y
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On substituting in (A.7) and simplification the transfer function becomes

(A. 12)Y(z)  __________________ d ( \ + 3 z - l +3z~2+z-3)__________________
X  (z) (a +b +c +d)  + (3 d +c - b  -3 a)z~l + (3 a +3 d  - b  -c)z~2 + (d +b - a - c ) z ~ 3

Y (z ) (a + b + c + d ) = d ( l + 3 z - l +3z-2+z~3)X(z)  -  (3 d + c - b - 3 a ) z ~ l Y(z) (A.13)

-  (3 a + 3 d -b -c ) z~ 2Y(z) -  ( d + b - a - c ) z ~ 3Y(z)

Y(z) = P ( 1 + 3 z - 1+ 3 z - 2+ z~3) X ( z )  -  Qz~1Y(z) -  Rz~2Y (z) -  Sz~3Y (z) (A.14)

where

P =  ,  , d  -  (A. 15)
(a + b + c + d )

q  _  ( 3 d + £ - b - 3 a ^  (A 16)
(a +b+c  +d)

R ^ S c f + M - b - c )  ( A 1 7 )
( a + b + c + d )

S= f * bL~a~°l (A.18)
(a +b+c  +d)

By retransforming into time domain the sampled output of the digital filter becomes

y ( n )  = P [ x  (n)+3x (n - l ) +3x  (n -2)+x (n -3 )  ] - Q y ( n - l ) - R y  (n -2) -  Sy (n -3) (A. 19)

The filter output y(n) can be easily realized for a given cut-off frequency and sampling

frequency by computing the coefficients P,Q,R and S and using the recursive equation (A. 19)

with an appropriately set initial conditions for the realization of a causal filter. In the present

simulation, f t = 200 kHz and f c = 787 Hz were employed and the filter frequency response

was first verified for various known sinusoids in the passband and cut-off region. The

impulse response was also verified by using an input sequence *100000......’ and the stability

of the filter was assessed.



CHAPTER 5

PERFORMANCE OPTIMIZATION OF THE 
SEQUENTIAL DETECTOR IN THE ABSENCE OF 

DATA MODULATION

5.1 INTRODUCTION

In this chapter, the sequential detector is applied to the problem of initial acquisition of 

direct-sequence spread-spectrum pseudo-noise signals in the absence of data modulation and 

the performance of three variants of the sequential detector is presented. The optimization of 

the three variants with respect to various critical system parameters is also presented and the 

optimum performances of each variant are compared.

In the subsequent sections, the acquisition performance is presented in two parts. In the first 

part, the performance of an ideal log-likelihood sequential detector (LLD) is obtained by 

means of a Monte-Carlo simulation. The ideal log-likelihood function is very difficult to 

implement. However, it is possible to implement the function digitally using a look-up table 

approach. Consequently, a variant of the sequential detector called the quantized log- 

likelihood sequential detector (QLD) was considered. The principal parameter of interest, in 

the first instance, is the number of quantization levels by the quantized log-likelihood 

function to provide a comparable performance with the ideal log-likelihood function. Hence, 

the effect of the number of quantization levels of the uniform quantizer Q, on the acquisition 

performance of the quantized log-likelihood sequential detector was obtained and compared 

with the performance of an ideal log-likelihood sequential detector. From these results, the 

minimum number of quantization levels for the QLD yielding an acquisition performance 

close to the ideal sequential detector LLD, has been determined.

The log-likelihood function can also be realized employing an approximate model to the 

ideal log-likelihood function, suitable at low SNR conditions, and this results in another 

variant called the biased square law sequential detector (BSD) which was described in 

chapter 3. The acquisition performance of the BSD was also determined for the identical
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system parameters. The acquisition performances of the three variants are presented and 

compared for two bias values, namely, the Wald’s optimum bias (defined in chapter 3) and a 

non-optimum bias value.

In the second part of this chapter, two stages of optimization employed for all three variants 

of sequential detector are presented and discussed. In order to obtain the optimum 

performance of the three variants, in the first phase, optimization was carried out with respect 

to both the upper and lower thresholds of the detectors. In a second stage, the detectors were 

also optimized with respect to the input SNR and the design SNR. The three dimensional 

acquisition characteristics pertaining to both the stages of optimization are presented and the 

optimization of the detectors is then discussed.

PART I: PERFORMANCE OF THE SEQUENTIAL DETECTORS

5.2.1 System Parameters

The critical system parameters determining the performance of the sequential detector system 

are: i) the upper threshold, Tu ii) the lower threshold, Tt iii) the bias value, b and iv) the input 

SNR or equivalently the predetection SNR, y. For most of the time, the SNR at the input to 

the sequential detector is more appropriate than the SNR obtained at the input to the spread- 

spectrum receiver. Consequently, in all the characteristics presented, the predetection SNR 

denoted by y is used. This is the SNR at the output of the predetection filter after the spread- 

spectrum correlation and is therefore larger than the receiver input SNR by the spread- 

spectrum processing gain. In order to obtain a valid simulated performance of the detector, 

the loop gain of the sequential detector also needs to be carefully optimized to achieve 

acceptable probabilities of detection and false alarm over the input SNR range of interest.

5.2.2 Performance Parameters

The major performance parameters of the sequential detector considered are: i) average 

sample number (ASN), ii) probability of detection (Pd) and iii) probability of false alarm 

(Pfa). The performance of the sequential detector is generally characterized by its Average 

Sample Number (ASN) which is the number of samples required to terminate the test. 

Assuming that the samples occur at a rate of l/T<B, where B is the predetection filter 

bandwidth, the mean dismissal time is given by:
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TtUs = ASN IB (5.1)
The performance is also characterized by the probability of detection Pd and the probability

of false alarm pf.  for a given input SNR. However, when applied to the acquisition of spread-

spectrum signals, the total mean acquisition time, T ^ ,  plays a significant role than the ASN

and consequently major emphasis is placed on the acquisition time characteristics.

5.2.3 Total mean acquisition time

The mean acquisition time of a sequential detector depends on a combination of ASN, Pd 

and Pfa. While the occurance of false alarms cause a false alarm penalty time to be added to 

the acquisition time, miss detection (or a non-unity Pd) increases the number of passes of the 

search through the uncertainty region, depending on the required probability of overall 

acquisition P ^ .  The total mean acquisition time is the sum of the search times required to 

search that part of the uncertainty region where the signal is not present and the search time 

for the cell where the signal is present However, normally the time for the latter is neglected 

due to the large number of cells where the signal is not present The time for verification of a 

false alarm (Tvr) and the time to reach truncation to declare the signal present (7V) are 

typically assumed to be 50ms each. Thus the mean acquisition time with the overall 

probability of acquisition P ^  = 0.9 (assumed for the present simulation) is given by:

lll(l -Pacq)
Tocq -  Tfiis

, PfaiJtr + Tvr)1 + •
Tdis

where q is the total number of code cells to be searched.

ln( 1 -  Fd)
(5.2)

5.2.4 Performance of the quantized log-likelihood detector

To assess the acquisition performance of the sequential detector, the ASN, Pd and Pfa were 

obtained by means of a computer simulation of the sequential detector for the predetection 

SNR, y, ranging from -4dB to +10dB for various thresholds and bias values. Generally, it 

was observed that Pd is decided mainly by both the lower threshold and the bias while Pfa ^  

mainly controlled by the upper threshold and the bias level. The effect of the other threshold 

seems to be minor in both cases. For the purpose of the initial evaluation of the QLD to 

obtain the minimum number of quantization levels, the upper threshold was fixed at 5.0 and 

three lower threshold values equal to -5.0, -2.0 and -0.5 were chosen. These values are in the 

range of the near-optimum values observed in the optimization of the detectors which will be 

presented in the subsequent sections. For each set of thresholds, two different bias levels, b, 

were also employed, which are at the normalized Wald’s optimum, b i = y(l+y/2) and a non-
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optimum bias equal to b2 = y [1-3]. The bias in this case is directly derived from the 

predetection SNR and provides the ideal realization of the log-likelihood function for each 

value of the input SNR. The choice of these values allows the performance variation with a 

sub-optimum bias as well as the near-optimum thresholds to be analyzed more completely.

5.2.5 Effect of the number of quantization levels

The effect of the number of quantization levels, Q, on the performance of the QLD were 

obtained for Q = 10,16,32,40,50 and 100 with the upper and lower thresholds at 5.0 and -5.0 

respectively. The characteristics of the ASN versus predetection SNR and the mean 

acquisition time versus predetection SNR, as a function of Q, are presented in figures 5.1 and 

5.2. The ASN and the acquisition characteristics for both the QLD with number of 

quantization levels Q = 32 and the LLD are also shown in figures 5.3 and 5.4 at both bias 

values with the upper threshold at 5.0 and the lower threshold at -5.0.

5.2.5.1 ASN versus Predetection SNR

The ASN for the sequential detection system is seen to depend on the lower threshold, the 

bias value and the predetection SNR. From the characteristics shown in figure 5.3, it is 

observed that the ASN increases with the decreasing predetection SNR. For example, for the 

ideal LLD with the optimum bias, the ASN is 6.25 at SNR = OdB for the lower threshold at 

-5.0 while the ASN is 15.54 at SNR = -3dB for the same threshold. With the non-optimum 

bias, the ASN is slightly higher than that with the optimum bias ie., 10.2 at SNR = OdB and

21.1 at SNR = -3dB for the same threshold. The ASN for the QLD with Q -  32 closely 

agrees with the LLD at SNR = OdB. However, at SNR = -3dB, the QLD appears to be 

overshooting the LLD showing a sharp increase in the ASN with the decreasing SNR which 

can be attributed to the effect of quantization at low SNRs. This effect of coarse quantization 

on the ASN at lower predetection SNRs can be seen in figure 5.1. The effect of quantization 

noise on the ASN for Q > 50 is seen to be minimal even at lower SNRs.

As the lower threshold is increased the ASN reduces, however, the false alarm probability 

also starts increasing, and this starts to control the mean acquisition time. This factor limits 

the choice of the lower threshold to moderate values. With the optimum bias, the ASN is 

seen to be always lower than with the non-optimum bias.

5.2.5.2 Mean Acquisition Time versus Predetection SNR

Figure 5.4 shows the minimum mean acquisition time for two biases with the upper
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threshold at 5.0 and the lower threshold at -5.0. The mean acquisition time as a function of 

the predetection SNR has been plotted for both the LLD and the QLD (for Q = 

10,16,32,40,50 and 100), and the results are shown in figure 5.2. Typically, the mean 

acquisition time reduces as the predetection SNR increases from -4dB, passes through a 

minimum and then increases. At the lower predetection SNR = -4dB, the ASN and the Pfa 

are both at their maximum and these are the dominant tenns which cause a higher acquisition 

time even though the Pd is also at its maximum value. As the SNR is increased, the initial 

fall in the mean acquisition time is due to decreases in both the ASN and the Pfa. A further 

increase in the SNR, even though causes the ASN and Pfa to be reduced, increases the mean 

acquisition time. This is because of the significant reduction in Pd, causing the number of 

passes through the uncertainty region to rise sharply. The reason for this is not immediately 

obvious, because it seems logical that increasing the SNR would increase Pd. However, in 

the case of sequential detector the detector bias, b, is determined by the predetection SNR. 

As the SNR is improved, the bias level falls relative to the upper threshold and the likelihood 

of the samples exceeding the upper threshold thus decreases.

The minimum mean acquisition time and the optimum predetection SNR at which it occurs 

vary with the thresholds, the biases and the type of the detector. The optimum SNR with the 

non-optimum bias is seen to be broader than that with the optimum bias while the minimum 

mean acquisition time with the optimum bias is always less than that with the non-optimum 

bias as seen from figure 5.4.

The mean acquisition time for QLD with Q = 32 closely agrees with the LLD for most part of 

the SNR region of interest. For the QLD with the number of quantization levels set at Q = 10 

and 16, although the acquisition time still shows a minimum, it is higher than the minimum 

achievable and rises very sharply with varying SNR. However, for Q = 32 and above, this 

minimum almost merges with that of the LLD and the characteristic closely agrees with that 

of the LLD throughout the SNR range of interest. The optimum SNR occurs around 7dB for 

both the LLD and the QLD with a minimum achievable acquisition time of approximately 

0 5  sec for the given system parameters.

The minimum mean acquisition time obtainable from the QLD appears to be considerably 

less than for fixed-dwell serial search systems with the same system parameters (which will 

be shown in chapter 7). However, the input SNR necessary to achieve this minimum mean 

acquisition time is higher. This is due to the fact that the simulation, employs a bias which
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depends on the predetection SNR. A sequential detector designed with this input SNR as the 

optimum, with the bias derived from its predetection SNR, can provide the optimum 

performance for an input SNR of around -15dB for a 127 chip sequence. However, as seen 

from figure 5.4, the bias of the sequential detector plays an important part in determining the 

optimum input SNR, and hence, on the choice of the design SNR. As Wald’s optimum bias is 

valid only for the lower input SNRs and the exact expressions for the decision probabilities 

and the average test duration do not require the bias to correspond to Wald’s optimum bias 

[3], changing the bias independently from the predetection SNR would allow the choice of a 

design SNR suitable for a wider range of input SNRs. The effects of the bias variation (sub­

optimum bias) and the design SNR, on the acquisition performance will be fully examined in 

the subsequent sections and the optimum detector performance will be derived.

Thus, the QLD with 32 quantization levels is seen to have a performance close to that of the 

ideal log-likelihood sequential detector. With this number of quantization levels, a simple 

realization of the QLD using a look-up table approach can be implemented digitally with an 

easily manageable size of ROM (read only memory), thus reducing the hardware complexity 

and consequently the QLD with 32 quantization levels has been employed for all further 

analyses.

5.3 COMPARISON OF THE ACQUISITION PERFORMANCE OF 
BSD AND QLD

This part compares the acquisition performance of the quantized log-likelihood sequential 

detector (QLD) with the biased square law sequential detector (BSD). The BSD was also 

simulated with the same system parameters as the QLD and its acquisition performance was 

obtained. The performance of the QLD with Q -  32 and the BSD have been compared both 

at Wald’s optimum bias and at a non-optimum bias for a predetection SNR ranging from 

-4dB to +10dB.

53.1 Comparison of the acquisition performance

From equation (5.2) it was observed that the total mean acquisition time is not only directly 

related to the mean dismissal time but also to Pd and Pfa- Consequently, the simulation 

results have been presented to facilitate the comparisons of ASN as well as the mean 

acquisition time. It has been observed that, for both types of detector, Pd is mainly decided 

by the lower threshold Th and the bias value b, whereas Pfa is mainly decided by the upper 

threshold, Tu, and the bias value; with the other thresholds showing a minor influence on
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bothPya and Pd.

For the purpose of comparison, the upper threshold was fixed at 5.0 and the lower threshold 

was set to -5.0,-2.0 and -0.5 with the two bias values b, viz: normalized Wald’s optimum, 

b i = y(l + y/2) and the non-optimum, b2 = y and the simulation was repeated for each set of 

values. The ASN, Pd and Pfa for the QLD with Q = 32 and the BSD for both bias values with 

different threshold settings was obtained, and the variation of ASN with predetection SNR 

are shown in figures 5.5-5.6 for both types of detector.

53.2 ASN characteristics

The ASN of the sequential detector depends both on the lower threshold and the bias value 

and is always seen to be less when optimally biased than when non-optimally biased. From 

the characteristics shown in figure 5.5 and 5.6 , it can be seen that the ASN increases with 

decreasing predetection SNR. For the QLD, the ASN is lower than the BSD at an SNR = OdB 

and almost as good as the LLD (figure 5.3). The difference is mainly due to the effect of the 

coarse approximation employed in the BSD by truncating the power series expansion of the 

ln /J  ] function to the fourth power. However, at an SNR = -3dB the QLD overshoots the 

BSD and shows a sharp increase in the ASN when the SNR is further decreased. This rise is 

seen to be due to the effect of quantization at low SNRs. Nevertheless, when the quantization 

levels are increased to Q > 100 this rise in the ASN is seen to be minimal as shown in figure 

5.1.

5 3 3  Acquisition characteristics

The mean acquisition time for both the detectors as a function of the predetection SNR in the 

range of -4dB to lOdB is shown in figures 5.7 and 5.8 for both the optimum and the non­

optimum bias points. For both the QLD and the BSD, the mean acquisition time initially 

decreases with increase in SNR from -4dB and passes through a minimum. As in the case of 

LLD and the QLD (discussed earlier), for the case of BSD also the initial fall in is 

attributed to decreases in the ASN and the Pfa with an increasing SNR. The increase in is 

also because of the significant reduction in Pd at higher SNRs which increases the number of 

passes required.

For the case of the QLD, the minimum is always less with the optimum bias than with 

the non-optimum bias. However, for the BSD the minimum occurs with the non-optimum 

bias. This leads to the observation that the truncation error in the ln/0[ ] function when
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approximated with the BSD, requires that the bias needs to be carefully tuned for optimum 

performance. The optimum predetection SNR is higher in the case of the non-optimum bias 

than with the optimum bias. For the QLD, the optimum SNR occurs around 7dB (with 

normalized Wald’s optimum bias) whereas for the BSD, the optimum SNR occurs around 

lOdB (with non-optimum bias) and is higher than either the LLD or the QLD, thus limiting 

its use to operation in high SNRs. The corresponding input SNRs at which this minimum 

occurs are -14dB for the QLD and -lldB  for the BSD. In all the cases, minimum mean 

acquisition times of around 0.5rec are achieved.

Thus, the QLD is found to perform better with the optimum bias at low SNRs than the BSD. 

The mean acquisition time of the BSD at the optimum bias rises rapidly with the increasing 

SNR and is also highly sensitive to the predetection SNR whereas the QLD has a relatively 

robust performance at the optimum SNR. The BSD achieves the minimum mean acquisition 

time for the non-optimum bias at a higher predetection SNR. Performance of the BSD is 

found to be worse than the QLD, in particular, for achieving minimum mean acquisition time 

at lower predetection SNR. The exact realization of a square law detector is also quite 

difficult whereas the realization of the QLD (for example, using a look-up table approach for 

32 quantization levels) can be implemented easily with a relatively small ROM size.

Even though certain conclusions have been drawn from these results, the exact realization of 

the sequential detector requires the optimum or near-optimum system parameters to be used 

to achieve the best performance. As seen from the above comparisons, the lower threshold, 

the bias value and the predetection SNR play critical role in determining the performance of 

the detector. Normally, as the bias is derived from the SNR, the variation in the input SNR 

ideally causes a change in the bias. However, it is also an engineering requirement to design a 

sequential detector at a fixed design SNR which can work for a wide range of input SNRs 

without much degradation. All these considerations lead to the investigation of the optimum 

design SNR and the associated system parameters for an optimum sequential detector. These 

optimizations were carried out for all three variants and their optimum performance is 

discussed in the following sections.
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PART n: OPTIMIZATION OF SEQUENTIAL DETECTOR

5.4.1 Optimization procedure

As the mean acquisition time is critically related to all the system parameters, two stages of 

optimization were carried out to determine the optimum acquisition performance of the 

sequential detector. In stage one, both the upper and lower thresholds were varied over the 

practical range of interest at a fixed predetection SNR and the acquisition performance was 

obtained. In the second stage, both the predetection SNR and the design SNR were varied 

using the near-optimum thresholds obtained from stage one and the acquisition performance 

was then obtained. The bias was then set as a function of the design SNR and the input SNR 

(predetection SNR) was varied to obtain the required performance characteristics. For all the 

characteristics, two bias values related to the design SNR were employed, the first was the 

normalized Wald’s optimum bias, b = bx and the second was a non-optimum bias, b = b2, 

both defined in section 5.2.4. The characteristics for both these stages have been plotted as 

three dimensional (3-d) curves with the logarithm of on the vertical axis and their 

characteristics are discussed in the following sections.

5.4.2 Acquisition time characteristics

The mean acquisition time 7 ^ ,  ASN, Pd and Pfa were determined by varying the thresholds 

(stage I optimization) and by varying the input SNR and the design SNR (stage II 

optimization) and the optimization curves are shown separately for both stages of 

optimization.

5.4.3 Threshold optimization curves

Figures 5.9a through 5.14a show the optimization curves with respect to the upper and lower 

thresholds for both bias values. For all the variants, both the input SNR and the design SNR 

were chosen to result in the close to the minimum acquisition time observed from the 

results of the previous section. For both the LLD and the QLD, all the curves were obtained 

at a fixed input SNR of -13dB (corresponding to a predetection SNR = 8 dB) for a design 

SNR also at 8dB and the lower threshold was varied from -1.0 to -15.0 whilst the upper 

threshold was varied from 0.0 to 10.0. In case of the BSD, the design SNR was set at 4dB 

whereas the corresponding input SNR was at -17dB (predetection SNR = 4dB). The same 

range of thresholds as for the LLD and QLD were used. For ease of interpretation, the
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corresponding two-dimensional (2-d) plot for each characteristics, with plotted against 

the lower threshold when the upper threshold was varied in steps, is also presented in figures 

5.9b-5.14b.

From these figures it is observed that as the lower threshold is decreased, the mean 

acquisition time also decreases and passes through a minimum for each value of the upper 

threshold. However, the characteristics of all three variants at both the bias values are least 

affected with the change in the upper threshold (for the given range of parameters used). For 

the case of optimum bias, the minimum mean acquisition time occurs at a lower threshold 

generally around -5.0 (close to -4 for the BSD and -7 for the LLD and QLD) for most values 

of the upper threshold. However, the minimum is seen to be broader for both the LLD and 

the QLD than the BSD. The BSD has a minimum which is quite sharp and stable with the 

upper threshold whereas both the LLD and the QLD show broader minima. Both the LLD 

and the QLD also exhibit local minima unlike the BSD which shows a sharper global 

minimum. Although the minimum drifts around the lower threshold = -5.0 for the LLD and 

the QLD with different upper thresholds, it shows a stronger dependence on the bias value 

for all detectors.

In case of the non-optimum bias b2 as shown in figures 5.12 through 5.14, the minimum 

is found to occur at a much higher value of the lower threshold which is around -1.0 and 

remains to be almost constant with the upper threshold. With this bias, all three variants 

show a similar trend, but the BSD has a lower minimum acquisition time than either the LLD 

or the QLD throughout the range of lower threshold.

Thus, the typical values of thresholds namely Tu = 5.0 and Tt = -5.0 for b = bx and Tt = -0.5 

forb = b2 were chosen from these observations and used in the stage II optimization.

5.4.3.1 ASN characteristics

The ASN for both the LLD and the QLD has been seen to be close to 1.0 and increases with 

the decreasing lower threshold. However, the change has been seen to be minimal for both 

the variants as ASN changes from 1.0 (at higher values of Tt) to 1.05 (at lower values of Tt). 

This is due to the fact that the bias and the input SNR are set to be constant which largely 

determine the ASN while both the thresholds in the range of interest show less influence. 

However, in case of the BSD, although the upper threshold still has least effect, both the bias 

and the lower threshold influence the ASN more. In this case, with the Wald’s optimum bias, 

the ASN varies from 1.0 - 4.0 with the decreasing lower threshold whilst this variation is
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from 1.0 - 2.5 for the non-optimum bias. This significant change in the ASN is caused due to 

the fact that the bias and the input SNR of the BSD are much lower than the LLD and the 

QLD which reduces their dominance allowing the thresholds to influence more.

5.4.3.2 Probabilities of detection and false alarm

The probability of detection and probability of false alarm with lower threshold for various 

values of the upper threshold are also shown in figures 5.15 through 5.23, for all the three 

variants. It is found that both Pd and Pfa decrease as the lower threshold is increased for all 

values of the upper threshold at Wald’s optimum bias shown in figures 5.15 - 5.20. This is 

because the higher values of lower threshold forces the sequential test to be terminated 

quickly, causing increased miss detections. However, the upper threshold has very little 

influence on Pd for all three variants of the sequential detector which is the principal reason 

for the insensitivity of with the upper threshold (as ASN is almost constant).

Nevertheless, the bias value is found to have more influence on both Pd and Pfa rather than 

the upper threshold. At the non-optimum bias b = b 2,Pd  becomes saturated to a value of Pd = 

0.99 throughout the range of lower threshold for all values of upper threshold considered. 

The Pfa with this bias as shown in figures 5.21 - 5.23, shows a sharp rise for both the LLD 

and the QLD (notice the change in the scale on y-axis) when compared to that with Wald’s 

optimum bias, eventhough it is reduced with the increasing lower threshold. The Pfa for the 

BSD, however, is relatively unchanged at this bias.

As the ASN is relatively unchanged for the LLD and the QLD, it is the fall in the detector 

probabilities with the increasing lower threshold which causes the to be reduced as 

observed in figures 5.12 - 5.14. In case of BSD, both the reducing ASN and the fall in 

detector probabilities influence the minimum mean acquisition time.

5.4.4 SNR optimization curves

Figures 5.24a through 5.29a show the effect on the mean acquisition time when operating the 

sequential detector at a predetection SNR which is different from the design value. The 

curves show plotted with respect to the predetection SNR and the design SNR for an 

upper threshold at 5.0 and a lower threshold at -5.0 and -0.5 for the bias value at b x and b 2 

respectively (which were chosen from the stage I optimization). Figures 5.24b - 5.29b show 

the corresponding characteristics plotted as two-dimensional (2-d) curves with the design 

SNR varied in steps.
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From these figures, when the predetection SNR is varied from -4dB to 10dB, the mean 

acquisition time is observed to be strongly dependent on the design SNR. It is also seen that 

the mean acquisition time passes through a minimum for a range of design SNRs and 

predetection SNRs and these ranges depend on the bias value and the detector type. For the 

LLD, as shown in figure 5.24 this minimum occurs for design SNRs from 2dB to lOdB with 

the predetection SNR ranging -2dB to 8dB. However, the global minimum for the LLD 

occurs when the actual predetection SNR of 8dB matches the design SNR. Alternatively, it 

can also be observed that there is an optimum design SNR for each value of the predetection 

SNR.

In figure 5.25 the characteristics for the QLD are shown and the optimum behaviour is seen 

to be close to that of the LLD with the global minimum also occurring for both the 

predetection SNR and the design SNR around 8dB.

For the case of BSD as shown in figure 5.26, the minima are shaiply defined, particularly at 

the higher predetection SNRs. The optimum design SNR ranges from 2dB to 6dB only and 

the global minimum occurs at a predetection SNR of 8dB for a design SNR at 6dB 

corresponding to an equivalent input SNR of -15dB.

The characteristics for the non-optimum bias b2 are presented in figures 5.27 through 5.29. 

These curves show a shift in the minimum when compared with the case of Wald’s optimum 

bias for all three variants of the detector. All three variants show a minimum at higher design 

SNRs. However, in case of both the LLD and the QLD, the predetection SNR required is 

much less than that with Wald’s optimum bias which is now at 5-6 dB. For the BSD, both 

the design SNR and the predetection SNR at which the global minimum occurs are increased 

to lOdB. Nevertheless, the performance of the BSD at lower SNRs is still superior to that 

with the Wald’s optimum bias. In fact, all the detectors tend to show clear minima (local 

minima) at lower predetection SNRs also even though the global minimum occurs at higher 

design SNRs.

In order to assess the various contributing factors for the above behaviour of the detectors the 

ASN and the detector probabilities for the corresponding system parameters have also been 

plotted (for stage II optimization) and shown in figures 5.30 through 5.38.

5.4.4.1 ASN characteristics

For most of the cases discussed, the ASN remains constant as the predetection SNR is varied
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CHAPTER 6

PERFORMANCE OF SEQUENTIAL DETECTORS 
IN THE PRESENCE OF DATA MODULATION 

AND DOPPLER SHIFT

6.1 INTRODUCTION

In the first part of this chapter, the effect of data modulation on the acquisition performance 

of the quantized log-likelihood sequential detector (QLD) and the biased square law detector 

(BSD) are compared with the ideal log-likelihood sequential detector (LLD) for predetection 

SNRs in the range -4dB to lOdB. The degradation in the acquisition performance due to the 

presence of random BPSK data modulation was assessed for each variant of the sequential 

detector and new results on the acquisition performance of sequential detectors in the 

presence of data modulation are presented and compared with the performance without data 

modulation. In the second part, the problem of initial acquisition of direct-sequence spread- 

spectrum PN codes under low SNR conditions is extended to include the presence of carrier 

and code Doppler frequency offsets. This analysis also examines, for the first time, the effect 

of both carrier and code Doppler on the mean acquisition time of a sequential detector.

In an earlier paper, Cobb and Darby characterized the acquisition performance of a sequential 

detector using a computer simulation [1]. However, their simulation did not include the 

presence of the data modulation and also employed various simplifications, and only the 

results of the miss detection probability for a given ASN and the probability of false alarm 

were presented. As a part of this research work, recently results on the computer simulation 

of more complete implementations of the biased square law and a quantized log-likelihood 

sequential detector in the absence of data modulation were presented by Ravi and 

Ormondroyd [2]-[3] which were discussed at length in the previous chapters.

In this chapter, new results on the acquisition performance of three variants of sequential 

detector in the presence of random BPSK data modulation and/or Doppler shift are presented 

and these are compared with the performance in the absence of data modulation and/or
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Doppler shift [5].

PART I: ACQUISITION PERFORMANCE IN THE PRESENCE 
OF DATA MODULATION

In this part, the effect of data modulation on the quantized log-likelihood sequential detector, 

the biased square law sequential detector and the ideal log-likelihood sequential detector is 

presented and their performances compared. The effect of data modulation on the acquisition 

performance is analyzed for each variant of the sequential detector for identical system 

parameters and presented for both the Wald's optimum and the non-optimum bias values for 

predetection SNRs in the range -4dB to lOdB. The analysis is carried out with each detector 

operating at its optimum design SNR in the predetection SNR range from -4dB to lOdB 

(which are obtained from the previous optimization results). The ASN and the acquisition 

time characteristics are also compared both in the presence and absence of data modulation. 

Additionally, the variation of detector probabilities is presented and the effect of data 

modulation on these probabilities discussed.

6.2.1 EFFECT OF DATA MODULATION ON THE CORRELATION 

FUNCTION

The log-likelihood function defined earlier which is given by (3.68) does not model the loss 

of correlation due to the data modulation present on the carrier. When the data is added, the 

received signal with data modulation, r { t )  can be written as:

r(0  = V2S d(t+\T0 +(JC) C(r+trc) cos(we< + ee) + n(0 (6.1)
where all the symbols have been defined in chapter 4.

The correlator signal at baseband in the presence of data modulation (representing a sample 

value on the correlator curve), x (/), is given by:

x(0 = u  cos(0c) + n(O (6.2)
u  = 'ilA  d ( t  +%T, +C,Tc)c  (1+t,Tc) C (t  +zTe) (6.3)

When x  ( t )  is passed through the envelope detector, the presence of data on the carrier causes

degradation in the output of the correlator since the correlation across the data bit boundaries

can result in the loss of the wanted signal when the data bit changes polarity. Furthermore, if

the square law detector is used to remove the data modulation effects, this would add a

squaring loss term due to the rectification of the noise signal.
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Normally, the data modulation distortion effect can be reduced by using a combined output 

from a bank of parallel I-Q detectors, each matched to a different pattern which the data 

sequence can assume within the correlation interval. However, the number of such detectors 

could be quite high as it depends on the number of data bits to be integrated and the 

resolution of the data epoch uncertainty. Another method is to employ square law 

noncoherent combining detection in which the correlation time is partitioned into a number 

of subintervals. The integration results in these subintervals can then be combined 

noncoherently for detection. Recently, such a scheme has been analyzed by Cheng [4], Using 

this method, the effect of data modulation is reduced but at the cost of combining loss. 

Although this is not as efficient as the parallel bank of I-Q detectors, it does not suffer from 

the penalty of complexity.

In the sequential detectors simulated here, the envelope detector samples are directly 

emphasized by the nonlinearity function ’In /«,[]’ and the result is accumulated for the 

threshold comparisons. Therefore, the correlation interval cannot be partitioned into 

subintervals for combining directly. However, a parallel implementation is possible, whereby 

a bank of detectors, each with its own sequential detection algorithm can be matched to a 

different data pattern. In this woik, no parallel implementation was assumed and hence, a 

sequential detector operating serially to search entire uncertainty region was simulated and 

its acquisition performance with data modulated PN signals was evaluated.

6.2.2 SIMULATION OF DATA MODULATED SIGNALS

The three variants of sequential detector were simulated by means of the Monte-Carlo 

computer simulation, described earlier. However, the incoming pseudo-noise (PN) code 

sequence, which is of length L = 127 and chip rate Rc = 1 !TC = 100Kb Is, was modulated by a 

random binary data sequence at a rate, 1 IT0 =RCIL = 1ILTC with random data transitions. A 

pseudo-noise (PN) code of length 15 was used as a data sequence and each time the test was 

repeated, a new data sequence was generated with an arbitrary data transition.

With these data modulated PN signals, the simulation was carried out to obtain various 

performance characteristics. As the acquisition performance of the sequential detectors 

depends critically on the bias, SNR and the threshold settings of the log-likelihood function, 

the bias, in this case, was set to be a function of the predetection SNR (to enable comparison 

with the ideal behaviour). For each detector, three lower threshold values 7) = -5.0, -2.0, -0.5 

(in the range of their near-optimum thresholds) and an upper threshold Tu = 5.0 were

j

i
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employed and the acquisition performance was obtained for the bias values b i and b2- The 

signal gain after envelope detection was optimized to result in maximum probability of 

detection for a given probability of false alarm and predetection SNR.

6.2.3 ACQUISITION PERFORMANCE

For each detector, with each set of system parameters, the ASN, Pd, Pfa were obtained. The 

ASN and the acquisition time characteristics are plotted for the cases with data modulation 

and no data modulation. The variation of the detector probabilities have also been plotted 

with predetection SNR and the performances are compared subsequently.

6.2.4 ASN characteristics

The variation of ASN with predetection SNR has been plotted for each detector for all three 

lower thresholds at each bias value and is shown in figures 6.1 through 6.6. For all the 

detectors, the ASN decreases with increasing predetection SNR both in the absence and the 

presence of data modulation. This is attributed to the fact that increasing predetection SNR 

increases the bias value which in turn reduces the value of log-likelihood function and this 

causes the lower threshold to be exceeded more frequently. As for the earlier cases, the value 

of ASN depends strongly on the lower threshold and the bias. With the further reduction in 

the level of the lower threshold, a rapid fall in the ASN with the predetection SNR is 

observed for both cases. The ASN in the presence of data modulation does not change 

significantly when compared to the case of no data modulation, particularly at higher 

predetection SNRs. However, a slight increase in the ASN at lower predetection SNRs is 

observed for all the detectors. Thus, the presence of data does not significantly degrade the 

ASN performance.

6.2.5 Probability of detection and Probability of false alarm

The probability of detection and the probability of false alarm are shown in figures 6.7 

through 6.18. Both the predetection SNR and the lower threshold are seen to have a strong 

influence on the detector probabilities Pd and Pfa for both cases with data modulation and no 

data modulation. At lower predetection SNRs, with the lower threshold set at -5.0, both the 

probability of detection and the probability of false alarm are at their maximum. With 

increasing predetection SNR, both these probabilities are observed to decrease both with and 

without data for all three detectors when biased at Wald’s optimum bias, b = bx. This is due 

to the fact that as the predetection SNR improves, the log-likelihood function falls due the
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high bias value and the probability of the wanted signal crossing the upper threshold falls. It 

can also be seen that increasing the lower threshold has also the effect of reducing both Pd 

and Pfa as the lower threshold is crossed too frequently thus reducing the decision reliability. 

With further increase in predetection SNR, Pd tends to the same value for all the lower 

thresholds and for both bias values.

However, with the non-optimum bias, both the LLD and QLD as shown in figures 6.8 and 

6.10 show an increase in the Pd at higher predetection SNRs, particularly at higher values of 

Ti. At the lower values of Tt the Pd is seen to be saturated. This is due to the non-optimum 

behaviour of the detectors when the relationship between the bias and predetection SNR 

changes. As the log-likelihood function at this bias is less dependent on the bias (b2 = y) 

compared to when biased at Wald’s optimum bias (bx = 7(l+y/2 ), the predetection SNR 

influences the Pd more. However, at lower predetection SNRs, the bias is still dominant and 

this produces minima in the Pd (at Tt = -0.5) in the medium predetection SNRs. Similar 

tendency is seen in case of Pfa for the QLD at Tt = -0.5, however, it is not pronounced. The 

BSD, however, shows decreasing probabilities for both biases at all three values of lower 

threshold which can be attributed to the approximations employed, giving the likelihood 

function a closer dependence on the predetection SNR rather than the bias.

For all detectors, although the detector probabilities both with and without data modulation 

change in a similar way with respect to the variation of the lower threshold and the 

predetection SNR. However, a significant degradation in Pd with data modulation is 

observed. Nevertheless, for all the situations shown in figures 6.13 through 6.18, Pfa is not 

seriously affected for the case with data modulation.

Thus, the presence of data modulation is seen to affect Pd more than the Pfa and the ASN, and 

hence it is the change in Pd which is dominant in affecting the mean acquisition time.

6.2.6 Mean acquisition time

Figures 6.19 through 6.24 show the acquisition time characteristics of each detector, with and 

without data modulation and at both values of bias. As the ASN, Pd and Pfa change with the 

increasing predetection SNR, this causes the mean acquisition time to pass through a 

minimum. The increase in the ASN is responsible for the initial increase in the mean 

acquisition time at lower predetection SNRs whereas the reduction in Pd causes the mean 

acquisition time to increase after passing through the optimum SNR. The optimum SNR and 

the minimum mean acquisition time are also observed to change with the bias for all the
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detectors.

The presence of data modulation is seen to affect both the minimum mean acquisition time 

and the optimum SNR. For all variants, the curves are found to shift upwards, showing a 

general degradation in the minimum mean acquisition time. This is due mainly to the 

degradation of Pd caused by the loss of correlation signal which is due to the filtering and 

envelope detection loss at the data bit transitions caused by polarity changes.

For the LLD and the QLD, when operated at the optimum bias point, the degradation in 

acquisition performance is virtually the same at all three lower thresholds for higher values 

of y (say, y > 4dB). However, for values of y < 4dB, the degradation is minimized for Tt = 

-5.0 whereas it is still substantial when the lower threshold is either -2.0 or -0.5. When 

operated under non-optimum bias conditions, the degradation is reduced and uniform 

throughout the range of y except for Tt = -0.5 which shows a significant degradation at lower 

values of y. At higher values of y, the degradation is observed to tend to a same value. For the 

BSD with optimum bias, the degradation is greater at the lower values of y and decreases at 

higher values of y as the characteristic becomes saturated. At the non optimum bias, the BSD 

shows more degradation at higher values of y while the degradation at the lower values of y 

seems to be quite negligible.

The acquisition performance of the QLD closely agrees with that of the LLD both with and 

without data modulation. For example, at the optimum bias the optimum SNR for the LLD 

and the QLD without data modulation is around 5-7dB with the minimum mean acquisition 

time ranging from 0.5-1.0sec (depending upon the value of the lower threshold) and 4-8sec 

for the same range of optimum SNR with data modulation. When the bias is changed, both 

the LLD and the QLD show similar changes in the performance both with and without data 

modulation. The minimum mean acquisition time without data has now increased to 2-5sec 

whereas with data it does not show significant change.

For the BSD without data when biased at Wald’s optimum bias, the SNR at which the the 

mean acquisition time is minimum, occurs around 3-4dB. In this case, the minimum mean 

acquisition time is typically 0.5-1.0sec. However with data, the optimum SNR reduces to 

between -ldB and 2dB with an increase in the minimum mean acquisition time of 

approximately lOsec. The actual minimum for the BSD occurs with a non-optimum bias 

around lOdB without data and around 8dB with data. Thus, the actual input SNR required for 

the operation of the BSD with data modulated signals is 2-3dB less than that with no data
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modulation, however, minimum mean acquisition time attainable is increased. In case of the 

LLD and the QLD, although the optimum SNR does not change significantly, the minimum 

mean acquisition time is increased by 5-10 times.

PART II: ACQUISITION PERFORMANCE IN THE PRESENCE 
OF DATA MODULATION AND DOPPLER SHIFT

In this part, the problem of initial acquisition of direct-sequence spread-spectrum PN codes 

under low SNR conditions in the presence of carrier and code Doppler frequency offsets is 

addressed. As before, the analysis is carried out by means of a Monte-Carlo simulation. 

First, the effect of various code Doppler offsets was simulated for an LLD without data 

modulation and the degradation in the mean acquisition time for three different code Doppler 

offsets was compared. Later, the degradation in the acquisition performance due to the 

presence of data modulation with a typical Doppler shift of lOOchips/s in a code rate of 

lOOkchips/s was assessed for all three detectors; with each detector operating at its optimum 

design SNR in the predetection SNR range from -4dB to lOdB. New results for the 

acquisition performance, as the input SNR is varied about the optimum design value, are 

presented for the LLD, QLD and BSD.

For many practical applications, such as satellite communication systems, a particular 

problem is that of Doppler frequency offset, both with respect to the carrier frequency and the 

clock frequency of the incoming PN codes. Carrier Doppler frequency offset has an effect 

because the IF bandwidth (and hence noise bandwidth) must be wider to accommodate the 

frequency offset and hence this has an effect of increasing Pfa and also decreases Pd due to 

long-term decorrelation. Code rate Doppler offset causes the two codes to be decorrelated, 

which reduces the probability of correctly detecting the wanted code epoch and also causes 

the generation of self-noise [6]. The purpose of this work is to establish by how much these 

frequency offsets can have detrimental effect on the mean acquisition time of the code 

synchronizer.

Though the code acquisition problem has attracted considerable research attention recently, 

very few published analyses have considered both data modulation and Doppler effects. Of 

these, Holmes [7] has presented an approximate analysis of the performance degradation of a 

single dwell serial search scheme due to Doppler offsets on the code rate, but this analysis



- 1 2 6 -

did not include the effect of the change in detection probability. Davisson and Flikkema 

presented performance results of a parallel acquisition scheme using maximum likelihood 

detectors for signals carrying data and affected by Doppler [8], whilst Cheng et al [9] have 

considered the effect of code and carrier Doppler on the spread spectrum acquisition problem 

using square law non-coherent combining detection with parallel/hybrid architectures.

The purpose of this analysis is to examine, for the first time, the effect of both carrier and 

code Doppler on the mean acquisition time of a sequential detector. The degradation in the 

mean acquisition time due to both Doppler effects in the presence and absence of random 

binary data modulation for the three variants of sequential detector are analyzed at the two 

values of bias employed in the previous analyses.

63.1 DOPPLER EFFECTS ON PN CODE CORRELATION

Doppler shift affects the acquisition performance in two ways, namely, carrier frequency 

offset and code frequency offset If the carrier Doppler shift is small then the code frequency 

offset is so small that it can be ignored. However, in certain applications, such as the high 

dynamics GPS receiver and TDRSS spread-spectrum links, the Doppler conditions are severe 

and the resultant code Doppler offsets cannot be ignored.

The presence of code frequency offset causes code chip slipping during the correlation 

between the received code and the local PN code. This causes decorrelation, resulting in the 

reduced probability of detection, and the acquisition performance can be degraded 

significantly [6]. Further, it can reduce the average search rate depending upon the polarity of 

the Doppler (direction of code slipping) and hence can unusually increase the acquisition 

time. In fact, the search rate can be reduced to zero if the code phase shift caused by Doppler 

over a dwell time is same as the mean code phase update and this can cause a drastic increase 

in the acquisition time.

Often, both carrier and code Doppler can be partially removed by using the known user 

dynamics. However, the residual Doppler is still normally quite significant. The presence of 

residual Doppler on a data modulated carrier affects the acquisition in two ways. First, the 

residual carrier Doppler causes long-term decorrelation between the incoming code and the 

local PN code through phase rotations of the correlation signal at the residual carrier 

frequency and secondly, the data modulation causes similar decorrelation due to 

unpredictable phase shifts due to the data transition.
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To combat the effects of decorrelation non-coherent combining using square law detectors is 

normally employed. Though this does not eliminate the decorrelation completely, it is kept to 

a minimum depending on the data transition density but does cause squaring loss. Both 

Doppler effects can also be alleviated by subdividing the correlation interval and the 

frequency uncertainty region and using a parallel bank of correlators and combiners. 

However, the degree of parallelism depends on a tradeoff between hardware complexity and 

the acquisition performance.

63.2 SIMULATION OF DOPPLER EFFECTS

The received signal structures at the input to the correlator can be viewed as being from two 

classes: one, containing data modulation and the other with no data modulation. 

Consequently, six types of signal model with and without Doppler shift were considered and 

their mathematical representations have been given in chapter 4. These signal types are:

1. DS spread-spectrum signal without data modulation.

2. DS spread-spectrum signal with code Doppler frequency offset without data modulation.

3. DS spread-spectrum signal with code and carrier Doppler frequency offset without data 

modulation.

4. DS spread-spectrum signal with data modulation.

5. DS spread-spectrum signal with code Doppler frequency offset and data modulation.

6. DS spread-spectrum signal with code and carrier Doppler frequency offset with data 

modulation.

When a spread-spectrum signal with data modulation and Doppler shift is received by the 

spread-spectrum correlator, the output of the correlator at baseband, x { t\  can be represented 

as:

where xTc represents the local code phase offset and the rest of the symbols as defined in 

chapter 4.

The correlator signal is envelope detected, and the samples are then directly emphasized by 

the nonlinearity function ’In I0[ ]’ in the sequential detector.

x(t) = u(t) cos(0c) + n (t) (6.4)

u(t) = 'ilA c  - r p r -U c  d — d r-\T c c -p -r-tr,
1 —L 1 —C  1 —X

(6.5)
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The simulation models these effects by generating the code rate Doppler and the residual 

carrier Doppler. In order to generate the code rate Doppler, the transmit and receive PN chips 

are passed through a counter with the next transition of the code chip set according to the 

count ratio, required to offset the clock rates, as needed by the Doppler shift This method 

provides an easy way of simulating the Doppler shift and also scope for extending the 

simulation to include the Doppler rate by simply varying the count ratio. The residual carrier 

Doppler offset was generated by modelling its equivalent effect at baseband, using the 

equivalent amplitude error due to the carrier frequency drift. The Doppler frequency error on 

the sampled signal, s (O' at a Doppler radian frequency <ad was thus simulated as:

s(t)' = s(t) cos(codnTs) (6.6)
where n is the number of the sample taken at an interval Ts = 1 ff3 and s(t) is the time varying

signal without Doppler shift

The direct-sequence spread-spectrum signals were simulated, as earlier, with a pseudo noise 

code of length L -  127 and chip rate Rc = 1/TC = 100 kchips/sec. These codes were modulated 

by a random binary data sequence at a rate, l/T0 = Rc/L = 1ILTC with random data transitions. 

A range of Doppler code frequency offsets from 100 chips/sec to 10 kchips/sec were 

generated and the effect of various code Doppler offsets was obtained for the LLD for the 

case of no data modulation. A residual carrier frequency offset of 1kHz was also generated 

and a typical Doppler code frequency offset of 100 chips/sec was then impressed on the 

transmit PN code clock. An additive white Gaussian noise (AWGN) was added and the 

composite spread-spectrum signals both with and without data were used to generate the 

corrupted received signals.

63.3 ANALYSIS OF SIMULATION RESULTS

The simulation employs the near-optimum values for the system parameters of the detector:

i) Tu, ii) Th iii) bias, b and iv) design y, y**, obtained from the optimization discussed in 

chapter 5. All the performance parameters namely, i) ASN ii) probability of detection, Pd iii) 

probability of false alarm, Pfa and iv) total mean acquisition time, were examined for the 

six types of signals considered and the performance degradations assessed.

Thus, three lower threshold values at Tt = -5.0,-2.0,-0.5 and an upper threshold value at Tu = 

5.0 were employed with both the bias values bx and b2 for the predetection SNR, range of 

-4dB to lOdB. The optimum design SNR y(irn corresponding to each detector, which was 

obtained through previous optimization results, was employed and the acquisition
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characteristics were obtained using this design SNR y** with y varied about y^,.

6.3.4 Mean Acquisition Time

First, the mean acquisition time of the LLD for three different code Doppler offsets was 

compared with its ideal performance and the degradation due to code floppier was assessed. 

Later, the degradation in the acquisition performance of the three variants, when all six signal 

structures were employed, was obtained for a typical Doppler shift of 100 chips/sec and the 

results compared.

63.5 Effect of code Doppler offset on the mean acquisition time

The mean acquisition time as a function of the predetection SNR for the LLD with three code 

Doppler offsets is shown in figure 6.25. The three code Doppler offsets employed are 100 

chips/sec, 1 kchips/sec and 10 kchips/sec in a code rate of 100 kHz. The curves show that the 

mean acquisition time is degraded significantly when the Doppler offset is 10 kchips/sec 

(which is normally considered to be a very high Doppler shift for the code rate of 100 kHz). 

However, as the Doppler shift is reduced, the degradation reduces particularly at higher 

predetection SNRs. For a Doppler shift of 1 kchips/sec, the degradation is still quite high, 

but, it is tolerable when the Doppler shift has fallen to 100 chips/sec. In our further 

investigations on the effects of both carrier and code Doppler shift, a code rate Doppler offset 

of 100 chips/sec was employed.

6.3.6 Effect of carrier and code Doppler offset on the mean acquisition time

In figures 6.26 through 6.31, the mean acquisition time is plotted as a function of 

predetection SNR, y. The six curves on each graph correspond to the six signal types 1-6 

defined earlier. Signal type 1 is used as the reference signal for the purpose of comparison. In 

all the figures, it is observed that is maximum at low y and starts to decrease as y is 

increased and then passes through a minimum for all signal types. The reasons for this are 

attributed to the dominance of Pd and Pm which change with y. At a very low y both Pd and 

Pfa are very low and it is the reduced Pd that causes a high whereas at a very high y both 

Pd and Pfa are also very high and it is the false alarm penalty which causes the to increase 

once again. This is due to the fact that the detector is operated at a fixed design SNR, y ^ , 

thus the bias value is fixed even though the predetection SNR changes. At higher y, the 

increased signal strength dominates in determining the value of the log-likelihood function 

rather than the bias value and this causes higher Pd and Pfa as the tendency to cross the upper
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threshold increases (because the bias has the effect of reducing the log-likelihood function 

whereas the signal strength has the effect of increasing the log-likelihood function). 

However, at lower y, the bias term dominates rather than the signal strength causing lo w e rs  

and Pfa as the tendency to cross the lower threshold increases. The best combination of Pd 

and produces the minimum and the y at which it occurs is the optimum y which is 

referred to as yopt in the further discussion. However, with changing system parameters, the 

ASN and the rate at which Pd and Pfa vary also change and this causes a change in both the 

minimum and the value of yopl.

Figures 6.26 and 6.27 show the characteristics of the LLD with bias values bx and b2. At 

Wald’s optimum bias, b lf signal type 1 produces the minimum T ^ .  This is approximately 

0.5sec and the corresponding yopt occurs at 7dB. The addition of Doppler shift and/or data 

modulation is found to degrade both the minimum and yopt. With the addition of code 

Doppler only (signal type 2), is found to be degraded slightly whereas with the addition

of both Doppler frequency offsets (signal type 3) the degradation is seen to be quite severe. 

For signal type 2, the minimum TMq is at 1.5sec with a yop, at 8dB, representing a ldB 

degradation in the yop, and a threefold increase in minimum T ^ .  Signal type 3 causes 3dB 

degradation in yop, and an almost eightfold increase in the minimum T ^ .

When data is added, the degradation is seen to be worse still. With the addition of data 

(signal type 4), the minimum is increased to 2sec whereas with Doppler shift ie., signal

types 5 and 6, it is 4sec and 5sec respectively. The degradation in yopt for these signal types is 

more than 3dB. When the bias is changed to a non-optimum value, b2, as shown in figure 

6.27 the degradation in the minimum at higher values of y is quite similar for all the 

signal types, and the minimum Tacq is around 5sec. However, the degradation in is quite 

different at lower y 's.

In figures 6.28 and 6.29, the performance of the QLD is considered. With the bias values, bx 

and b2 the QLD has a performance which closely matches with that of the LLD. The worst 

case minimum for this detector is also found to occur with signal type 6 and it is 

approximately 6sec and occurs when the yop, = lOdB.

The performance of the BSD, shown in figures 6.30 and 6.31, is slightly different from the 

performance of the LLD and the QLD. It has better characteristics at lower y with Wald’s 

optimum bias, bx. The minimum varies from 3sec to 5sec for signal types 2-6 resulting 

in an increase of 3-5 times compared to that of the signal type 1. The yopt is close to 8dB for
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signal types 3-6 which amounts to a degradation of 2dB only, compared to the performance 

of signal type 1. However, for signal type 2, it is at 4dB, representing an improvement of 

2dB in the yopt. With the non-optimum bias b2, signal types 1 and 4 show a minimum at 

higher y; however, the drift towards lower y is prominent with the rest of the signal types. 

The minimum remains to be close to 5sec for signal types 3-6 and lsec for signal type 2. 

This drift in y towards lower values is expected because the BSD has been found to be a good 

approximation to the log-likelihood function at low SNR’s [10].

6.3.7 Comparison of the degradation in the mean acquisition time

At Wald’s optimum bias, the LLD and the QLD show a degradation in yopt of approximately 

3dB without data (with reference to signal type 1) and 2dB with data (with reference to signal 

type 4). The degradation in the value of minimum is close to 10 times compared to that 

without data. At the nonoptimum bias, b2, yopt is degraded by 5dB without data (with 

reference to signal type 1) and 2dB with data (relative to signal type 4). Though the 

degradation due to data modulation and Doppler shift is quite high, the addition of data itself 

causes a significant degradation. For the BSD with the bias b lt in the absence of data, yopt 

suffers by 3dB while the minimum is degraded by 4 times. In the presence of data, even 

though yopt suffers by the same degree, the minimum is increased by 5 times. However, 

at bias b2, yopt is reduced by 2dB , with the minimum increased by 5 times in the 

presence of data and 10 times in the absence of data.

6.3.8 Effect on the ASN characteristics

The ASN curves corresponding to each detector for the T{ = -5.0 are shown in figures 6.32 

through 6.37. As the detectors were operated at their corresponding near-optimum design 

SNR, the ASN for all signal types remains nearly constant for the entire range of predetection 

SNR. However, in all the cases, the ASN is the lowest for signal type 1 which is the reference 

signal type and highest for the signal types 4-6 which represent the data modulated signals. 

The effect of Doppler shift on the ASN has been observed to be minimal.

6.3.9 Effect on Probability of detection and Probability of false alarm

Figures 6.38 through 6.43 represent the variation of Pd with the predetection SNR for each 

signal type, at both bias values with the lower threshold at -5.0. The probability of detection 

is quite low at lower predetection SNRs and increases with increasing SNR. This is due to 

the fact that the detector bias is fixed as it was operated at a near-optimum design SNR and
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hence, the predetection SNR dominates in the growth of log-likelihood function (as 

explained earlier). The presence of data modulation degrades Pd for all cases and the signal 

type 6  is seen to suffer the most in case of both the LLD and QLD. However, for the BSD at 

6 1 , the degradation due to both Doppler offsets without data modulation (signal type 3) is 

seen to dominate all other signal types whereas for b2 the data modulation degradation 

(signal type 4) dominates over its combined effect with the Doppler shifts (signal type 6 ). 

The Pd with b2 is always higher than with bx for the LLD and QLD for all signal types. In 

case of the BSD, the signal type 1 and 3 produce higher Pd with b 1 than with b2.

The effect of Doppler shift and data modulation on Pfa is shown in figures 6.44 through 6.49. 

For all cases, Pfa increases with the increasing predetection SNR which is due to the 

increased tendency to cross upper threshold as a result of increased correlation noise (as the 

signal strength increases). For all variants of the detector, the Pfa does not change 

significantly at the lower predetection SNRs for most signal types, however, the data 

modulation and Doppler shift introduces additional increase in the Pfa• In the case of the 

LLD, the signal type with the code Doppler (signal type 2) suffers the most with both bias 

values. The QLD undergoes the similar degradation with the b u  however, with the b2, the 

signal type 6  takes over. In case of the BSD, it is the signal type 6  which produces the worst 

degradation.

6.4 CONCLUSIONS

For all three types of sequential detector, the data modulation has been seen to degrade the 

minimum mean acquisition time and this is due principally to a reduction in the probability 

of detection, Pd rather than an increase in the ASN or the P/a. The QLD agrees closely with 

the LLD, with and without data modulation and has broader optimum SNR characteristics 

than the BSD which shows a sharp increase in the mean acquisition time with the increase in 

predetection SNR. Although the LLD and QLD do not show significant changes in the 

optimum design SNR, the optimum design SNR for the BSD is found to be reduced by 

approximately 3dB. However, for all detectors the minimum mean acquisition time is found 

to increase by 5-10 times depending on the lower thresholds and the biases.

The degradation due to both carrier and code Doppler frequency offsets in the presence of 

data modulation is found to be quite significant for all three types of sequential detector. The 

degradation in the performance of the QLD is similar to that of the LLD. Both the detectors 

show a drift of +3dB in the yopt with the minimum mean acquisition time increased by 10
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times without data and a drift of +2dB with minimum increased by more than 10 times 

with data. The performance of the BSD is improved at lower y compared to that of the QLD 

and LLD, particularly with Wald’s optimum bias. However, the degradation in the yopt is 

+3dB and the minimum is increased by 4 times without data; but with the presence of 

data, the y is degraded by 3dB and the minimum is increased by 5 times.

Even though degradation due to code and carrier Doppler in the presence of data is quite 

significant for all the three detectors, when only code Doppler is present the degradation 

seems to be reasonable. The effect of the code and carrier Doppler with data modulation are 

seen to degrade the mean acquisition time by 5-10 times and cause a 3-5dB degradation in 

yopt. In practice, this means that the system must operate in 3-5dBs less noise to achieve 

acceptable acquisition performance.
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CHAPTER 7

PERFORMANCE OF THE SEQUENTIAL DETECTOR IN THE 
PRESENCE OF CW INTERFERENCE AND PULSE JAMMING 

AND A COMPARATIVE EVALUATION OF SERIAL 
SEARCH TECHNIQUES

7.1 INTRODUCTION

This chapter is organized into two parts. In the first part, the acquisition performance of three 

variants of sequential detector is analyzed in the presence of CW interference (or an 

intentional CW jammer) and pulsed jamming for various jammer-to-signal power ratio’s 

(J/S). The performance of the sequential detector in the presence of a CW jammer at various 

values of J/S is presented for a range of input SNR (due to Gaussian noise) from -lOdB to 

-25dB. The effect of duty factor on the pulse jammer for a noiseless case has been 

investigated and the acquisition performance for several values of the duty factor (the 

fraction of time that the pulse is present), with the J/S varied from lOdB to 25dB is presented. 

The critical duty factor causing maximum bit error probability for each value of J/S has been 

considered and its effect on the acquisition performance shown. The effect of pulse jamming 

in Gaussian noise has also been observed for a typical duty factor of p = 0.1 with J/S varied 

for the input SNR from -lOdB to -25dB and its acquisition performance presented.

In the second part of this chapter, the Monte-Carlo simulation of acquisition systems has 

been extended to two other common forms of serial search technique namely, a non-coherent 

single dwell detector and a digital matched filter and their acquisition performances are 

compared with that of the sequential detector. The detectors have been optimized with 

respect to their critical system parameters, and the acquisition performance for an equivalent 

range of input SNRs has been obtained. The optimized acquisition performance has been 

compared with that of the LLD for the input SNR range from -lOdB to -25dB and their 

relative performance is assessed.

The results of this comparison show that the sequential detector working at its optimized 

design predetection SNR performs better than both the single-dwell detector and the matched
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filter, particularly at low input SNRs. However, as the predetection SNR is increased, the 

sequential detector is still marginally better than the single-dwell detector, but the matched 

filter starts showing significant improved performance at high SNRs. The sensitivity of the 

minimum mean acquisition time with the optimized system parameters for each detector has 

also been shown and the performances are compared.

PART I: PERFORMANCE OF THE SEQUENTIAL DETECTOR 
IN THE PRESENCE OF CW INTERFERENCE AND PULSE 
JAMMING

7.2.1 Interference and jamming

The acquisition performance of a direct-sequence spread spectrum receiver can be degraded 

significantly in the presence of an interfering signal or a jamming signal as both can deny the 

acquisition of a correct signal by acting as additional (unpredictable) noise sources which can 

cause an increase in the probability of false alarm of the detected correlation signal or 

conversely a reduced probability of detection. Both the interfering signal (intentional or 

unintentional) and the jammer waveform can be of several forms depending upon the jammer 

strategy. The optimum jammer strategy for an intentional interferer/jammer, whose main aim 

is to jeopardize the communication link, is to concentrate the entire jammer power in the 

exact signal coordinates to jam the signal completely. However, as the jammer has generally 

no complete knowledge of the signal coordinates it is a random strategy and many forms of 

jammer strategies can be used depending upon the type of the spread-spectrum signal being 

jammed. The various forms of jammer waveform are:

i. Broadband and partial-band noise jammers

ii. Tone (CW and multi-tone) jammers

iii. Pulse jammers

iv. Jammers with arbitrary power distributions (random jammer)

V. Repeat-back jammers

vi. Smart jammers

The constant-power broad-band jammer spreads the entire power over total spread bandwidth 

and hence does not exploit the knowledge of the anti-jam communication system except for
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the spread bandwidth. The effect of such a jammer on the spread-spectrum performance is 

equivalent to white Gaussian noise and its performance is normally referred to as the 

baseline performance. The worst performance (in the sense of bit-error rate) is caused by the 

partial-band or partial-time (pulsed) jammers. The CW and pulse jammers are effective 

against direct-sequence spread-spectrum signals whereas the parti al-band and multi-tone 

jammers are more effective against frequency hopping spread-spectrum signals. For direct- 

sequence spread spectrum signals, the CW jammer is the most harmful as it can place as 

much energy as possible in the cosine coordinate (as the signal carries maximum power in 

this coordinate), thus causing maximum degradation to the signal. CW and multi-tone 

jammers can affect frequency hopping signals more than the parti al-band jammers when the 

tones are distributed over the spread-spectrum bandwidth as they can easily inject energy into 

the non-coherent detectors. An effective anti-jam system in the presence of such jammers is 

expected to provide a performance which is close to or better than the baseline performance, 

regardless of the type of jammer waveform (as its anti-jam strategy is expected to be 

designed to counter the extra threat caused by the jammer strategy).

A number of researchers have analyzed the effect of these jammers on the bit error rate 

performance of spread spectrum systems and have also analyzed the methods employed to 

reduce the effect of jamming on bit error probabilities [1,2]. Coding and interleaving have 

been found to be most effective to recover most of the performance loss. Other methods to 

enhance performance in the presence of jamming/interference have also been analyzed which 

employ various diversity techniques, filtering techniques and signal processing methods 

(spectral estimation, adaptive techniques etc.,). However, the analysis of the effect of 

jamming on the acquisition performance of spread spectrum receivers has not yet received 

significant attention in the literature, particularly for the various acquisition strategies that 

currently exist. Seiss and Weber [3] have analyzed an I-Q detector used in a serial-search 

acquisition system in CW and pulsed jamming. They consider this detector to be more 

effective in the presence of data modulation than the correlator/square-law detector. Their 

results show that for the case of constrained average pulse jammer power, the jammer’s duty 

factor does not impact acquisition time when the pulse repetition factor (PRF) is quite high, 

however, for a duty factor of unity, it was found that the acquisition performance was 

degraded maximally when the PRF was low. The results also imply that the CW jammer 

causes the worst case jamming and optimal for an effective jammer. Milstein [4] has 

analyzed the effect of narrow-band interference on the serial search acquisition after an
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interference suppression filter using transform domain processing. He has obtained analytical 

results for the probabilities of error in both the search and lock modes and has shown the 

improvement that can be gained by the use of an interference suppression filter prior to the 

acquisition system. In the present research, the effect of CW interference and jamming on the 

sequential detection code acquisition has been analyzed, for the first time, and the 

degradation in the acquisition performance is assessed.

7.3 EFFECT OF JAMMING ON THE CORRELATOR OUTPUT

7.3.1 CW jammer

The waveform of the received signal with the additive CW jammer for the case of no data 

modulation can be represented as:

r (0 = >I2S c (t +CTc) cos(o\ t  + 0C) + ^27 cos(cojt + 0y) + n (t) (7.1)
where CD, and 0y are the radian frequency and the phase of the jammer waveform with /  as the

rms power and the rest of the symbols as defined earlier in chapter 4. The worst case CW

jammer occurs when the entire power is placed in the exact coordinates of the wanted signal

viz., the carrier frequency and the phase. Thus, in the worst case w, = ©c and 0y = 0C and the

received signal becomes:

r (0 = [ V25 c (t +CTc) + V2J  ] cos(cocf + 0C)+ n (t) (7.2)
The correlator signal at the baseband in the presence of the CW jammer is:

* « ) =  l'l2Ac(l+^Tc) + 'l2J ]c(t +xTc)cos (8C) + n (/) (7.3)
73.2 Pulse jammer

The received signal in the presence of a pulsed tone jammer waveform for the case of no data 

modulation can be represented as

r (0 = \2S c (t+^Tg) cos(coct + 0C) + J) pj(f-kTj) cos(oojt + 0/) + n (0 (7.4)

where

Jp = peak jammer power = //p

= 0 otherwise 

J  = average jammer power 

Xj = pulse width

Tj = time between successive pulses 

p = jammer duty factor = xjITj
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with the rest o f the symbols defined as earlier.

When the frequency difference between the desired spread-spectrum signal and the tone of 

the pulsed jammer is small enough ie., Aco= I coc-co/1 =0, then any bandlimiting of the 

jammer is considered negligible and the jammer carrier is assumed to be phase-locked to the 

desired signal. The received phase-locked jammer signal is thus given by

r(0  = cos(G)c/ + ec) + n (0 (7.5)H s  c((+Crc) + '/77p £  Pj(t -kTj-Aj)
*=--

with 0 whi ch is the random pulse delay. The correlator output with the pulse 

jammer can be represented as

x(0 = -Ha  c ( t^ T c)+4j7p £  Pj(i - kTj-Aj) 
*=—

c (f +x7’c)cos (0C) + n (0 (7.6)

The correlator outputs in (7.3) and (7.6) contain the equivalent noise components contributed 

by the jammer. This signal is envelope detected and the sampled output is passed to the 

sequential detector.

7.4 SIMULATION OF THE JAMMERS

The CW interference or jammer was simulated assuming the worst case situation with the 

exact carrier frequency and phase. Thus, the equivalent additive noise on the baseband 

spread-spectrum signal to the correlator signal was simulated for each value of J/S. The 

pulse jammer at the baseband was simulated with the assumption of a constrained average 

power and hence, the peak power was varied for each value of the duty factor so that the 

average power was maintained constant. A period of 10 data bits were assumed and the pulse 

power was spread over the fraction of every 10 x 127 code chips depending upon the duty 

factor. For both types of jammer, the additive white Gaussian noise was added to the PN 

signal along with the jammer and the composite corrupted signal was fed to the correlator.

7.5 SIMULATION PERFORMANCE IN THE PRESENCE OF 

JAMMERS

The acquisition performance of the three variants of sequential detector has been examined in 

the presence of both the CW interference and pulse jammer. The mathematical models 

employed for the simulation of both the jammers have already been described in chapter 4. 

The received signal representation with jammers has been given in the previous section.

The effect of jamming on the acquisition performance was assessed differently depending
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upon the type of jamming employed. For the CW jammer, the jammer-to-signal power ratio 

(J/S) was set at several values with the input SNR (due to Gaussian noise) varied from -lOdB 

to -25dB. However, for the pulsed jammer, the duty factor was changed for each value of J/S 

(to maintain a constant average pulse power) and the performance for a range of J/S in the 

presence and the absence of Gaussian noise was obtained. For the pulse jammer in Gaussian 

noise, a typical value of p = 0.1 was chosen and the acquisition performance was obtained 

with the input SNR varied from -lOdB to -25dB with the J/S set at several values as in the 

case of CW jammer. The effect of the critical duty factor (p*) of the pulse jammer which 

maximizes the bit error rate as a function of J/S, as defined in chapter 4, was also investigated 

and its effect on the acquisition performance obtained.

7.5.1 Analysis of the degradation due to a CW jammer

The input SNR due to additive Gaussian noise was varied from -lOdB to -25dB for a CW 

jammer-to-signal power ratio, J/S, which was selected to be one of six different values 5,10, 

20, 30, 40, 50 dB, and the ASN, Pd, and Pfa were obtained. From these results, the mean 

acquisition time was computed for each detector operating at normalized Wald’s optimum 

bias in the usual way. The bias and the design SNR were set as a function of y (for this 

purpose, y was assumed to be numerically equal to the predetection SNR contributed by the 

Gaussian noise only) and the acquisition characteristics were then obtained. The variation of 

mean acquisition time, ASN and the probabilities of detection and false alarm are plotted as a 

function of input SNR and J/S.

73.1.1 Mean acquisition time

The characteristics are shown in figures 7.1-7.3 for the three types of detector. In these 

graphs, the mean acquisition time is plotted against the input SNR (denoted as ytB) for 

various values of J/S. From these curves, it is seen that the mean acquisition time is little 

affected when J/S < 20dB. For J/S greater than 30dB the acquisition time starts increasing 

for each y„, and the minimum in the mean acquisition time which is normally observed when 

there is no jamming also starts to disappear. When J/S > 50dB, the mean acquisition time is 

seen to be almost independent of the input SNR (over the range of interest) and attains a 

maximum value of T ^ .  The degradation in the performance of the QLD with Q = 32 is also 

seen to be similar to the LLD (as expected) whereas for the BSD the minimum in T ^ ,  

normally observed with no jamming, does not disappear completely as J/S increases but
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moves slowly towards higher values of yM. At the maximum chosen value of J/S = 50dB, for 

BSD this minimum is seen to have moved close to y^ = -lOdB.

Thus, the effect of the CW jammer is seen to increase the required input SNR of the 

sequential detector for which the mean acquisition time is minimum, with severe degradation 

in the minimum mean acquisition time observed, particularly at higher values of J/S.

7.5.1.2 ASN characteristics

The variation of the ASN characteristics with J/S is shown in figures 7.4-7.6. At the lower 

values of y* the ASN is seen to be higher and reduces with the increasing J/S showing a 

systematic fall with increasing yn, for all values of J/S considered. This explains why the 

mean acquisition time increases even at relatively low false alarm rate in this region (figure 

7.10). For J/S = 50dB, the ASN is seen to be zero which is due mainly to the saturation in 

the detectability causing maximum false alarms with no correct dismissals (as the 

computation of the ASN is based on dismissals only). Thus, in this region the reason for the 

increase in is not due to an increase in the ASN but an increase in the false alarm rate.

7.5.13  Probabilities of detection and false alarm

The probability of detection and the probability of false alarm are shown in figures 7.7 

through 7.12 for all three detectors. In the case of both the LLD and QLD, shown in figures 

7.7 and 7.8, when J/S is below 30dB, Pd is seen to decrease with the increasing 

particularly at the higher values. This is due to the fact that as the input SNR increases, the 

bias point of the sequential detector also increases and this has the effect of reducing Pd. 

However, with J/S above 30dB the Pd is almost saturated and shows no variation with yin. 

For the BSD as shown in figure 7.9, the probability of detection falls rapidly for J/S below 

40dB and shows saturation for J/S = 50 dB throughout the range of y*.

The probability of false alarm is shown in figures 7.10-7.12 for all detectors. It is observed to 

reduce with increasing y* for all values of J/S. However, it shows a large increase for values 

of J/S above 20dB and this increase is mainly responsible for the degradation in the 

acquisition performance inspite of the low ASN and higher Pd in these regions.

7.5.2 Analysis of the degradation due to pulse jammer

The pulsed tone jammer was simulated over a range of duty factors and J/S values. The duty 

factor is represented as the fraction of time that the pulse is present over an interval of 10 data 

bit durations, denoted by p. It is assumed that the average pulse power is constrained and
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consequently the peak pulse power is varied with the duty factor, for each value of the J/S, to 

give the same average power. Two cases have been investigated with the pulse jammer, one 

in the noiseless situation and the other in the presence of Gaussian noise. For the noiseless 

case, the signal-to-average jammer power ratio, S/J was varied from -IOdB to -25dB 

(equivalent to a predetection SNR of -4dB to IOdB) and the acquisition characteristics were 

obtained for values of p at 0.5,0.1,0.01 and 0.001. The case of continuous jamming, p = 1.0, 

and the critical value of p = p* for each S/J which has been defined earlier were also 

employed, and for all values of p the acquisition characteristics were obtained. For the case 

of the pulse jammer with additive Gaussian noise, J/S was varied for a typical value of p = 

0.1 and the acquisition characteristics for a range of AWGN input SNR were obtained.

7.5.3 Effect of pulse jammer in noiseless case

For the noiseless case, the mean acquisition time, the ASN and the probabilities of detection 

and false alarm as a function of J/S and p have been presented and the degradation is 

assessed.

7.5.3.1 Mean acquisition time

The effect of the value of p for pulse jamming on the mean acquisition time, for J/S varied 

from IOdB to 25dB, is shown in figures 7.13 through 7.15 for all three detectors. (For the 

purpose of convenience S/J rather than J/S is used to plot this set of curves) From these 

results it is observed that for the case of the LLD and QLD (figures 7.13 and 7.14 

respectively), the degradation in for a value of p greater than 0.1 is seen to be quite 

tolerable with continuous jamming (p = 1.0) showing almost insignificant degradation. 

However, when the value of p is reduced, the degradation is seen to be severe, with the worst 

case degradation occurring for values of p = 0.01 and lower. The critical duty factor p* (in the 

sense of bit-error-rate) is also seen to cause a significant degradation in the minimum mean 

acquisition time. However, this curve is found to pass in between p = 0.1 and p = 0.01 and thus 

is seen to be no longer critical in the sense of mean acquisition time. For all values of p, the 

input S/J (due to jammer) at which the minimum occurs is observed to be relatively 

unchanged (which is at S/J = -13dB). For the case of the BSD, the degradation seems to be 

relatively tolerable even with p = 0.01 and the worst case degradation occurs with p = 0.001.

7S.3.2 ASN characteristics

For all three types of detector, the ASN as shown in figures 7.16-7.18, is seen to fall with S/J
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for all values of p. However, the ASN with the continuous case (p = 1.0) shows zero for all 

values of S/J which is due to the saturation in detectability, as explained earlier, causing 

100% false alarms. In the case of the QLD, for most values of p the ASN remains close to 

zero except for the case where p = 0.5.

7.5.33 Probabilities of detection and the false alarm

The probability of detection for all cases is seen to have saturated at 0.99 throughout the 

range of S/J for all three detectors. However, the probability of false alarm as shown in 

figures 7.19-7.21 show a rapid fall for all cases for the value of S/J below -15dB. When S/J 

is increased beyond -15dB, the reaches close to zero for the value of p less than 0.1, 

however, for p greater than 0.1 it still continues to be around 0.2. This false alarms at higher 

values of S/J are mainly responsible for the increased mean acquisition time at p greater than 

0.1.

7.5.4 Effect of pulse jammer in the presence of Gaussian noise

For the case of the pulse jammer in Gaussian noise the duty factor was set at p = 0.1 and the 

input SNR, (due to AWGN) was varied from -IOdB to -25dB for five values of J/S = 0.0, 

3.0, 5.0, 8.0 and 10.0 dB (corresponding to J/S region considered above) and the acquisition 

characteristics were obtained. The mean acquisition time, the ASN and the probabilities of 

detection and false alarm are plotted as a function of input SNR and J/S.

7.5.4.1 Mean acquisition time

The variation of with input SNR due to Gaussian noise at various values of J/S is shown 

in figures 7.22 - 7.24. For the J/S less than 3dB, the mean acquisition time is found to be 

unaffected for the entire range of input SNR considered. However, when J/S is increased 

above this value, the degradation in starts increasing, with minimum reaching its 

maximum value when J/S is around 8dB and above. Thus, in the presence of Gaussian noise 

it is found that lower average pulse jammer power is tolerated than for the case with no 

additive Gaussian noise.

7.5.4.2 ASN Characteristics

The ASN for these cases is shown in 7.25 - 7.27 for the LLD, QLD and BSD respectively. It 

is observed to increase with increasing J/S, and also seen to fall with increasing input SNR. 

For the case of J/S around 8dB or more, the ASN is found to be zero which is once again due 

to the saturation in detectability which leads to all detections of the sequential detector being
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false alarms.

7.5.43 Probabilities of detection and the false alarm

From figures 7.28 - 7.30 for the LLD, QLD and BSD respectively, Pd is found to saturate for 

the higher values of J/S. However, when J/S is less than 3dB, there is a systematic fall in Pd 

particularly at higher values of input SNR. The probability of false alarm is shown in figures 

7.31 - 7.33 for all three types of detector. It is found that the increasing S/N reduces Pfa- 

However, it is also observed that the Pfa increases significantly with the increasing J/S and 

this causes the increase in the mean acquisition time as discussed above.

73.5 Conclusion

In conclusion, for the case of the CW jammer with J/S < 20dB the is little affected 

whereas for J/S < 30dB the degradation in is considered to be tolerable, however, when 

J/S > 30dB the degradation increases monotonically with J/S. The pulse jammer, in the 

noiseless situation causes a tolerable degradation in when the duty factor p is less than 

0.1. There is a systematic degradation when p is less than 0.1, causing maximum degradation 

at p = 0.01 and lower. When Gaussian noise is added to the pulse jammer, the degradation is 

tolerable as long as J/S < 3dB for p = 0.1 (compared with 30dB for CW jammer) and 

increases sharply for J/S > 3dB reaching saturation around 8dB. Thus, in the presence of 

Gaussian noise, the pulse jammer with a properly chosen duty factor can significantly 

degrade the acquisition performance compared to the CW jammer. It is also observed that 

the pulsed jammer with the duty factor approaching 1.0 (which is the case of continuous 

jamming) behaves similar to the CW jammer at values of J/S less than 5dB.

PART II: PERFORMANCE OF THE SERIAL SEARCH PN CODE 
ACQUISITION TECHNIQUES - A COMPARATIVE 
EVALUATION

This part of the chapter, presents a comparative performance analysis of three serial-search 

PN code acquisition techniques using Monte-Carlo computer simulation method. The three 

serial-search code acquisition techniques considered are: i) the non-coherent sequential 

detector ii) a digital matched filter and iii) the non-coherent fixed-dwell detector. The 

detector operating characteristics for both the single dwell detector and the digital matched 

filter were obtained through simulation and their acquisition performances were assessed.
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The acquisition performance of these detectors was then compared with the sequential 

detector for the case of no data modulation over a predetection SNR range of -4dB to lOdB.

In chapter five, the dependence of the mean acquisition time and the mean dismissal time on 

the bias (and the related design SNR) of the log-likelihood function and the detector 

thresholds was assessed and the acquisition performance of the three configurations of the 

sequential detector were compared for the same predetection SNR range. In this section of 

the chapter, the critical dependence of the mean acquisition time on the system parameters is 

analyzed for both the digital matched filter and the single-dwell detector and the optimization 

of these parameters to obtain minimum mean acquisition time is obtained. In particular, the 

optimization of the detector threshold and the dwell-time with the input SNR is obtained for 

both the digital matched filter and single-dwell detector and their acquisition performance is 

compared with that of the variable-dwell-time sequential detector with ideal log-likelihood 

function (LLD) over an equivalent range of input SNR.

In addition, the theoretical performance of a single-dwell-time serial-search acquisition 

system has also been evaluated numerically using a two-dimensional optimization of the 

mean acquisition time with the threshold, the dwell-time and the input SNR. The simulated 

acquisition performance of the single-dwell detector is compared to the theoretical 

performance, and is shown to be in a close agreement.

7.6 SERIAL SEARCH TECHNIQUES - A GENERIC COMPARISON

Several code acquisition techniques which are commonly used for the acquisition of spread- 

spectrum signals have been discussed in chapter 2 based on their detector type and the type 

of search algorithm. The majority of these techniques are identified under the search strategy 

used, namely, serial-search techniques, maximum-likelihood techniques and sequential 

estimation. The performance of all these techniques depend critically on many system 

parameters and the input SNR range of interest.

Even though a great deal of research on spread-spectrum communication has been focussed 

on the performance analysis of various code acquisition techniques [5-10], it is difficult to 

obtain an exact closed form solution for the mean acquisition time of many acquisition 

schemes. The general approach to the analysis using signal flow graph techniques developed 

in [6,9] are seen to provide general expressions for the probability density function of the 

acquisition time. These analyses, however, require the complete knowledge of the generating 

function which depends on transition probability distributions of the underlying discrete time
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Maikov process which describes the acquisition process. In many cases, obtaining the 

probability distribution of the acquisition time in closed form is quite difficult, and 

simulation is required to evaluate them before these analytical results can be used. In 

particular, obtaining the probability density functions of the various random times involved 

in sequential detection are quite difficult and this was the motivation for the simulation of 

sequential detector. In this chapter, various Gaussian approximations employed in deriving 

the mean acquisition time of a single-dwell detector and a digital matched filter have also 

been considered and an exact performance assessment using Monte-Carlo simulation is 

carried out.

As discussed in chapter 2, the serial-search is effected by using either a passive correlator or 

an active correlator. In passive correlation, typically, a SAW tapped delay line or a digital 

matched filter is employed and the decisions are made at a very high rate (normally at a 

multiple of the chip rate). The matched filters thus, exhibit a high rejection rate of the wrong 

code epochs resulting in a rapid acquisition in good SNR conditions. However, since the 

uncertainty region is normally assumed to be equal to the code length, it suffers from an 

increased hardware complexity with increasing code length as the correlator length is 

proportional to the code length. Further, although the acquisition time is normally quite good 

for moderate to high SNRs, it increases rapidly at low SNRs due to an excessive increase in 

the miss detections and the false alarm rate since the decision SNR (per-cell basis) becomes 

smaller. In fact, in the large number of wrong code epochs L-l (where L  is the code length) 

detected, many of them can result in false alarms due to high noise.

In active correlation, which uses either fixed or variable dwell-time integration, the correlator 

output is integrated over a period of time which is the dwell-time xd, and the decisions are 

made using a simple threshold detector with threshold q. The samples of the correlator 

outputs are generally sufficiently decorrelated by sampling at a rate Rs = l/T <B, where B is 

the predetection filter bandwidth, and this provides a longer integration time giving high 

decision SNR resulting in more reliable decisions. However, as the decision rate is slower 

compared to the matched filter, it takes much longer to acquire lock (in relatively good SNR 

conditions). These techniques work well at lower SNRs because of the longer integration 

time, but, the mean acquisition time is dependent on the various system parameters such as 

threshold, dwell-time and the search strategy itself, and increases with the worsening of SNR 

although generally not as rapidly as the matched filter.
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Generally, simulations were employed to characterize the sequential detector within a limited 

range of system parameters and the SNR range of interest [11-12]. A comparison of fixed- 

dwell detector with the variable-dwell detector and the optimum sequential detector using a 

numerical approach was presented by Braun [13]. This approach, however, assumes 

approximations suitable for low SNRs. Further, it assumes truncated sequential tests and the 

characteristic function is obtained by numerically solving the complex transcendental 

equations from which the pdf of the average sample number is obtained. The results show a 

comparable improvement in the average dwell-time of this variable-dwell-time detector over 

a fixed-dwell-time detector at large SNRs, but almost as good as the optimum sequential 

detector at low SNRs.

In this chapter, comparison is carried out with the serial-search techniques, with a particular 

emphasis on the sequential detection. The three techniques considered are: i) a non-coherent 

sequential detector, ii) a digital matched filter and iii) a non-coherent single-dwell detector. 

The detector operating characteristics of a single-dwell detector and a matched filter were 

obtained through simulation and the acquisition performance of each detector is evaluated 

using the analytical results. The dependence of the mean acquisition time on the critical 

design parameters viz., threshold, dwell-time and input SNR has been assessed and the 

optimization of these parameters to achieve the minimum mean acquisition time is achieved, 

and the optimum performance of all three detectors compared.

7.7 DETECTOR THEORY

This section presents the basic theory and analysis of the single-dwell detector and the 

matched filter considered. Both techniques have received considerable attention recently and 

a number of models have been produced. Since the statistics of the decision variable depends 

not only on the input signal but also on the correlator signal and the detector type, in case of 

many models, a number of assumptions were made as to simplify the analyses to obtain 

closed form solutions. In this section the analytical results used to compute the acquisition 

performance of the digital matched filter and the single-dwell detector are presented.

7.7.1 Digital matched filter

The digital matched filter correlates the incoming signal with the a priori known code 

sequence matched to the incoming sequence and makes the decisions on the basis of each 

incoming chip (or the cell). Normally, the incoming signal is stored in a shift register which 

is updated on the arrival of every new chip. This is compared against the stored local replica
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of the code sequence and the correlation measure is generated which is tested in a threshold 

detector. As the local code replica matches with the incoming sequence once in a period of 

code length, the correlation output produces a sequence of impulses at an interval of the code 

length. For a code sequence of length L, with a chip rate f c = 1 ITC, the envelope of the 

correlation impulses consists of a train of triangular impulses occurring at an interval L/fc. 

Because of the presence of noise on the input signal, these matched filter output samples are 

corrupted and give rise to miss detections and false alarms.

Let r v be the time interval in which a false alarm occurring can affect the V th impulse at an 

instant tv and Pdv be the probability of detecting this correlation impulse. If Pd is the 

probability of detection of a correlation impulse, nfa is the false alarm rate of the detector 

with Tvr as the false alarm verification time, then the mean acquisition time T ^ ,  is given by

Using an approximate analysis based on the Gaussian assumption of the decision statistic 

applicable to the low input SNRs, assuming a practical case of the correlator length Af, 

1 « M  « L  for a very long code length L, the probability of detection Pd and the probability 

of false alarm Pfa are given by:

Tacq -  IT T  +  0 ( 1 " f y l )
v=lc  L V=1

(7.7)

where Pdv and Tv are given by

Pdv -Pd exp {-nfaTv)
Tv = min (rvr, [v+ 0.5] L/fc)

(7.8)
(7.9)

Pd = Q ttdM  = jx  exp[-l/2(x2+yd2)]I0(ydx) dx (7.10)

(7.11)

where Q (yd,$d) is the Marcum g-function with yd and $d given by

(7.12)

(7.13)

and

i=l 
i =0

(7.14)

(7.15)
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where c is the normalized threshold, yc is the decision SNR on a per-cell basis, MTC is the 

correlation time (in seconds) and p is the code phase offset

In the analysis of matched filter using unified theory by Polydoros and Weber [7], exact 

expressions of a noncoherent I-Q matched filter detector were derived using series solutions. 

In this, recursive relations were employed to enable the numerical computation of the 

detector probabilities as the closed form expressions were found to be difficult to obtain.

In the present work, detection probability Pd and false alarm nfa of a digital matched filter 

was obtained by simulation and the mean acquisition time was computed using (7.7). The 

series computation in (7.7) has been carried out by employing the convergence of the series 

which results in the significant reduction in computation time. Appendix 7.1 presents the 

derivation of the series sum.

7.7.2 Single-dwell detector

The analytical expression for the mean acquisition time, 7 ^ ,  for the simple case without 

Doppler, is obtained quite easily either by a heuristic approach or by using a Maikov chain 

model of the acquisition process. The expression derived analytically using Maikov chain 

model is given by the relationship [5]:

where Pd and Pfa are the detector decision probabilities and K is the false alarm penalty factor 

CT„ = Kxd sec). The envelope detector output is sampled at a rate 1/r <B which ensures 

sufficient sample decorrelation, so that the samples can be treated as independent identically 

distributed random variables (iid). Then the detector probabilities can be approximated with 

a Gaussian assumption of the integrator output (for a large number of samples) and given by:

For a given Pd'Pfa, Y, B and T) the dwell-time xd can be determined easily. However, a basic 

design problem is to choose the optimum threshold and the dwell-time that provides the 

minimum mean acquisition time for a given input SNR. Since Pd, Pfa are functions of the 

threshold, the dwell-time and y and moreover, they are transcendentally related, in this woik, 

these equations are solved numerically as a two dimensional optimization problem and the 

simulated performance is compared with the numerical results.

(2-Pd)(l+KPfa)
(7.16)

Pfa = Ql Pi (7.17)
(7.18)Pd = Q K M e v y W T ^ l

where Q [x] is the Gaussian probability integral with p given by

p = (T\-BTd)/TjBrJ (7.19)
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7.8 SIMULATION OF THE DETECTORS

Serial-search code acquisition using the three types of detector, was simulated using Monte- 

Carlo simulation. The direct sequence pseudo-noise signal was simulated by a PN code of 

length L = 127, chip rate f c =1/7C=100 kchips/sec. The channel was assumed to be corrupted 

by additive white Gaussian noise (AWGN) and the corrupted spread-spectrum signal was used 

with each type of the detectors simulated. For each detector and for each test carried out on 

the correlator output, the incoming code sequence with a random starting phase was used and 

the search was carried out by examining the correlator output corresponding to each code 

cell. Checks were made to record missed detections and false alarms. Whenever either an 

out-of-sync or a false alarm was observed, the code phase was updated and the test 

continued. On the successful detection or miss detection, the codes were reset with a new 

random starting phase and the test was repeated. For each set of system parameters and for 

each detector, 100 tests were carried out and the number of miss detections and the false 

alarms were recorded. For the given system parameters, these tests achieve Pd with an 

accuracy of 1 x 10~2 and the Pfa with an accuracy of 1 x 10^.

For the case of serial-search using a digital matched filter, the correlator length was assumed 

equal to the uncertainty region (one code length, L = 127) and the search was carried out with 

one code chip per cell. The input to the matched filter was first passed through a one-bit A/D 

converter or a hard quantizer and the quantized input signal was fed to the one-bit digital 

matched filter simulated. The simulation characteristics were obtained for a range of 

thresholds and input SNRs.

Single-dwell serial-search was simulated for the same input signals without a hard quantizer 

and the detector operating characteristics (OCF) were determined with respect to the 

threshold and the dwell-time varied for different input SNRs. The mean acquisition time was 

then computed and the three dimensional acquisition characteristics were obtained.

7.9 ANALYSES OF ACQUISITION PERFORMANCE

The acquisition performance of all three detectors was obtained for various thresholds, dwell- 

times and input SNRs From this, the optimization of the various system design parameters 

was obtained and the optimum performance of the each detector compared.

7.9.1 Sequential detector

For the convenience of comparison with the other two detectors simulated, the main
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acquisition characteristics of the sequential detector at Wald’s optimum bias, b i , and the non­

optimum bias, b 2, have been reproduced in figures 7.34 and 7.35 which show the variation of 

ASN and the with y  for the Tu = 5.0 and Tt = -5.0 for all three variants of the detector. As 

already observed, the ASN of the sequential detector is seen to increase with the decreasing y  

and Th However, when biased at b = b i , it is always less than that with the non-optimum bias 

b 2. The optimum y  at which the minimum occurs (which is considered as the design 

SNR, y ^ )  is also found to be around 7dB for the QLD and at this operating point = 

0.5sec which is minimum. For the BSD, it is around lOdB (at a non-optimum bias, b2) with 

a minimum almost same as the QLD. The performance of the QLD is observed to be 

quite close to that with the LLD whereas the BSD shows better performance at lower SNRs 

at the optimum bias.

7.9.2 Digital matched filter

The performance of the matched filter is dependent on the threshold and the input SNR as 

these two parameters can drastically affect the operating characteristics of the detector. The 

simulation has been used to obtain these characteristics for a threshold range of 0.0 to 0.4 for 

an input SNR in the range of -lOdB to -28dB (predetection SNR y  range of -7dB to lldB). 

From the Pd and nfa obtained from the simulation, has been computed using (7.7)-(7.9).

7.9.2.1 Probability of detection and false alarm rate

The variation of the probability of detection Pd and the false alarm rate nfa with the threshold 

and the input SNR is shown in the figures 7.36 and 7.37. At each input SNR, the Pd 

decreases with increasing threshold. When the input SNR is reduced, it falls drastically even 

at much lower thresholds showing a clear upper bound in the maximum attainable detection 

probability in a noisy condition. The false alarm rate also falls with the threshold, however, 

there is a saturation seen in the nfa as the SNR is decreased, which is due to the hard limiting 

employed.

7.9.2.2 Mean acquisition time

The mean acquisition time of the matched filter is shown in figure 7.38 and passes through a 

minimum with respect to the threshold. The reason for this is that at lower threshold values 

both Pd and nfa are high and it is the nfa which is dominant in lengthening T ^ .  At the higher 

threshold values nfa and Pd are very low and it is the low Pd which affects 7 ^ .  Thus, the 

false alarms at the lower threshold and the miss detections at the higher threshold show
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greater influence on the T ^ .  The optimum threshold is seen to be a function of input SNR 

and is lower when the matched filter is designed to work at lower SNRs. However, in the 

region of SNRs considered here, these optimum thresholds are quite close as the Pm (and 

hence nfa) saturates to a high value and this quickly saturates T ^ .  The optimum threshold is 

close to 0.3 for SNR = -15dB whereas it is moved to around 0.28 with SNR = -28dB. The 

optimum threshold is also quite sharp and this shows the greater sensitivity of with the 

optimum threshold.

It is also worth noting that the optimum performance of the matched filter is obtained at a 

much lower probability of detection (always < 0.2) and the false alarm rate nfa is also quite 

low (<  100). This implies that the optimum detector always performs on the tail end of the 

probability distributions of both signal and noise. The minimum mean acquisition time with 

the input SNR (from figure 7.38) shows that the best case minimum acquisition time is close 

to 1 x 10-2 sec at input SNR = -lOdB, but this worsens to 1.2sec when the input SNR falls to 

-28dB (for the design parameters considered). Considering the fact that the digital matched 

filter employs one chip per cell for search, the acquisition times are nearly twice when half 

chip per cell is employed. Further, the acquisition time at lower SNRs has been found to be 

governed by the accuracy of Pd which is 1 x 10~2 for the 100 runs considered in the present 

simulation (from the statistical confidence level, the accuracy of the probabilities is still one 

order less). However, with increased accuracy the is still worse (for example, with 1000 

runs the minimum at SNR = -28dB has been found to be close to 4.5sec). This in turn 

demonstrates the extreme sensitivity of the matched filter al low SNRs.

7.9.3 Single-dwell detector

The acquisition performance of the single-dwell detector depends on the threshold q, dwell- 

time xd, and the predetection SNR y. The acquisition performance using numerical evaluation 

as well as the detector characteristics obtained through simulation are presented and 

compared below.

7.9.3.1 Numerical evaluation

A three dimensional acquisition characteristic was obtained numerically and is shown in 

figure 7.39 and 7.40 for two different ranges of the dwell-time and threshold for a false alarm 

penalty factor K = 100. These figures show variation of the with q and xd for an input 

SNR at -15dB (y = 7dB) with the logarithm of represented on the vertical axes. The 

acquisition characteristics show that passes through a minimum both with respect to xd



Figure 7.40 T ^  vs threshold and the dwell time o f a single-dwell detector at input SNR = 
-15dB with K = 100; numerical results for a wider range o f threshold and dwell time 
(corresponding to simulation).

Figure 7.41 7’̂  vs threshold and the dwell time of a single-dwell detector at input SNR -
-15dB with AT = 100; simulated characteristics.
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and threshold. The minimum with respect to xd is due to the fall in Pd at lower 

integration times (zd) and when xd is long, Pd reaches saturation and the acquisition time 

becomes directly proportional to the dwell-time. At the higher values of threshold, Tacq is 

also higher due to increase in the miss detections. Eventhough Pd can be increased by 

increasing xd at these thresholds to achieve a minimum in 7 ^ ,  this cannot provide the global 

minimum in TMq as the increasing xd can directly increase the T ^ .  However, when the 

threshold x\ is decreased Pd starts increasing even at a lower value of xd and the minimum TMq 

moves in the direction of lower values of threshold. Although it appears, at first instance, 

that the minimum can be decreased by lowering both t\ and xdt both Pd and Pfa start 

saturating soon, and then the is solely determined by the false alarms. Thus the optimum 

value for the threshold also exists which determines the global minimum in conjunction with 

the optimum xd. The threshold in combination with the dwell-time determine the optimum 

detector probabilities (for a given SNR) which results in the global minimum in T ^ .

As shown in figure 7.39 (for a narrow range of the parameters), the curves show a clear 

barrier for the lower values of xd and the higher values of z\ which are due to the rapidly 

vanishing Pd that causes total miss detections. A similar barrier at the higher values of the xd 

and the lower values of the threshold can also be observed. In figure 7.40 similar 

characteristics are shown for a much wider range of the parameters with the peak values of 

the Tacq corresponding to both the barriers truncated. This truncation was employed to 

highlight the lower regions as the at the barriers is extremely high.

In addition to the above characteristics, a three dimensional acquisition characteristic has also 

been obtained by varying both the input SNR (from -lOdB to -30dB) and the dwell-time for a 

fixed threshold set at 5.0 with K = 100 and is shown in figure 7.42. From this characteristics, 

it can be observed that an optimum dwell-time exists for all the SNRs for a given threshold. 

However, this optimum dwell-time increases with the decreasing SNR (and also with the 

increasing threshold) and this causes the minimum to increase with the worsening of 

SNR. For example, minimum is close to 0.4sec at SNR = -lOdB while it is more than 

lOsec for SNRs less than -25dB at the threshold value considered. The global minimun in 

corresponding to each input SNR has been used to compare with the acquisition 

performance of the sequential detectors.



Figure 7.42 vs input SNR and the dwell time of a single-dwell detector at threshold = 
5.0 with K  = 100; numerical results.

Figure 7.43 Tacq vs threshold and the dwell time o f a single-dwell detector at input SNR =
-15dB with K  = 1; numerical results for a wide range of the dwell time and threshold.
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7.9.3.2 Simulated characteristics

The single-dwell detector has also been simulated and the simulated detector characteristics 

have been obtained from which the acquisition performance is computed and shown in figure 

7.41 for an input SNR of -15dB. The simulation was carried out using the same ranges of 

dwell-time and threshold as shown in figure 7.40. The simulation also displays 

characteristics which are similar to the numerically evaluated analytic results (for the range 

of parameters considered) and shows both the barriers. However, the at these barriers is 

controlled by the accuracy of the probabilities obtained through simulation using a limited 

number of runs (100) and thus are not pronounced. also has an optimum value with 

respect to the threshold which is, for example, around 5.0 at the optimum i d ~ 1.3 msec (close 

to 1 sample) for an input SNR = -15dB. The minimum at this SNR is found to be around 

0.88sec which is comparable to that of the matched filter in the worst case situation.

The characteristics of the single dwell-detector have also been obtained for various values of 

K in the range of 1 to 100. Figures 7.43 and 7.44 show the characteristics obtained 

numerically for two ranges of the parameters with K= 1 and figure 7.45 shows the simulated 

characteristics computed for the lowest value of K = 1. These curves show the optimum with 

respect to the dwell-time, however, the optimum with respect to the threshold is considerably 

suppressed due to the higher values at the barriers. The global minimum in 

corresponding to each SNR has also been obtained with K = 10 and used to comapare with 

the acquisition performance of the sequential detectors and the digital matched filter.

7.10 PERFORMANCE COMPARISON

Figure 7.46 shows the comparison of the optimum mean acquisition times of the three serial- 

search detectors for the input SNR range from -lOdB to -30dB. For this comparison, the 

SNR optimization characteristics of BSD (biased appropriately at low SNRs) and QLD 

shown in figures 5.29 and 5.28 in chapter 5 are used. From these characteristics, showing the 

performance of the three detectors operating at their optimum design parameters, the digital 

matched filter shows a very good performance at medium to higher SNRs when compared 

with the single-dwell and the sequential detectors. However, when the input SNR is 

decreased the performance of all the detectors show a downward trend, with the performance 

o f the matched filter falling at a much faster rate. This renders the matched filter difficult to 

operate in the lower SNRs typically less than -25dB. The quantized log-likelihood detector 

(QLD) is found to work well at the input SNR close to design SNRs when biased optimally.



Figure 7.44 7'ac<? vs threshold and the dwell time of a single-dwell detector at input SNR = 
-15dB K = 1; numerical results (corresponding to simulation).

Figure 7.45 Tacq vs threshold and the dwell time of a single-dwell detector at input SNR =
-15dB with K = 1; simulated characteristics.
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However, the biased square law detector (BSD), shows a better low SNR performance at a 

non-optimum bias. The QLD has achieved minimum close to 0.5sec with optimum 

design SNR at 7dB. Although the design SNR is different for the BSD (which is lOdB), it 

also achieves minimum of the same order.

The digital matched filter, however, needs to be optimized at an optimum threshold for each 

SNR and the optimum threshold is quite sharp. The single-dwell detector needs both the 

dwell-time and the threshold to be optimized for better performance at each input SNR. The 

minimum acquisition time is determined by the best combination of Pd and pr- and this 

influences both the threshold and dwell-time when the input SNR is varied. At lower 

thresholds the minimum is fully determined by the false alarms (as the effect of lowering 

threshold completely saturates the detector probabilities). At higher thresholds, increasing 

dwell-time saturates the detector probabilities and then directly increases .

When compared at a moderate input SNR at -15dB, the single-dwell detector (K = 100) has a 

minimum = 0.88sec whereas for the matched filter is around 0.06sec which shows 

the superiority of the matched filter. The sequential detector at an equivalent predetection 

SNR (around 7dB) produces an acquisition time of around 0.5sec. Though the single-dwell 

detector with K = 10) appears to have better performance than with K = 100, for the equivalent 

false alarm penalty time TP = 100msec used to obtain the performance of the sequential 

detectors and the matched filter, a comparison of the perfonnance of the single-dwell detector 

with K = 100 is considered to be more appropriate. When the SNR is very poor, for example 

at an input SNR = -25dB, the matched filter has quite a poor performance (close to 4sec with 

increased accuracy of Pd). The single-dwell detector (with more than lOsec for K = 100) 

appears to be the worst. However, it shows more than 2sec for AT = 10 which is better than the 

matched filter, but is still considered to be poor when compared against the sequential 

detector, particularly the BSD which produces less than 2sec when appropriately biased. For 

SNRs less than -25dB the matched filter rises rapidly showing the worst performance when 

the sequential detector can still perform the best.

7.11 CONCLUSIONS

The acquisition performance of the sequential detector in the presence of CW jammer and the 

pulse jammer for the case of no data modulation has been analyzed. The results show that 

when the average pulse power is constrained, the pulse jammer with a suitably selected duty 

factor causes more degradation than the CW jammer.
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The acquisition performance of the sequential detector in Gaussian noise has also been 

compared with a single-dwell detector and a digital matched filter using Monte-Carlo 

simulation. The critical dependence of the acquisition time on the system parameters has 

been examined for both the single-dwell detector and the matched filter, and the optimization 

of these parameters to result in minimum mean acquisition time has been achieved. The 

optimized performances of the three detectors have been compared and their merits and 

demerits assessed. As a result of these comparisons, the sequential detector has been seen to 

perform better than both the matched filter and the single-dwell detector at a low SNR. The 

matched filter was particularly poor in the low SNRs, even though it has superior 

performance at high SNRs.

Although the use of the Monte-Carlo simulation is fully justified for the case of sequential 

detector, the approximate and precise analytical solutions for the acquisition performance of 

the single-dwell detector and the matched filter systems can provide easier solutions 

sometimes. However, the equivalent detector characteristics obtained through the simulation 

of these detectors provide a more realistic comparison and also provide better insight into the 

optimum operation of the all three detectors.
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APPENDIX 7.1

Computation of the acquisition time of a digital matched filter

The acquisition time of the digital matched filter has been computed by using (7.7) to (7.9). 

A straightforward computation of the series generated by the probabilities of detection of the 

successive correlation impulses which are denoted as V th impulse in (7.7), leads to a 

significantly long computing time particularly at lower probability of detection (Pd) and 

higher false alarm rate (nfa). However, a series summation using the convergence properties 

of arithmetic-geometric series can be applied and this provides accurate and faster results. 

The derivation for the series summation is provided below:

The expression for given by (7.7) can be rewritten as:

From the definition of the v* detection probability given by (7.8) and (7.9), r v = r vr for all 

correlation impulses with (v+0.5)L !fc > Tvr. If the number of correlation impulses within the 

verification time Tvr are denoted by M, which is given by the integer part of [Tvr/(LTC)], then 

the series of detection probabilities for a given nfa satisfy the following inequalities:

with the increasing v (number of terms in the series), however, the sum of the series increases 

due to the presence of the term (2v+l). In order to prove that the series converges, the ratio 

rule can be applied as shown below.

The equation (7.7) can be rewritten using the series sum Ss as:

where K  is the product of first M  miss probabilities (including Af * term) which is given by

l+£(2v+l) (A.l)

Pd\ > Pdi > Pdi > > PdM (A.2)

P M * l  =  P m *2 -  P M *3 =  • • • (A. 3)

p
Hence, *v+1 < 1 for all values of v. Therefore, the product of miss probabilities in (A.1) falls 

Pdl

(A.4)

where Ss represents

Ss = Pdi + 3Pd2( l - P d l) + 5Pd3( l - P d l ) ( l -P d2) + • • • 
Using (A.2) and (A.3) the term of the series can be obtained as

(A.5)

n A term = K (2 n + l)P dn+i ( l - P dn)n~M for n = 0,1, • • • (A.6)
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K = (l-Pdi)(l-Pd2) ...........(1 -P*i) (A.7)
The (n + l )01 term of the series is given by:

(n+l)* term = K(2n+3)Pdn+2(l-Pdli+lr +1-M (A.8)
Using (A.3) the ratio of (n + l)01 term t o n 01 term becomes

= & & L  ( i - ^ )  (A.9)
n term (2n+l)

= (2n +3) c
(2n+l)

where C = 1 -P ^  < 1.

Lt (n+lp erm -» C (A. 10)
»-*•» n term

Thus, the series tends to be a geometric series with the ratio of successive teims less than 

one, and hence convergent.

Summation of the series:

The series in (A.5) is summed by splitting it into two parts. First part consists of the varying

miss probabilities upto n = M  and the second part is the terms with constant miss

probabilities with n >  M, which can be added as a arithmetic-geometric series. Therefore, the 

sum of the series, Ss , is

Ss = Sm + St (A. 11)
where SM represents the sum of the first M  terms and ST represents the sum of the rest of the

terms in the series.

The sum, ST is given by:

ST = Ar[(2W+l+3)(l-P*) + (2M+1+5X1-/’* )2 + ...........] (A. 12)
The n *  term of ST, withW = 2M +1, is given by:

nA term = KQ i+ln+X^l-P^f (A.13)

ST = K'Z (N+2n+l)(l-Pj.)‘ (A. 14)
»=1

Substituting C for (1 -P&)

ST = K £  (N+2n+l)Cf
»= 1

= K

= K

£  2nCn + (N+l) £  C"
n=l n= 1

f  \

1 - i2 C + (N+l)
( i - O(1-CY

The sum SM can be computed from the Pd and nfa term by terni quite easily and thus the sum
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of the series Ss can be obtained from which can be computed using (A.4).

It was also observed that the contribution of terms is not uniform throughout the series for 

various values of P^. Although, the sum Ss with Pdn(<Pdi) is higher than that with PdX, the 

sum SM withP& is always less than that with Pdx. Therefore, the first M terms (SM) contribute 

more if Pd is higher whereas the last terms (ST) contribute more if the Pd is smaller. By using 

PdX and P<u and computing the sum Ss as a geometric series both the lower and upper bounds 

of the Ss can also be obtained.

The sum Ss, assuming equal probabilities say P& for all terms in (A.5), can be obtained as

Ss = (2-/>*)//>* 
The upper limit can be obtained as

(A. 15)

Ss I upper ~ (2 Pdn)IPdnupper (A. 16)
and the lower limit can be obtained as

Ss \ lower = (2-/*d\)!Pd\
These limits provide quick verification of the acquisition time.

(A. 17)



CHAPTER 8

CONCLUSIONS

In this thesis, the sequential detector has been applied to the problem of initial code 

acquisition of direct-sequence spread-spectrum pseudo-noise signals. Three variants of the 

sequential detector have been considered and their acquisition performances have been 

compared. The optimization of these detectors and their acquisition performance in various 

situations have been obtained using a Monte-Carlo simulation approach. As the sequential 

detector employs a serial search strategy, its performance has also been compared with the

more conventional forms of serial search detectors; namely, the single-dwell time detector

and the digital matched filter.

Various contributions to the randomness of the acquisition process have been identified as:

i) the initial uncertainty about the code phase

ii) unknown carrier frequency and phase

iii) the presence of data modulation on the spread-spectrum signal

iv) channel noise which is additive white Gaussian (AWGN)

v) additive interference (intentional or unintentional) and

vi) channel distortion (due to fading and multipath)

The acquisition performance of the sequential detector has been analyzed for most of these 

situations and the performance of each sequential detector variant has been compared. A non­

coherent sequential detection system has been employed to counter the carrier frequency and 

phase uncertainty. The common frequency offset due to Doppler has been analyzed for both 

the residual carrier frequency and code offset The performance of the detectors has been 

obtained both in the presence and the absence of random data modulation, and the 

degradation in the acquisition performance has been assessed. Two common types of 

jamming signal, namely, the CW jammer and the pulse jammer have also been employed to 

examine the degradation in the performance of the sequential detector due to jamming.
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The acquisition system is broadly characterized by two main components. One of these is the 

decision making device, which is the detector and the other is the acquisition strategy, which 

is the search technique. With regard to the search strategies, various types of strategy were 

analyzed. A key area of the research was the optimization of the serial search strategy and its 

parameters. However, in the detector optimization, not all the detector types have received 

equal attention in spite of the wide concern for the non-coherent single or multiple dwell 

detectors. In this thesis, major emphasis has been placed on the optimization of the detector 

and consequently, the sequential detectors which are the variable dwell time detectors have 

been analyzed. The sequential detector is conceptually known to be optimum in the sense of 

minimum mean dismissal time for a given probability of detection and false alarm compared 

to any other detectors which may be either sequential or non-sequential (without considering 

the detectors that use any form of adaptation). It has been used generally in radar detection 

for sequential range processing but its use in communications is very much limited. The 

reason for this has been partially due to the difficulties involved in the theoretical analysis of 

the sequential detector which is due mainly to the complex relationship with the thresholds, 

bias and the input SNR governing the various random times involved in the sequential 

detector. The solutions for the multiple integral equations governing the acquisition process 

are very difficult, if not impossible and often unwieldy for the wide range of parameters 

controlling the sequential detector. Hence, the Monte-Carlo computer simulation has been 

found to be an important tool to investigate the optimum performance of the sequential 

detectors for spread-spectrum acquisition in various practical situations.

Three variants of the computer models had to be used to simulate two different variations in 

the sequential detector using practically realizable approximations together with the ideal 

sequential detector, whose performance forms the baseline for the other two. A number of 

signal models have been used and various types of received signal structure representing the 

presence and the absence of data modulation, the code and the residual carrier floppier 

frequency offsets have been simulated. Besides, various channel impairments, namely, the 

jamming and interference signals in an additive Gaussian noise channel have been simulated. 

The direct-sequence spread-spectrum system models for both the transmitter and receiver 

have been employed and the sequential detector code acquisition system has been simulated. 

In order to assess the relative performance of sequential detection PN code acquisition, the 

more conventional serial search using a single-dwell detector and a digital matched filter 

have also been simulated.
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The design of the acquisition system consists of a set of design parameters relating to the 

optimum performance of the detector and the search strategy. The threshold settings, 

correlation time, design SNR etc., specifically govern the optimum detector while the number 

of tests per chip (number of cells), mean dismissal time and the system complexity are 

manifested by both the detector and the choice of search strategy and verification logic. 

However, various parameters relating to the PN code namely, the code rate, code length, code 

uncertainty region and the parameters such as false alarm penalty explicitly control the mean 

acquisition time. For the specification of the overall acquisition performance, eventhough 

the mean acquisition time is generally acceptable, the probability of prompt acquisition 

(probability of acquiring within a specified search time) is used as an equivalent specification 

for the situations with intermittent pauses. The probability of detection (or miss detection) is 

also an important parameter when too many system deadlocks are imposed (viz., a finite 

search time as well as an absorbing type false alarm state).

For the analysis of the sequential detector, in this thesis, major emphasis has been placed on 

the mean acquisition time. However, the average sample number, the probability of detection 

and the probability of false alarm have also been discussed and compared principally to show 

how each plays a part in determining the mean acquisition time. The effect of the number of 

quantization levels of the uniform quantizer Q for Q = 10,16,32,40,50 and 100 on the 

acquisition performance of a quantized log-likelihood sequential detector (QLD) has been 

obtained and compared with the performance of a sequential detector employing an ideal log- 

likelihood function (LLD). The minimum number of quantization levels for the QLD 

yielding an acquisition performance close to the ideal sequential detector LLD, has been 

determined as Q = 32 on the basis of minimum mean acquisition time at moderate SNR, 

although more would be necessary at very low SNRs to minimize quantization effects. The 

biased square law detector (BSD) which is a more usual approximate model to the ideal log- 

likelihood function suitable at low SNR conditions has also been simulated and the 

acquisition performance of all the three variants of the sequential detector have been 

compared at Wald’s optimum bias and at a non-optimum bias.

It has been found that the QLD closely agrees with the LLD. In addition, it is less sensitive to 

the changes in the predetection SNR than the BSD which shows a sharp increase in the mean 

acquisition time when predetection SNR is above +3dB. At a predetection SNR of 7dB both 

the LLD and the QLD achieve a minimum mean acquisition time close to 0.5 sec at Wald’s
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optimum bias while the BSD achieves the same order of minimum mean acquisition time 

around lOdB with non-optimum bias.

The optimization of the three detectors with respect to various critical system parameters has 

also been presented and the optimum performances has been compared. In order to obtain 

the optimum performance of the three detectors, an optimization has been carried out with 

respect to both upper and lower thresholds of the detectors. The detectors have also been 

optimized with respect to the input SNR and the design SNR and presented in the form of 

three dimensional acquisition characteristics.

8.1 Optimization of sequential detectors

Both stages of optimization provide the range of near-optimum values for the thresholds and 

the SNRs which are dependent on the bias value and the detector type. For the case of 

thresholds, the optimum lower threshold has been found to vary with the bias whereas the 

upper threshold has no significant effect The optimum design SNR and the predetection 

SNR have also been determined, however, they vary with the bias and the detector type 

giving a broad range of optimum values.

It is observed that a lower threshold of around -5.0 is optimum for most upper threshold 

values at Wald’s optimum bias for all the detectors. With non-optimum bias the lower 

threshold must be set to around -1.0 to achieve the optimum. At Wald’s optimum bias, the 

optimum predetection SNR is around 8dB with an optimum design SNR also at 8dB (at the 

global minimum) for the LLD and QLD whereas for the BSD the optimum design SNR is at 

6dB. At the non-optimum bias, all the detectors show minima at a higher design SNR, but 

the predetection SNR for the LLD and the QLD is reduced to 6dB while it is increased to 

lOdB for the BSD.

In order to obtain minimum acquisition time at lower SNRs, all three variants of sequential 

detector need to be biased appropriately with design SNR in the range of 2-4dB and this 

results in the minimum acquisition times less than 2sec around the input SNR = -25dB

8.2 Data modulation effects

Data modulation has been found to introduce degradation in the minimum mean acquisition 

time, T ^ .  This is due principally to a reduction in the probability of detection, Pd rather than 

an increase in the ASN or the pf.. Even with data modulation, the QLD agrees closely with
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the LLD, and has broader optimum SNR characteristics than the BSD which is more 

sensitive to changes in the predetection SNR. Although the LLD and the QLD do not show 

significant changes in the optimum design SNR, the optimum design SNR for the BSD is 

found to be reduced by approximately 3dB. However, for all detectors the minimum mean 

acquisition time is found to increase by 5-10 times depending on the lower thresholds and the 

biases.

8.3 Effect of the Doppler shift and data modulation

The degradation due to code and carrier Doppler in the presence of data is quite significant 

for all the three detectors, however, when only code Doppler is present the degradation seems 

to be reasonable. Both the QLD and the LLD show a drift of +3dB in the value of optimum 

predetection SNR, yopt, at which the is minimum. Nevertheless, the minimum mean 

acquisition time increases by 10 times without data due to Doppler. With data, the drift in 

yopt is 2dB, but minimum increases by more than 10 times. The performance of the BSD 

is better than that of the QLD and the LLD at lower y, particularly at Wald’s optimum bias. 

The degradation in yopt is +3dB and the minimum is increased by 4 times without data; 

but in the presence of data, yopt is degraded by +3dB and the minimum is increased by 5 

times.

The effect of the code and carrier Doppler with data modulation are seen to degrade the mean 

acquisition time by 5-10 times and cause a 3-5dB degradation in the yopt.

8.4 Performance in the presence of jamming

All the detectors show a certain level of immunity to both CW jamming and pulse jamming. 

In the presence of the CW jammer, no significant degradation in the acquisition performance 

is seen as long as the jammer to signal power ratio, 7/5, is below 30dB. For J/S above 30dB 

the performance degrades rapidly and becomes intolerable above 40dB. For the case of the 

pulse jammer, the degradation in the acquisition performance is not significant for the pulse 

duty factor less than 0.1 with the average power maintained constant (for S/J in the range 

-lOdB to -25dB). However, when the duty factor is reduced below 0.1 then the degradation 

is found to be significant.

8.5 Comparative analyses with the single-dwell detector and the matched 

filter

When compared under their various optimum design parameters, the matched filter (as
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expected) shows a very good performance at the medium to high SNRs than either the single- 

dwell detector or the sequential detectors. However, as the input SNR is decreased the 

performance of all the detectors show a marked deterioration with the performance of the 

matched filter falling at a much faster rate than the other two rendering it difficult to operate 

at SNRs lower than -25dB. Below this value the sequential detectors completely outperform 

both the matched filter and the single-dwell detector.

When working at their respective optimum design parameters, the QLD achieves a minimum 

T^q close to 0.5sec and requires a predetection SNR of 7dB to achieve this minimum. The 

BSD also achieves the minimum of the same order but this requires a predetection SNR 

of lOdB. When compared at a moderate input SNR at -15dB, the single-dwell detector has a 

minimum = 0.88sec whereas the matched filter shows an acquisition time around

0.06sec. The sequential detector at an equivalent predetection SNR (around 7dB) also 

produces an acquisition time of around 0.5sec. When the SNR is very poor, for example at 

an input SNR = -25dB, the matched filter has a very poor performance with minimum 

achievable around 4.5sec, whereas the single-dwell detector (K = 10), even though better

than the matched filter, is still considered to be poor with minimum greater than 2sec. 

The single-dwell detector (K = 100) shows the minimum worse than 10 sec and thus is 

the poorest. However, the sequential detector, particularly the BSD, shows better 

performance in these SNRs achieving a minimum of less than 2sec. In fact, at input 

SNRs worse than -25dB the sequential detector still maintains minimum close to 2sec 

(when appropriately biased) whereas the other two detectors show rapid degradation with the 

matched filter tending to be the poorest.

Although, the use of Monte-Carlo simulation has been necessary because of the complexity 

of solving the integral equations for the case of the sequential detector, the application of the 

technique to the matched filter and the single-dwell detector systems provide a more realistic 

comparison and also a better insight into the optimum operation of all the three detectors.

8.6 Applications

Sequential detection code acquisition has been shown to provide faster acquisition than its 

serial search counterparts in low SNR conditions. It is also relatively immune to other 

channel impairments and can tolerate significant code Doppler offset Therefore, the 

technique is very much applicable for the high dynamics GPS receivers and low SNR links 

like TDRSS down links. Further, the sequential detection requires a priori knowledge
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regarding the probability distributions of the incoming signal and needs relatively stable 

design SNR it is particularly applicable in satellite links in which the link characteristics are 

normally well understood and the SNR fluctuations are relatively low. It is also usable in 

push-to-talk communication systems and in communication scenarios with intermittent 

pauses where the acquisition needs to be much faster. As the complexity of realizing the 

optimum quantized log-likelihood sequential detector is quite low, it is relatively inexpensive 

yet offers better performance at low SNRs permits and this assures it a versatile usage.

8.7 Scope for further study

Although most situations that contribute to the code phase uncertainty have been investigated 

the effects of fading and multipath could also be of significant importance for the application 

of spread-spectrum techniques to cellular mobile radio systems or hf radio. As the fading can 

deteriorate the input SNR significantly for short intervals, the code synchronization system in 

such situations should be capable of holding lock even during severe fading depths and the 

acquisition system must be fast enough to acquire code lock in case the loop looses lock due 

to a severe loss of SNR. The sequential detector with its capability to work at lower SNRs 

can be optimized to work satisfactorily in fading channels. As the input SNR from a fading 

dispersive channel can have wide variations, the sequential detector must be designed to 

operate at various design SNRs which can be adapted depending upon the input SNR. This 

requires the knowledge of channel SNR which must be estimated to set the design SNR 

appropriately. The adaptive signal processing techniques offer rich potential for this purpose 

and the sequential detector operating in conjunction with these techniques can provide a 

robust code synchronization.

A significant investigation into the performance of sequential detector can be carried out on 

the effects of partial correlations between the incoming code and the local code which 

contribute to the excessive false alarm rate. As the present simulation employs relatively a 

shorter code length L = 127, the contribution of partial correlations can be further reduced by 

increasing the code length which can result in the reduction of the correlation noise while 

checking the majority of out-of synchronization cells. As the false alarms can be catastropic 

to the acquisition performance, a detailed analysis of the effect of code length on the 

sequential detector’s performance is of significant importance. From this, a correct dismissal 

of the majority of false alarms can even speed up the acquisition process further.
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A further improvement in the acquisition speed of the sequential detector can be achieved by 

incoiporating a time-out feature in the sequential detection. The use of truncated sequential 

tests by replacing the upper threshold with a time-out feature inherently causes faster 

detections and offers better potential. However, the effect of partial correlations with such 

tests become more important as this can outweigh the advantage gained by increasing false 

alarms. A proper optimization of the truncated sequential test is essential to iminimize the 

false alarms. Various sub-optimum detector structures can also be employed to improve the 

robustness of the sequential detectors for varying channel characteristics. A sub-optimum 

behaviour of such detectors can permit the use of sequential detectors as non-parametric 

detectors in situations that cannot guarantee the required a priori knowledge and this would 

be a major advantage in some applications. Sequential sign-tests and sequential dead-zone 

limiters provide simplicity and better performance as non-paramertric detectors when the 

channel statistics are difficult to obtain. However, as these detectors employ two level or 

three level hard limiting, the hard limiting non-linearity of these devices can be well 

compensated by increasing the number of quantization levels. A detailed analysis and 

studies of sequential non-parametric detectors by increasing the number of input quantization 

levels is necessary to compare the performance of such detectors with the optimum 

sequential detectors.

A further interest in the code acquisition lies with the parallel-serial search methods which 

can partly implement the maximum-likelihood approach by dividing the search region into 

smaller segments and employing faster serial search methods. An investigation of sequential 

detectors in such situations as a completely parallel or as a serial-parallel scheme provides 

better understanding of their performance compared to parallel schemes with non-sequential 

detectors and would achieve significantly faster acquisition times.

Hitherto, much of the analyses of code acquisition have been carried out for the time 

uncertainty case assuming relatively less Doppler. However, when the accumulated local 

oscillator frequency drift and/or Doppler shift are significant, the practical situation requires a 

two-dimensional time/ffequency uncertainty region to be searched. Thus a quantization of 

the compound time/frequency region, resulting in two-dimensional cells needs to be 

examined. This requires a bank of detectors, each timed for different cell frequency, resulting 

in a parallel processing to resolve frequency uncertainty and either parallel or serial search 

for resolving the time uncertainty. Such receivers can well be implemented with sequential
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detectors because of their simplicity and better performance and the trade-off between cost 

and effectiveness of such receiver structures, which would also require to incorporate a 

conflict resolution logic, would be interesting and worth examining.

Significant improvements can also be carried out in the acquisition performance of digital 

matched filters. Use of digital matched filters require A/D conversion of the received signal 

at the input of the correlator. For simplicity and minimum power consumption, especially at 

chip rates at ten’s of MHz, it is generally required to keep the quantization as coarse as 

possible. At very low SNRs, the penalty for coarse quantization is very high and this adds to 

the poor performance of the digital matched filters at low SNRs. The use of finer 

quantization improves the performance at the cost of complexity and the influence of such 

correlators on the subsequent acquisition process with the problem of optimizing the loop 

would also be an interesting future work. As the digital matched filter makes decisions at 

much higher rate which is a multiple of the code rate, the decision SNR is inherently very 

low and this is the principal reason for its poor performance when SNR is low. An 

investigation into the digital matched filters with a multiple code length correlator is also 

important as this accumulates the correlation outputs corresponding to the same uncertainty 

cell to increase the decision SNR resulting in improved performance at low SNRs. In order to 

improve the performance of the matched filter with data modulated signals, the use of 

subsequence matched filtering to match with the different segments of incoming code with a 

subsequent non-coherent combining of such partial correlation outputs also forms an 

interesting extention to the present research.



GLOSSARY OF PRINCIPAL SYMBOLS

A ims signal amplitude of the correlator signal

A( upper threshold

A (ri) decision criterion

a (t) random signal at the correlator output

Bt lower threshold

B predetection filter bandwidth

b bias

b i Wald’s optimum bias

b 2 a non-optimum bias

b ' normalized bias value

Cij cost associated with choosing the hypothesis //, when hypothesis Hj is true

C average cost

Ck k th PN code chip

c (t) PN code sequence

c normalized threshold of digital matched filter

D (v) detector on input observation v

D ! detector 1

D 2 detector 2

D (d/v) decision rule or conditional probability of making decision d  with a given

observation v 

dQ decision that the signal is absent
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d i decision that the signal is present

d2 decision to defer a sequential test

d(t) data sequence

E if2 ARE, asymptotic relative efficiency

Eb energy per bit

E (Zn/0) expectation of the log-likelihood ratio {n samples) conditioned on 0

E (z/0) expectation of the log-likelihood ratio for i th sample conditioned on 0

F ) pdf of the transitions of the Markov process {jq}

f c PN code rate

f s input sampling rate

fd frequency difference due to Doppler

f m(y) a derived distribution of observation v

G (.x ;c) intermediate function defined to derive ASN of the BSD

Gi(p) a function of the correlator output

8 gain

H  a hypothesis

H0 null hypothesis

H  i alternate hypothesis

Hi general hypothesis corresponding to either H0 orH\ for i=0,1

H* a derived hypothesis setting a new distribution for v

H (x ;c) intermediate function defined to derive ASN of the BSD

h a real number

IQ [ ] modified Bessel function of the first kind, zeroth order

J it)  jammer signal

J  rms jammer power

Jp peak jammer power
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/* jammer component

K  false alarm penalty factor

K[ false alarm penalty factor of the i th dwell

L PN code length

L(0) OCF with signal absent

L(0) OCF with signal present

M  correlator length of a matched filter

M  i(xQ) average test duration derived as the first moment of the moment generating

function of the duration of test 

m number of adders in a sync-worthiness-indicator

N  number of dwells

N0 single-sided noise spectral density

Nj jammer power spectral density

Nopt optimum number of sweeps

Nu number of code chips in the uncertainty region

N noise space

N i, N 2 sample size for the same a, p, hypothesis and the alternative

n i , n 2 smallest number of samples necessary for the two detectors two achieve a

power of 1-p for same significance level, hypothesis and the alternative 

rifa false alarm rate

nagr number of agreements

n (t) noise waveform

n shift register length

Pd probability of detection

Pfa probability of false alarm

Pdi probability of detection of the i th detector of a multiple-dwell detector
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Pfai probability of false alarm of the ith detector of a multiple-dwell detector

Pd overall system detection probability

Pfa overall system false alarm probability

p1 acq probability of overall acquisition

Pm false dismissal probability

Pc correctness probability of an estimated bit

Pfak probabitity of false alarm at the end of the kth examination interval

Pfdk probabitily of false dismissal at the end of the k th examination interval

Pd\l probability of detecting \Lth correlator impulse

Pmd miss detection probability

Pe probability of error

PAt) jammer pulse

PQio) a priori probability of hypothesis H0

P (H X) a priori probability of hypothesis Hi

P(P \!H 0) conditional probability of decision d \ with the given hypothesis H0

P(D0/H  i) conditional probability of decision da with the given hypothesis H\

Pi(xa) probability of test truncation

Pl probability of entering lock

Pin) a priori pdf of all the points in noise space

Pm(v/0) conditional pdf of m data samples

p iy ls ) a priori pdf of observation v or conditional probability of waveform v with a 

given signal s

p(v /o ) a priori pdf of observation v in noise or conditional probability of waveform 

v with given signal s =0

p code phase offset in a matched filter

Q number of quantization levels for the QLD
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Q (P) Gaussian probability integral

Qd(X, Y) operating point on the OCF

Q (Yd*Pd) Marcum’s ^-function

q number of code cells to be searched

q ' number of cells in the absence of Doppler

Rc = fc code rate

Rd data rate

Rs sampling rate at the envelope detector output

R0 threshold parameter of digital matched filter

r(t) received signal

S rms signal power at the input

Ss sum of the series

Sm sum of the first M  terms of the series

St sum of the tail end of the series

s (0  transmit signal

Tacq mean acquisition time

TP false alarm penalty time

Tm total time uncertainty

T  sampling time at the envelope detector output

Tc PN code chip duration

Te examination period

Ti beginning of an integration interval

Tj time between the successive pulses of the jammer

T0 data bit duration

Tr reset penalty time required to rewind the code

Ts sampling time at the input of the receiver (PN signal sample time)
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Tdis mean dismissal time

Tvr verification time

Tfr truncation time

Tu = \nAt upper threshold of a log-likelihood sequential detector

7/ = In Bt lower threshold of a log-likelihood sequential detector

Tv time interval in which a false alarm occuring can affect the Vth impulse

tj additional time necessary to make the j th decision given that the present cell

has not been rejected at the (J -l)th decision in a multiple-dwell detector 

f v instant of time at which v th correlation impulse occurs

u (yk) unit step function

(vi,v2, • • • vm) m-dimensional sample vector 

v,- accumulator output of a sequential detector

Wss spread bandwidth

x (t)  correlator signal

[Xi} discrete stationary Markov process

Yk k th sample of the envelope detector of a BSD after the bias

y  (t) output of the envelope detector

yk k th sample of the envelope detector (LLD or QLD) or square-law envelope

detector (BSD)

z(t) accumulator output of the basic form of sequential detector

Zm log-likelihood ratio for m samples

a  significance level or size of the test

a 0 a fixed significance level or size of the test

a , (3* significance level and power for test H * versus H

(3(0) probability of miss detection

1-p power of the test
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A decision space

AT code phase misalignment

ATc step size in a serial search

A f c difference in clock frequency of a continuous sliding correlator or code

Doppler in a discrete search 

5 ij Kronecker detla function

r| threshold

r\0 ,rj i fixed values of detector threshold

rj ] normalized threshold values for i= 1,2

T observation space

Tm m-dimensional sample space

decision regions corresponding to the decisions dOJd j ,d2 

y predetection SNR

Jin input SNR

ydsn design SNR

yopt optimum SNR

yc decision SNR on a per-cell basis

Ai likelihood ratio function for i samples

Am(v /0) likelihood ratio function for m samples

A^v), yjC) likelihood ratio

jn mean search update

v number of the correlator impulse

Q signal space

coc carrier radian frequency

(od carrier Doppler shift in radians

coj jammer radian frequency
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<*ca radian cut-off frequency of an analog filter

(Ocd radian cut-off frequency of a digital filter

*j a priori distribution of the code phase uncertainty

Ôo ) probability of decision i=0,l,2

P duty factor of a pulse jammer

*
P critical duty factor of a pulse jammer

o(s) a priori pdf of all the points in signal space

o2 variance of the noise process

o 2^  acq variance of the acquisition time

tT c local code phase offset

*
X local code frequency error

dwell-time

Id mean-dwell time of a search/lock strategy

*di dwell-time of the ith dwell of a multiple-dwell detector

V pulse width

to test truncation time

0 signal parameter

ec carrier phase

e* design signal parameter

0/ jammer phase

3, j th signal parameter

%r0< r c received data bit phase offset

CT’c received code phase offset

f received code frequency offset

>Hi <h0 hypothesis H \ accepted if likelihood ratio is greater than the R.H.S and 

hypothesis H0 is accepted if it is less than the R.H.S
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COMPUTER SIMULATION OF A QUANTIZED LOG-LIKELIHOOD SEQUENTIAL DETECTOR FOR 
FASTER ACQUISITION OF SPREAD SPECTRUM PSEUDO-NOISE SIGNALS.

K.V. Ravi, RP. Ormondroyd 

University of Bath. UK

ABSTRACT

This paper presents the performance of a quantized 
log-likelihood sequential detector for the acquisition of 
psuedo-noise signals in direct-sequence spread spectrum 
systems. This new sequential detector improves the ease of 
implementation through the use of a digitally implcmen table 
look-up table approach, and it also simultaneously provides 
the minimum mean acquisition time for a lower input 
signal-to-noise (SNR) ratio when compared with a fixed 
dwell serial-search or matched filter acquisition system.
The effect of the number of quantization levels on the 
acquisition performance of the quantized log-likelihood 
sequential detector has been obtained by computer 
simulation and compared with the performance of a 
sequential detector employing an ideal log-likelihood 
function. It has been found that the quantized 
log-likelihood sequential detector with 32 quantization 
levels yields an acquisition performance dose to the ideal 
sequential detector. Optimization of various sequential 
detector system parameters to result in the minimum mean 
acquisition time has also been discussed.

INTRODUCTION

There is a pressing need for faster code acquisition in 
direct-sequence spread-6pectrum receivers and consequently 
the acquisition problem has received considerable attention 
recently. Spread-spectrum code acquisition schemes can be 
broadly classified in terms of the underlying search 
algorithm and the detector type. Three major types of 
commonly used search algorithm are: maximum likelihood, 
serial search and sequential estimation. These methods 
trade system complexity for acquisition performance, and 
the sequential estimator, for example, has a  poor SNR 
performance. The detectors used with these schemes 
generally employ either fixed-dwell detection or matched 
filtering. For serial search algorithms, however, sequential 
detection, employing a variable dwdl time, has been shown 
(1) to be the optimum for achieving the minimum 
acquisition time in low SNR conditions and forms the basis 
of this paper.

Sequential Detection of Spread-spectrum Signals

The classical sequential detection technique was initially 
proposed by Wald (2) for radar detection but it has also 
been applied to the problem of spread-spectrum acquisition 
by Cobb and Darby (3). Figure 1 shows a schematic 
diagram of a serial search p-n code synchronizer using a 
sequential detector in place of the more usual fixed dwell 
system. As for fixed dwell systems, the timing error 
between the received pseudo noise (PN) code and the locally 
generated replica code is obtained from the measure of 
correlation existing between them. Because of the effect of 
noise, the correlation function is corrupted. This means that 
the detection of the wanted (ie. in-lock) correlation can be 
missed or that 'false alarm' conditions can occur. The code 
is split into cells of typically two cells per chip and samples 
of the corrupted correlation output are obtained.

In the sequential detector, these samples are checked to 
establish the measure of the likelihood that they contain the 
wanted correlation signal (plus noise) or are simply noise 
alone. This likelihood measure is accumulated and tested 
against normally two thresholds to detect the correct 
synchronization. The accumulator output rises linearly at 
different slopes depending upon whether the cell being 
searched corresponds to noise only or signal plus noise.

By adding a proper bias to the log-likelihood function, 
which is between the means of the detector outputs under 
the two hypotheses, say. the accumulator output will tend to 
decrease linearly when noise alone is present and increase 
linearly when signal plus noise is present. When the 

-accumulator output falls below the lower threshold, the cell 
is dismissed and the local code is advanced by one cell and 
synchronization is re-checked. If the accumulator output 
exceeds the upper threshold, then synchronization is 
dedared (however it may be a false alarm). By appropriate 
choice of the lower threshold level and bias level, the 
dismissal time can be minimized. Since the detector spends 
most of the time dismissing out of synchronization cells, 
which occur in all but one cell per pass through the 
uncertainty region, the sequential detector can be designed 
to reduce the mean time to dismiss the out of 
synchronization cells; resulting in minimum mean 
acquisition time.

This mechanism of quick dismissal of the out of 
synchronization cells forms the heart of the sequential 
detection system that provides the acquisition time 
advantage not possible with other schemes.

Wald has provided an analysis of the sequential detector 
based on approximations which are valid only in situations 
of low signaRo-noise ratios as the ’excess-over-boundary' 
problem was not treated (4). Kendall analyzed the 
performance of a simplified version of the sequential 
detector called the 'biased square law sequential detector' 
for the case of dismissing the out of synchroniszation cells 
(1). However, the exact analysis in the range of moderate 
signal-to-noise ratios (ie. a predetection signal-to-noise 
ratio in the range of -3dB to +3dB in the IF bandwidth) has 
been found to be difficult (1.5) as the integral equations 
governing the decision probabilities and the expected 
sample size of a sequential probability ratio test are very 
difficult to solve by methods that will give useful numerical 
results. Some simulation results of the detection probability, 

and false alarm probability, Pf«. with simplified detector 
implementations have been presented by Cobb and Darby 
(3). where the authors simulated the ideal log-likelihood 
sequential detector transformation, In I-[ ]’, (ie. the 
natural logarithm of the modified Besselfunction of first 
kind and zero order) and employed square law detector, 
envelope detector and absolute value detector 
implementations.

In this paper, the ideal sequential detector's In I0[ ]’ 
transformation has been quantized and the sprecJ spectrum . 
acquisition has been simulated by a Monte Carlo method

Paper presented in the 5th International Conference on Radio Receivers and associated 
systems, July 24-26, 1990, Cambridge, UK, IEE Conference publication No. 325, pp 
207-211.
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and new results for the quantized log-likelihood sequential 
detector are presented. The minimum number of 
quantization levels to achieve satisfactory performance has 
been derived with this simulation and the performance 
characteristics of the quantized log-likelihood sequential 
detector are compared with the simulated performance of 
the ideal log-likelihood sequential detector.

\

SIMULATION OF SEQUENTIAL DETECTION

The incoming signal is modelled as a baseband 
direct-sequcnce spread-spectrum signal with pseudo random 
code modulation. The transmit signal has been simulated as 
a PN code of length 127 chips running at a rate of 
100Kb/s. Two cells per chip have been assumed. Additive 
white Gaussian noise (AWGN) has been assumed and the 
channel characteristics have been simulated by generating 
Gaussian random noise with unit variance and the corrupted 
spread spectrum signal is used as the input to the PN 
receiver. In the simulation of the receiver, the incoming 
signal is correlated with the local code generated with an 
arbitrary starting state and the correlated signal is low pass 
filtered and sampled at the rate equal to 1/B, where B is the 
predetection filter bandwidth.

Definition of the Log-likelihood Function

In the baseband simulation of the sequential detection 
system it has been assumed that the output of the low pass 
filter is equivalent to the filter output of a band pass model 
which has a Gaussian noise corrupted sinusoidal .(IF) signal 
as its input. The output of the envelope detector is assumed 
to have a Rician probability density function (pdf) with 
signal plus noise and a  Rayleigh pdf with noise only. When 
this envelope is sampled at the rate 1/B, the log-likelihood 
function, which is defined as the logarithm of the ratio of 
probability of signal phis noise, PjOO. to the probability of 
noise only, p ^ ^  ). with y^ as the k ^  sample, is given by.

A(k)
PcAk) _

- - r  + ln{I0(2yk >] (2>

The accumulator output, which is the running sum of the 
log-likelihood function, is given by: 

l
v,- -  £J«k) (3)

k - l

- £ < - r + l n I I 0(2yk / -^ - ) ] )  (4)
►-1 2a2

where a is the standard deviation of the noise, and y is the 
predetctor SNR. In the double threshold sequential detector, 
this sum is compared against two thresholds viz.. the upper 
threshold T and the lower threshold T ,.V I
Performance Parameters Examined

The sequential detection system employing the ideal 
log-likelihood function was simulated and various 
performance characteristics of the sequential detector viz., 
average sample number(ASN), probability of detection (P^) 
and probability of false alarm (P^) were recorded for 
multiple runs with random starting states of the local code 
generator. The phase of the local code was changed in steps 
of 1/2 chip interval (the cell length) and all the four 
possible successive cells of the autocorrelation curve were 
searched for detection.

-  In-
P,tyk>

( i )

The log-likelihood function was then quantized using a 
uniform step size and the acquisition characteristics were 
compared for a different number of quantization levels. 
Using this technique, the quantized log-likelihood sequential 
detector with the minimum acceptable number of 
quantization levels has been obtained for two different bias 
levels (Wald's optimum value and a non-optimum value) and 
from this the acquisition performance has been determined.

The critical system parameters determining the performance 
of the system are the upper threshold, lower threshold, bias 
and gain. In order to obtain a valid performance of the 
detector, the loop gain had to be carefully optimized to 
achieve acceptable probabilities of detection and false alarm 
over the input SNR range of interest. The bias was set as a 
function of the predetection SNR and the input SNR was 
then varied to obtain the required performance 
characteristics. The mean acquisition time was computed 
from these observations and the acquisition performance for 
the input signal-to-noise ratio ranging from -25dB to -lOdB 
was then obtained.

SIMULATION RESULTS

For the ideal log-likelihood sequential detector (LI JO) and 
the quantized log-likelihood sequential detector (QLD).
ASN, P j and Pfa  have been recorded for the predetection 
SNR. y. ranging from -4dB to +10dB (for a 21dB process 
gain). Generally, it. has been observed that P^ is decided 
mainly by both the lower threshold and the bias while P ^  is 
mainly controlled by the upper threshold and the bias point. 
The effect of the other threshold seems to be minor in both 
cases. Normally, in all the characteristics, the upper 
threshold has been fixed at 5.0 and the lower threshold is 
set to -5.0, -2.0 and -03. For each set of thresholds, two 
different bias levels, b, are employed, one at Wald’s 
optimum value ie, b -  y(l-<y/2) and the other at the 
non-cptimum bias equal to b -  r  . The characteristics with 
the upper threshold at 5.0 and the lower threshold at -5.0 
for both these bias values are shown in figures 2-5.

The characteristics of the ASN versus predetection SNR and 
the mean acquisition time versus predetection SNR for the 
ideal LLD are shown in figures 2 and 3 .

The effect of the number of quantization levels. Q. on the 
performance of the QLD has been obtained for 
Q - l0,16,32.4030 and 100 with the upper and lower 
thresholds at 5.0 and -5.0 respectively, and these results are 
shown in figures 4 and 5.

Discussion of the ASN Results

The ASN for the sequential detection system depends both 
on the lower threshold and the bias. Although the ASN 
appears to be reducing with an increasing lower threshold, 
the false alarm probability starts increasing, and this starts 
to control the mean acquisition time. This factor limits the 
choice of the lower threshold to moderate values. With the 
optimum bias, the ASN is seen to be always less than that 
with the non-optimum bias.

From the characteristics shown in figure 2, it can be 
observed that the ASN increases with decreasing 
predetection SNR. For example, for the ideal LLD at 
SNR-OdB with the"optimum bias, the ASN is 6.25 for the 
lower threshold at -5.0 while at SNR—3dB the ASN is 
1534 for the same threshold. With the non-optimum bias 
the ASN is slightly higher than that with the optimum bias 
ie, 10.2 for SNR-OdB; 21.1 for SNR—3dB. The ASN for 
the quantized log-likelihood detector with Q-32 (QLD)
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closely agrees with the LLD at SNR-Odb. However, at 
SNR—3dB the QLD appears to be overshooting the LLD 
showing a sharp increase in the ASN with the decreasing 
SNR which can be attributed to the effect of quantization at 
low SNR's. This effect of coarse quantization on the ASN 
at lower predetection SNR's can be seen in figure 4.

Discussion of the Acquisition Time Results

The mean acquisition time depends on the combination of 
ASN, Rj and Pfa and is sea; to pass through a minimum as 
the SNR varies. The minimum mean acquisition time and 
the optimum SNR at which it ccnirs vary with the 
thresholds, the biases and the type of the detector. Figure 3 
shows the mivamum mean acquisition time for two biases 
with the upper threshold at 5.0 and the lower threshold at 
-5.0. The mean acquisition time has been calculated under 
the assumption of multiple passes based oc *Le probability 
of detection and a false alarm penaity time based on the 
probability c. false alarm. Typical values for the truncation 
time (Tjj.) and the verification time (Tyj.) of the sequential 
test have been assumed as Ttr*50 ms and Tyj-50 ms _ 
respectively and the total mean acquisition time has been 
computed by using the relationship

where T ^  is the mean dismissal time given by

T ^  -  ASN/B (6)

where B is the predetection filter bandwidth, which is equal 
to the data bandwidth, q is the number of the code cells 
being searched and T_ is the acquisition time with 
probability P. In these results. P is assumed to be 051.

The mean acquisition tune as a function of the pre-detection 
SNR has been plotted for both the LLD and the QLD (for 
Q - l0.16,32,40.50 and 100). and the results are shown in 
figure 5. Typically, the mean acquisition time shows a 
downward trend with an increase in the SNR 
from -4dB and passes through a  minimum. At the lower 
predetection SNR—4dB the ASN and the are at their 
maximum, and even though the P<j is also at its maximum, . 
this causes a higher acquisition time. With increasing SNR, 
the initial fall in the mean acquisition time is due to 
decreases in both the ASN and the P ^ . Further increase in 
the SNR, even though this causes the ASN and the P ^  to 
be reduced, increases the mean acquisition time. This is 
because P4 significantly reduces, causing the number cf 
passes to rise sharply.

The optimum SNR with the non-optimum bus is seen to be 
broader than that with the optimum bias while the minimum 
mean acquisition time with the optimum bias is always less 
than that with the non-optimum bias as seen from figure 3.

For the QLD with the number of quantization levels set at 
Q-1 0  and 16, although the acquisition time maintains a 
minimum, it is greater than the minimum, achievable and 
rises very fast with a varying SNR. However, for Q-32 and 
above, this minimum almost merges with that of the LLD 
and the characteristic dosely agrees with the LLD's 
characteristic throughout the SNR range of interest The 
optimum SNR occurs around 7 dB for both the LLD and 
the QLD with a minimum achievable acquisition time of 
approximately 0.5 sec for the given system parameters.

The minimum mean acquisition time obtainable from the 
QLD appears to be considerably less than for fixed dwell 
serial search systems with the same system parameters. 
However, the SNR to achieve this optimum seems to be 
higher. This is due to the fact that the simulation employs 
a bias which depends on the predetection SNR. A 
sequential detector designed with this Input SNR as the 
optimum, with the bias derived from the predetection SNR. 
can provide the optimum performance for an input SNR 
around -15dB for a 127 chip sequence. However, as seen 
from figure 3, the bias of the sequential detector plays an 
important part in determining the optimum input SNR. and 
hence, on the choice of the design SNR As Wald's 
optimum bias is valid only for the lower input SNR’s and 
the exact expressions for the decision probabilities and the 
average test duration do not require the bias to correspond . 
to Wald's optimum bias (5). changing the bias 
independently from the predetection SNR would allow the 
choice of a design SNR suitable for a wider range of input 
SNR's. The effects of the bias variation, with a fixed design 
SNR on the acquisition performance need to be assessed.

CONCLUSIONS

The quantized log-4ike5hood sequratiai detector with 32 
quantization levels is seen to have a performance dose to 
that of the ideal log-likelihood sequential detector. With 
this number of quantization levels, a simple realization of 
the QLD using a look-up table approach can be 
implemented digitally with an easily manageable size of 
ROM, thus reducing the hardware complexity. The 
performance of such a sequential detector can be quite 
robust providing the minimum acquisition time for a wide 
range of input signal-to-noise ratios. Since the total average 
acquisition time of the spread spectrum receiver employing 
the sequential detector can be quite low. the use of 
direct-sequence spread-spectrum techniques in such diverse 
applications as push-to-talk digital mobile communication 
systems, satellite navigation systems and LAN systems etc. 
becomes more practicable.
The sequential detector has been found to have a  good 
acquisition performance at low signal-to-noise ratios when 
compared with serial search or matched filter systems and is 
an attractive alternative for many present day spread 
spectrum communication systems.
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COMPARISON OF THE AQUISITION PERFORMANCE OF BIASED SQUARE 
LAW AND QUANTIZED LOG-LIKELIHOOD SEQUENTIAL DETECTORS 
FOR PN ACQUISITION.

K.VJlavi and RJ.O nnondroyd 

University of Bath, UK 

IX ABSTRACT
This paper compares the acquisition performance of a new type of sequential detector, the quantized log- 
likelihood sequential detector (QLD), with the biased square law sequential detector (BSD) for the 
acquisition of direct-sequence spread-spectrum pseudo noise signals. The ideal log-likelihood function of 
the sequential detector has been quantized and the quantized log-likelihood sequential detector is 
simulated. It has been found that the QLD with 32 quantization levels has an acquisition performance 
close to that of the ideal log-likelihood sequential detector. The BSD has also been simulated and its 
acquisition performance is obtained for the same system parameters as the QLD.

In this paper, the acquisition performance of the QLD and the BSD have been compared both at Wald's 
optimum bias and at a  non-optimum bias for a  predetection signal-to-noise ratio (SNR) ranging from -4dB 
to +10dB. It has been found that the QLD is less sensitive to the changes in the predetection SNR than the 
BSD which shows a sharp increase in the minimum mean acquisition time when the predetection SNR is 
increased beyond +3dB. Because the QLD can be easily realized by a look-up table approach using digital 
techniques, and yet can provide a better aquisition performance, it is attractive for use in many spread 
spectrum systems requiring faster acquisition when working at low input signal-to-noise ratios.

2 X INTRODUCTION
Direct-sequence spread-spectrum (DS-SS) receivers usually accomplish code despreading using active 
correlation by generating a local replica of the pseudo noise (PN) code which is synchronized to the code 
superimposed on the incoming waveform. Synchronization is ordinarily achieved in two stages. In the 
first stage, a coarse alignment of the two PN codes is obtained to within a small relative timing offset, 
typically less than a  chip duration. This is referred to as 'PN acquisition'. In the second stage, fine 
synchronization is performed by continuously tracking the relative code error and maintaining the best 
possible code alignment by means of a closed loop system. In this paper, only the acquisition problem is 
considered.

A common method of achieving initial synchronization is to use a serial search of all the code epochs 
using the correlation between the two codes as the input to an appropriate detector to indicate coarse kick. 
The simplest systems use fixed dwell integration and a threshold detector. The sequential detector (1), 
which employs a variable dwell time serial search algorithm, has been found to be optimum for achieving 
a minimum acquisition time (2), and forms the basis of this paper. The basic structure of the sequential 
detection system is shown in figure 1. In this system, the samples of the correlation between the two 
codes, after the envelope detector, are transformed by a log«/0[ ] function, where /„[ ] is the modified 
Bessel function of the first kind and zero order. The output of this transformation gives a measure of the 
likelihood that the signal contains the wanted correlation information (ie. the in-lock signal) or is mostly 
noise containing only the out of sync, correlation value. The sequential detector accumulates these 
samples and tests the accumulated output continuously against two thresholds to determine the presence of 
the signal (plus noise) or the noise only. If the accumulator output crosses the upper threshold, the in-lock 
signal is declared (although it may be a false alarm). When the accumulated output is between the 
thresholds a new sample is taken and the test is repeated. When the lower threshold is crossed, it is 
assumed that the two codes are not in synchronization and the local code is advanced by one code cell 
relative to the incoming code (usually 1/2 chip interval) and the test is repeated; thus the search is 
continued until the presence of the signal is detected.

The realization of the sequential detection algorithm involves an exact realization of the transformation, 
’log*/*! In the past this was found to be difficult and a number of different approximations have been 
employed. Cobb and Darby have reported the simulation results of simplified sequential detector 
implementations, employing a square law detector, envelope detector and absolute value detector (3). 
The exact analysis of the sequential detector was found to be difficult as the solutions for the characteristic

Paper presented in the IEEE International Symposium on Spread Spectrum Techniques and 
Applications, September 24-26,1990, London, UK, Symposium Proceedings, pp 53-58.
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integral equations become quite difficult even using numerical methods (4). Wald’s analysis of a 
sequential detector is based on approximations and valid only to situations of low signal-to-noise ratios 
(1). Kendall analyzed the performance of a simplified version of the sequential detector called the ’Biased 
square law sequential detector* giving the analysis only in the absence of the signal (4).

In this paper, the ideal log-likelihood sequential detector’s ’logJ 0[ ]’ transformation has been quantized 
and the spread-spectrum acquisition system is simulated by using a Monte Carlo method. The 
performance results for a quantized log-likelihood sequential detector (QLD) are also presented. The 
minimum number of quantization levels to achieve a satisfactory performance has been determined. The 
biased square law sequential detector (BSD) has also been simulated and it’s acquisition performance is 
assessed and compared with that of the QLD.

3.0 TYPES OF SEQUENTIAL DETECTOR
The sequential detectors simulated here employ three different realizations of the likelihood function 
which is a ratio of the a priori probabilities of the two hypotheses corresponding to: i) the presence of 
signal plus noise or ii) noise only. The different likelihood functions are described in the following 
sections.

3.1 Ideal Log-likelihood Sequential Detector (LLD)
For a baseband model of the spread-spectrum sequential detection system, the probability density function 
(pdf) of the envelope detector’s output is given by a Rician distribution for signal plus noise, p i(yk), and 
by a Rayleigh distribution for noise only, poO1*) for the Jfc* sample, yk (assuming the out of sync, 
correlation signal is negligible in amplitude). The log-likelihood function is:

m  = iog4 Pi(yt)
Po(y*).

= -Y +log .[/,(2yWy2o2)]

(1)

(2)

The accumulator output is:

^  = £ * (* ) (3)*-i

= Z (-Y +logJ/,(2y*>/y2?)]) (4)*«i
where y  is the predetection signal-to-noise ratio, and o  is the standard deviation of the noise.

An LLD realizes this function ideally, and the sum of the accumulator output is compared to an upper
threshold Tu and a lower threshold Tt in a double threshold sequential detector.

3.2 Quantized Log-likelihood Sequential Detector (QLD)
In this case, the ideal log-likelihood function is quantized using a ’uniform quantizer’ which facilitates a 
look-up table implementation using digital techniques. A choice of the acceptable number of quantization 
levels, Q, has been made based on the comparison of the simulated performance with the LLD. The QLD 
with a minimum acceptable number of quantization levels has been simulated and its acquisition 
performance is obtained.

33  Biased Square Law Sequential Detector (BSD)
For low SNRs, the ’k>g«/0[x  ]’ function can be approximated by the first two terms of a power series 
expansion:

and this leads to a biased square law sequential detector (BSD) whose accumulated log-likelihood function
becomes:



= I  (yt-b) (8)

where b is the bias of the log-likelihood function, 6 = NJ1 (1 + y), and Ne is the single-sided noise spectral 
density. For the BSD, two bias values, one at Wald’s optimum bias and one at a non-optimum bias, have 
been considered.

4.0 SIMULATION OF SEQUENTIAL DETECTORS
A baseband model of a direct-sequence spread-spectrum system was developed. The transmitted signal 
was represented by a pseudo random noise (PN) code running at a rate of lOOKb/s with a code length of 
127 chips. The transmission characteristics of the channel were simulated under the assumption of 
additive white Gaussian noise (AWGN) by generating a Gaussian random noise signal with unit variance 
and the corrupted spread-spectrum signal was fed to the DS-SS receiver. The receiver correlates the 
incoming signal with the locally generated PN code. The correlator output was then low pass filtered and 
the envelope was sampled at a rate equal to 1 IB, where £  is the predetection filter bandwidth, which 
ensured sufficiant sample decorrelation for the tests of the two hypotheses to be valid. An absolute-value 
detector was employed and all four possible cells under the auto correlation curve were searched for 
detection of the wanted correlation signal.

The tests were carried out for multiple runs with an arbitrary code starting phase and the average sample 
number, ASN, the probability of detection, Pd, and the probability of false alarm, P ^, were recorded at 
each input SNR. For each set of ASN. Pd and P ^, the mean acquisition time was then calculated. The 
input SNR was varied from -25dB to -lOdB ie. a predetection SNR in the range: -4dB to +lldB 
(assuming a process gain of 21dB) in steps of 1 dB and the acquisition characteristics determined for each 
SNR.

4.1 Total mean acquisition time (T,)
The mean acquisition time of a sequential detector depends on a combination of ASN, Pd and Pf*. Pf, 
causes a false alarm penalty time which adds to the mean acquisition time, whereas a non-unity Pd 
increases the number of passes of search through the uncertainty region, depending on the required 
probability of overall acquisition />oc. Even though the total mean acquisition time is the sum of the search 
times required to search that part of the uncertainty region where the signal is not present and the search 
time for the cell where the signal is present, the time for the latter is normally neglected due to the large 
number of cells where the signal is not present The time for verification of a false alarm (T„) and the 
time to reach truncation to declare the signal present (Tr ) are typically assumed to be 50m* each. Thus 
the mean acquisition time Tp with probability of acquisition P ^  is given by*.

and q is the total number of code cells to be searched.

5.0 COMPARISON OF SIMULATED ACQUISITION PERFORMANCES
The total mean acquisition time is not only directly related to the mean dismissal time but also to Pd and 
P[a. Consequently, the simulation results are presented to facilitate the comparisons of ASN as well as the 
mean acquisition time. It has been observed that Pd is mainly decided by the lower threshold, 7), and the 
bias value, b, whereas Pfa is mainly decided by the upper threshold, T„, and the bias value; with the other 
thresholds showing a minor influence on both Pfa and Pd. In this paper, the upper threshold has been fixed 
at 5.0 and the lower threshold is set to -5.0,-2.0 and -0.5 for two different bias values, b, viz: Wald’s 
optimum, b t = 7(1 + y/2) and a non-optimum bias equal to b 2 = yand the simulation repeated for each set 
of values.

(9)

where 7 ^  is the mean dismissal time given by:

Tju = ASN IB (10)



56

For the QLD with a uniform quantizer, the acquisition performance has been obtained for 
(2=10,16,32,40,50 and 100 with upper and lower thresholds set at 5.0 and -5.0 respectively and the 
comparative performance is shown in figure 2 together with the acquisition performance of the LLD. 
When Q £32 the acquisition performance closely agrees with that of the LLD but when Q <32, it is worse 
than the LLD and Tp varies rapidly with SNR. The complete acquisition performance of the QLD for both 
bias values with different threshold settings has been obtained, and the variation of the ASN and the mean 
acquisition time with the predetection SNR are shown in figures 3a-3b and 4a-4b for both types of 
detector. The ASN of the sequential detector depends both on the lower threshold and the bias value and is 
always seen to be less when optimally biased than when non-optimally biased. From the characteristics 
shown in figure 3a, it can be seen that the ASN increases with decreasing predetection SNR. For the QLD, 
the ASN is lower than the BSD at SNR=0dB and almost as good as the LLD. The difference is mainly due 
to the effect of the coarse approximation employed in the BSD by truncating the power series expansion of 
the logt/0 [ ] function to the fourth power. However, at SNR=-3dB the QLD overshoots the BSD and 
shows a sharp increase in the ASN when the SNR is further decreased. This rise is seen to be due to the 
effect of quantization at low SNR’s.

The mean acquisition time has been computed for all three detector types for a probability of acquisition, 
Pec = 0.9 and plotted as a function of the predetection SNR in the range of -4dB to lOdB for both the 
optimum and the non-optimum bias points. The mean acquisition time shows a downward trend with 
increase in SNR from -4dB and passes through a minimum. The initial fall in Tp is attributed to a decrease 
in the ASN and P/a with an increasing SNR. Further increase in the SNR causes a significant reduction in 
Pd and this increases the number of passes required, and consequently Tp increases. It is observed that the 
minimum acquisition time and the optimum SNR at which it occurs, depend on the thresholds and the 
biases. For the case of the QLD, this minimum is always less with the optimum bias than with the non­
optimum bias. However, for the BSD the minimum occurs with the non-optimum bias. This leads to the 
observation that the truncation error in the log«/a[ ] function when approximated with the BSD requires 
that the bias needs to be carefully tuned for optimum performance. The optimum SNR is higher in the 
case of the non-optimum bias than with the optimum bias. For the QLD, the optimum SNR occurs around 
7dB. For the BSD, the optimum SNR occurs around lOdB (with non-optimum bias) and is higher than 
either the LLD or the QLD, thus limiting its use to operation in high SNR’s. In all cases, minimum mean 
acquisition times of around 0.5s are achieved.

6.0 CONCLUSIONS
The simulated acquisition performance of a quantized log-likelihood sequential detector with 32 
quantization levels and a biased square law sequential detector have been compared. The performances 
are found to be quite different. The QLD performs better with the optimum bias at low SNR’s than the 
BSD. The mean acquisition time of the BSD at the optimum bias rises rapidly with increasing SNR and is 
also highly sensitive to the predetcction SNR whereas the QLD has a relatively robust performance at the 
optimum SNR. The BSD achieves minimum mean acquisition time for the non-optimum bias at a higher 
predetection SNR. The QLD is also seen to perform well in comparison with the ideal log-likelihood 
sequential detector. Performance of the biased square law detector is found to be worse than the QLD and 
the exact realization of a square law detector is also quite difficult. With 32 quantization levels (for 
example) realization of the QLD using a look-up table approach can be implemented digitally with a 
relatively small ROM size. This not only results in reduced hardware complexity but also a faster 
acquisition performance in low SNR’s than the BSD. With an appropriate choice of predetection SNR, the 
performance of such a sequential detector can be quite robust providing an acquisition time which is 
virtually optimum for a wide range of input SNRs.
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PERFORMANCE OF SEQUENTIAL DETECTORS FOR THE ACQUISITION OF 
DATA MODULATED SPREAD SPECTRUM PSEUDO NOISE SIGNALS
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ABSTRACT

The paper addresses the problem of fast initial acquisition of 
spread-spectrum PN sequence synchronization in low SNR condi­
tions. The sequential detector offers optimum performance by 
minimizing the time taken to eliminate the wrong code epochs for a 
given probability of detection and false alarm in a serial search 
strategy, but its analysis using analytical techniques is extremely 
complex. In this paper the effect of data modulation on the acquisi­
tion performance of several sequential detectors is obtained using a 
Monte Carlo computer simulation technique.

The effects of data modulation on the quantized log-likelihood 
sequential detector and biased square law device are compared 
with the ideal log-likelihood sequential detector for moderate 
predetection SNRs (in the range -4dB to lOdB). The performance 
of the quantized log-likelihood function at moderate SNRs is found 
to be better than the biased square law device (which is an approxi­
mate model, optimized at low SNRs) and is shown to be close to 
the performance of the ideal log-likelihood sequential detector. 
However, all three detectors are found to be slower by a factor of 
5-10 due to the effect of data modulation.

INTRODUCTION

Acquisition of pseudo-noise codes plays a vital role in the detec­
tion of direct-sequence spread-spectrum signals. Recently, empha­
sis has been placed on the need for faster code acquisition in low 
input signal to noise ratio (SNR) conditions, particularly in certain 
satellite communication and navigation applications. Commonly, a 
serial search is employed to acquire the initial synchronization 
using the correlation between the incoming signal and the locally 
generated code replica by searching through all possible code 
epochs to indicate coarse lock. This works well in low SNRs but 
the acquisition time can be unacceptably long. Various detectors 
have been used with the serial search synchronizer to detect the 
correlation signal, including single or multiple dwell time detectors 
and matched filters. All these detectors have disadvantages. The 
single and multiple dwell detectors take as long to dismiss each 
incorrect code epoch as to detect the correct code epoch while the 
matched filter, even though faster in detection/dismissal of the cor­
rect/incorrect code epoch, suffers from an increase in the hardware 
complexity proportional to the lengh of the PN code. Sequential 
detectors, however, employ a serial search strategy but use a vari­

able dwell time integration. These detectors are relatively easy to 
implement and are capable of dismissing the larger number of 
incorrect code epochs quickly, allowing for longer integration of 
the correct code epoch resulting in reliable and faster code acquisi­
tion. For this reason, sequential detectors are the optimum in the 
sense of minimum dismissal time of the wrong code epoch for a 
given probability of detection and false alarm [1].

The integral equations governing the decision probabilities and 
the average sample number (ASN) required for the dismissal of 
each incorrect code epoch are difficult to solve analytically and by 
methods that will give useful numerical solutions. In the previous 
work a number of simplifying assumptions have been made. Wald’s 
analysis of sequential detection does not include the 'excess over 
boundaries’ problem and is valid only for low SNRs [2], An 
approximate simplified version of the sequential detector viz^ the 
biased square law sequential detector, has been analyzed by Ken­
dall [3] who considered only the case of dismissing the out of 
sychronization cells whilst Cobb and Darby have characterized the 
acquisition performance of a sequential detector using a computer 
simulation [4], However, their simulation did not include the pres­
ence of the data modulation and also employed various simplifica­
tions. Recently, results on the computer simulation of more com­
plete implementations of the biased square law and a quantized 
log-likelihood sequential detector in the absence of data modula­
tion were presented by Ravi and Ormondroyd [5]-[6]. In the present 
paper, new results on the acquisition performance of sequential 
detectors in the presence of random BPSK data modulation are 
presented and these are compared with the performance without 
data modulation. Further, the performance of a new type of sequen­
tial detector, the quantized log-likelihood detector (QLD), is com­
pared with the ideal log-likelihood sequential detector (LLD) and 
the biased square law sequential detector (BSD) in the presence of 
data modulation.

SEQUENTIAL DETECTORS FOR PN ACQUISITION

Sequential detectors are used to check the output of the discrete- 
step serial-search correlator for the presence of a correlation signal 
representing the coarse in-lock condition. Because of the large 
noise levels encountered in spread-spectrum systems, this correla­
tion signal is often heavily corrupted by noise. Sequential detec­
tion employs the ratio of the a priori probabilities of the incoming 
samples (at the output of the envelope detector) as a measure of the 
likelihood of the samples belonging to the wanted correlation sig­
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nal plus noise (corresponding to the in-lock condition) or noise 
only (corresponding to the out-of-lock condition). The n ratios of n 
samples are multiplied to give the likelihood that the envelope 
detector output is signal or noise averaged over n samples. This 
likelihood ratio is tested against two thresholds. If the ratio lies 
between the thresholds, a new sample of the correlator output is 
taken and the likelihood of it being signal or noise is found. 
Exceeding either threshold indicates the presence or absence of the 
correlation signal, respectively.

The input signal without data modulation, s(t) is represented
as:

s(t) -  A cos(co0r + y) + n (/) (1)

where A is the rms signal amplitude, (4, is the carrier frequency, y  
is the random phase of the carrier and «(/) is the noise which is an 
independent white Gaussian process with a variance, a 1 =N0BI2 
where B is the predetection filter bandwidth which is equivalent to 
the data bandwidth and N„ is the single-sided noise spectral den­
sity.

When the signal s(t) is passed through an envelope detector, 
the output of the envelope detector samples follow a Rayleigh dis­
tribution, P 0 (yk), for the case of noise only; and a Rician distribu- 
tion, Pi(yk) for the case of signal plus noise. The samples of the 
envelope detector output are assumed to be sufficiently decorre­
lated by sampling at an interval 2 MB. The likelihood function is 
defined as the ratio of the a priori probability distributions and is 
given by:

On approximating the 'In /,[ ]' by the first two terms of its 
power series expansion, v, can be reduced to a simple form:

m  =Pibk)
Po(yt) (2)

(3)

The likelihood ratio after n samples is:

fl Pi<y*)
A« ~

II Po(yJ 
*«1

The sequential probability ratio test (SPRT) is earned out by 
comparing A„ with two thresholds, an upper threshold, T„ and a 
lower threshold 7).

If A, 2  T, hypothesis H ̂ signal present) is decided and the 
search is slopped.
If A, £ Ti hypothesis H0(signal absent) is decided and the code 
epoch is updated.
If 1/ i  A, S Tk sample A*+i is taken and the test is repeated for 
the same relative phase between the codes.

Substituting the density functions in (3) and taking the loga­
rithm, the accumulated log-likelihood function over 1 samples 
becomes:

Vi = £ ( -  Y+ ln[/0(2ytVY/2o2)]) (4)
*=1

where

y = A1 fid1 
and y is the predetection SNR.

Vi = E(y*-fi) 
*=1

(6)

(5)

where £ is the bias of the log-likelihood function, b = NeB (\ +y) 
with the symbols same as defined earlier.

EFFECT OF DATA MODULATION ON THE 
CORRELATION FUNCTION

The log-likelihood function defined above does not model the loss 
of correlation due to the data modulation present on the carrier. 
When the data is added, the received signal with data modulation, 
r (r) can be written as:

r(t) = A d(t +^T0  +Cr£) c (r +CTc) cos(o\ t  + 0) + n (r) (7)

where d(t) and c (/) are the data and code sequences, Tc is the chip 
time of the PN code, Tt is the data bit time which is assumed to be 
a multiple of Te, (,TC is the received code phase offset, %T0  + t,Tc is 
the received data bit phase offset assuming that the data stream 
liming is synchronized to the code chip time, co£ and 6 are the car­
rier frequency and random phase respectively and n (r) is the addi­
tive white Gaussian noise with one-sided power spectral density 
N..

The code despreading is done at baseband and the correlator 
signal representing a sample value on the correlator curve is:

x(t) = u cos(0) + n(t) (8)

u = A d (t +^T0 +C7c) C(/+Crc)c(/+T7'£) (9)

where xTc represents the local code phase offset.
When x(t) is passed through the envelope detector, the pres­

ence of data in the carrier causes degradation in the output of the 
correlator since the correlation across the data bit boundaries can 
result in the loss of the wanted signal when the data bit polarity 
changes. Normally, this data modulation distortion effect can be 
reduced by using a combined output from a bank of parallel I-Q 
detectors, each matched to a different pattern, which the data 
sequence can assume within the correlation interval. However, the 
number of such detectors could be quite high as it depends on the 
number of data bits integrated and the resolution of data epoch 
uncertainty. Another method is to employ square law noncoherent 
combining detection in which the correlation time is partitioned 
into a number of subintervals. The integration results in these 
subintervals can then be combined noncoherently for detection. 
Recently, such a scheme has been analyzed by Cheng [7]. Using 
this method the effect of data modulation is reduced at the cost of 
combining loss. Although this is not as efficient as the parallel bank 
of I-Q detectors, it does not suffer from the penalty of complexity.

In the sequential detectors simulated here, the envelope detec­
tor samples arc directly emphasized by the nonlinearity function 
’In /„[ ]’ and the result is accumulated for the threshold 
comparisons. Therefore, the correlation interval cannot be parti­
tioned into subintervals for combining directly. However, a parallel 
implementation is possible, whereby a bank of detectors each with
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its own sequential detection algorithm can be matched to a differ­
ent data pattern. In this paper, a single sequential detector’s acqui­
sition performance with data modulated PN signals has been 
evaluated.

COMPUTER SIMULATION OF THE 
SEQUENTIAL DETECTORS

The acquisition performance of three types of sequential detector 
viz., an ideal log-likelihood sequential detector, a quantized log- 
likelihood sequential detector and a biased square law sequential 
detector in noise were simulated by means of a Monte Carlo com­
puter simulation. A pseudo-noise code sequence of length L ■ 127 
and chip rate Rc = VTC = lOOKbls was modulated by a random 
binary data sequence at a rate, 1/T, =RC/L = 1ILTC with random 
<fata transitions. The channel was assumed to be the additive white 
Gaussian noise (AWGN).

For the quantized log-likelihood sequential detector, shown in 
figure 1, the number of quantization levels required for acceptable 
performance was found to be Q= 32. [5] and consequently in this 
paper the performance of the QLD with 32 quantization levels for 
data modulated PN signals has been examined. For the case of the 
biased square law detector, the log-likelihood function was approx­
imated to the first two terms of the power series expansion and the 
simplified detector's performance was assessed. The ASN perfor­
mance and the acquisition performance of all three detectors were 
determined for two bias values viz., Wald's optimum bias given by: 
b] =y(l + y!2 ) and a non-optimum bias given by: b 2  = y.

DISCUSSION OF THE RESULTS

The acquisition performance of the sequential detectors depend 
critically on the threshold settings and the bias of the log-likelihood 
function, which is generally a function of the predetection SNR. As 
a result of our simulation, the average sample number (ASN), and 
the probability of detection (Pd) are observed to depend more on 
the lower threshold than the upper threshold whereas the probabil­
ity of false alarm (P^) depends more on the upper threshold. Bias 
has the influence of changing all these variables. The signal gain 
after the envelope detection has been optimized to result in maxi­
mum probability of detection for a given probability of false alarm 
and predetection SNR. Three lower threshold values Tt = -5.0, -2.0, 
-03 and an upper threshold Tu = S.O are employed and the acquisi­
tion performance has been recorded for both the bias values b i and 
bi-

The variation of the ASN with the predetection SNR has been 
observed to fall due to the increase in the bias. With the reduction 
in the level of the lower threshold, a rapid fall in the ASN with the 
predetection SNR has been observed [6]. The ASN for various 
sequential detectors with and without data is shown in figures 2 and 
3 with the threshold values, Tu = 5.0 and T, = -5.0. The presence of 
data does not significantly degrade the ASN performance, however, 
the acquisition performance is found to be affected as shown in fig­
ures 4 - 9 for each of the detectors and this is attributed to the 
reduced probability of detection as a result of correlation loss due 
to the data modulation.

The probability of detection and the probability of false alarm 
have been observed to fall with the increase in the predetection 
SNR for both the cases of with and without data modulation. This 
causes the minimum mean acquisition time, which is a function of 
the ASN, Pd and Pfa, to pass through a minimum as the predetec- 
tion SNR increases. The increase in the ASN is responsible for the 
initial increase in the mean acquisition time at lower predetection 
SNRs whereas the reduction in Pd causes the mean acquisition time 
to increase after passing the optimum SNR. The optimum SNR and 
the minimum mean acquisition time have been observed to change 
with the bias and the figures show the performances for both bias 
values.

The acquisition performance of each detector with and without 
data modulation is plotted separately with T, = -5.0, -2.0, -03 and 
T, = 5.0. In all cases the curves arc found to shift upwards, show­
ing the degradation in the minimum mean acquisition time due to 
the loss in correlation due to filtering and envelope detection at the 
polarity changes caused by the data modulation.

The acquisition performance of the QLD closely agrees with 
that of the LLD with and without data modulation. For example, 
with the optimum bias the optimum SNR for the LLD and the QLD 
without data modulation is around 5-7dB with the minimum mean 
acquisition time ranging from 03-1.Osec (depending upon the 
value of the lower threshold) and 4-8sec for the same range of opti­
mum SNR with data modulation. When the bias is changed, both 
the LLD and the QLD show similar changes in the performance for 
both with and without data modulation. The minimum mean acqui­
sition time without data has now increased to 2-Ssec whereas with 
data it does not show significant change. For the BSD at the opti­
mum bias without data, the optimum SNR occurs around 3-4dB 
with the minimum mean acquisition time around 0.5-1.Osec. How­
ever with data, the optimum SNR reduces to between -ldB and 
2dB with an increase in the minimum mean acquisition time of 
approximately lOsec. The actual minimum for the BSD occurs 
with a non-optimum bias around lOdB without data and around 
8dB with data.

CONCLUSIONS

Three types of sequential detector have been simulated and their 
acquisition performance with and without data modulation has 
been compared. The degradation in the minimum mean acquisition 
time due to data modulation has been found to occur for all three 
types of detector and this is due principally to a reduction in the 
probability of detection, Pd rather than an increase in the ASN. 
Although the LLD and the QLD do not show significant changes in 
the optimum design SNR, the optimum design SNR for the BSD is 
found to be reduced by approximately 3dB. However, for all detec­
tors the minimum mean acquisition time is found to increase by 
5-10 times depending on the lower thresholds and the biases.

The quantized log-likelihood sequential detector agrees closely 
with the ideal log-likelihood sequential detector with and without 
data modulation and has broader optimum SNR characteristics than 
the BSD which shows a sharp increase in the mean acquisition time 
with increase in the predetection SNR. The use of the QLD for the
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acquisition of PN spread-spectrum signals represents an easy to 
implement digital approach with a minimum mean acquisition time 
and is thus attractive for applications such as satellite communica­
tion and navigation and spread-spectrum mobile radio and data 
communication networks.
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ABSTRACT
The problem of initial acquisition of data modulated spread-spec­
trum PN codes in low SNR conditions using a variable-dwell time 
serial search synchronizer controlled by a sequential detector is 
addressed. The effect of carrier and code rate Doppler frequency 
offsets on the acquisition characteristics of three variants of 
sequential detector is assessed by means of a Monte-Carlo com­
puter simulation and their performances arc compared. The 
sequential detectors examined use: a) an ideal k)g-likelihood func­
tion, b) a quantized log-likelihood function and c) a ’biased square 
law’ approximation to the log-likelihood function. In each case, 
the optimum operating conditions giving the minimum mean acqui­
sition time have been found over the predetection SNR range from 
-4dB to lOdB. It is found that high code rate Doppler shifts are 
tolerated in the absence of data modulation and residual carrier 
Doppler frequency offsets. However, in the presence of data modu­
lation with carrier Doppler frequency offset of 1 kHz and code rate 
Doppler frequency offset of 100 chips/s in a code rate of 100 
kchips/s, the minimum mean acquisition time is degraded by 5-10 
times, depending on the detector type and this requires the 
predetection SNR to be improved by 3-5 dB.

1.0 INTRODUCTION
Acquisition of pseudo-noise code synchronization in direct- 
sequence spread-spectrum systems is usually the first of a series of 
synchronization procedures which are required before the commu­
nication link can be established. Consequently, it is vital that it is 
achieved very quickly even though the channel condition may be 
such that the input SNR is worse than -30dB. This is particularly 
important for military communications and also for some satellite 
communication links where the time for synchronization needs to 
be a relatively small proportion of the available link time as in the 
case of low-earth orbit satellites and satellite navigation.

It is common to acquire coarse synchronization to within half a 
chip by performing a fixed-dwell serial search using either active or 
passive correlation. Such a technique does not take advantage of 
any a priori knowledge of the noise statistics in the channel and 
consequently these methods take as long to dismiss each wrong 
code epoch as to delect the correct code epoch. For most of the sat­
ellite communication links, the conditions of the channel arc 
usually well defined and it is possible to take advantage of this to 
reduce the mean acquisition time of a spread-spectrum satellite link 
using a sequential detector. This type of synchronizer uses a vari­
able-dwell serial search strategy in which the overall acquisition

lime is determined by the likelihood that the samples of the correla­
tion between the local and wanted codes correspond to either the 
in-lock condition or the out-of-lock condition. The average number 
of samples of the correlation signal which is required to dismiss a 
code epoch (to a given probability) and step the relative code phase 
by one cell (usually half a chip), is known as the average sample 
number (ASN). The lime to dismiss each wrong epoch is usually 
much less than the optimum dwell-time of a fixed-dwell serial 
search synchronizer, and this largely determines the mean acquisi­
tion time of the sequential detector. In this sense, the sequential 
detector is optimum because it minimizes the time taken to dismiss 
the wrong code epochs for a given false alarm rate and a given 
probability of correctly detecting the wanted code epoch.

The performance of sequential detectors with an ideal log-like­
lihood function (LLD) and a quantized log-likelihood function 
(QLD) have been analyzed by Ravi and Ormondroyd for the cases 
of no data modulation [1] and with data modulation [2], However, 
for many satellite communication systems, a particular problem is 
that of Doppler frequency offset, with respect to both the carrier 
frequency and the clock frequency of the incoming PN codes. The 
carrier Doppler frequency offset has a detrimental effect because 
the IF bandwidth (and hence noise bandwidth) must be wider to 
accomodate the frequency offset. The code rate Doppler offset 
causes the two codes to be decorrelated, which reduces the proba­
bility of correctly detecting the wanted code epoch and also causes 
the generation of self-noise [3],

Though the code acquisition problem has attracted considerable 
attention recently, very few published analyses have considered 
both data modulation and Doppler effects. Of these, Holmes [4] 
has presented an approximate analysis of the performance degrada­
tion of a single-dwetl serial search scheme due to Doppler offset on 
the code rate, but this analysis did not include the effect of the 
change in detection probability. Davisson and Flikkema [5] 
presented the performance results of a parallel acquisition scheme 
using maximum likelihood detectors for signals carrying data and 
affected by Doppler whilst Cheng et al [6 ] have considered the 
effect of code and carrier Doppler on spread spectrum acquisition 
using square law non-coherent combining detection with paral­
lel/hybrid architectures.

The purpose of this paper is to examine, for the first time, the 
effect of both carrier and code Doppler on the mean acquisition 
time of a sequential detector. The degradation in the mean acquisi­
tion time due to both Doppler effects in the presence and absence 
of random binary data modulation will be analyzed for three types 
of sequential detector. The detectors examined are: a) the ideal
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5) DS spread-spectrum signal with code Doppler frequency offset 
and data modulation.

6) DS spread-spectrum signal with code and carrier Doppler fre­
quency offsets with data modulation.

These signals ate represented as follow:
Signal type 1:

r j (t) = A c (t -  CTc) cos(G)et + 0C) + n (t) 
Signal type 2:

r 2 (0  = A2 (i) cos(ti)el + 0f) + n(t)

A2 (0 =* c

Signal type 3:

rz (/) = A3 (t) cos(oic0  + n (t)

A3 (i) = A c COS(<Djt +  0 J

(7)

(8) 
(9)

( 10)

( 11)

Signal type 4:
r 4 (r) = A d ( t- t ,T .- ( ,T c) c ( t - t f e) cos(ov + 6C) + «(r) (12) 

Signal type S:
r 5 (/) = Aj (r)cos((0cr + 0£) + n(f) (13)

As (0 = A c TT ~cr‘
Signal type 6:

(0=A< (r)cos(o)cr) + /i(t)

(14)

(15)

cos(gv + 0C) (16)

The symbols used in the above equations are defined as: d(t) and 
c (/) are the data and code sequences with Te the chip time of the 
PN code, Tt  is the data bit time which is assumed to be an integral 
multiple of Tt , {JTC is the received code phase offset, \T , + (Tc is 
the received data bit phase offset assuming that the data stream 
timing is synchronized to the code chip time, CITC is the received 
code frequency offset, is the received carrier radian frequency 
offset, T represents the beginning of the integration interval, o>c and 
0C are the carrier radian frequency and random phase, and n (/) is 
the additive white Gaussian noise with one-sided power spectral 
density N0.

The output of the correlator at baseband representing a sample 
value on the correlator curve is

x  (/) = n(r) cos(0e) + n(O

u (r) = A c t -T
1-Ct-KT, 1-T -XT '

(17)

(18)

where \Te represents the local code phase offset and x represents 
the local code frequency error (£- i '  c  1).

It is this correlator signal which is envelope detected and whose 
samples are directly emphasized by the nonlinearity function 
'In /.[  ]’ of the sequential detector. The analytical solution of the

log-likelihood sequential detector is extremely complex and this is 
the prime motivation for our computer simulation.

5.0 SYSTEM DESCRIPTION

The three types of sequential detector, were simulated by means of 
a baseband Monte-Carlo computer simulation. Direct-sequence 
spread-spectrum signals were simulated with a PN code length L  = 
127 and chip rate Rc = \/Tc = 100 kchips/sec. These codes were 
modulated by a random binary data sequence at a rate, 
1 IT, =RJL = 1ILTC with random data transitions. A Doppler code 
frequency offset of 100 chips/sec was impressed on the transmit PN 
code clock and a residual carrier frequency offset of 1kHz was also 
generated. An additive white Gaussian noise (AWGN) channel was 
simulated and the composite spread-spectrum signal was used to 
examine the acquisition performance of the sequential detectors.

All six signal structures described were generated and the per­
formance of each detector has been obtained. For the quantized 
log-likelihood sequential detector shown in figure 1, the number of 
quantization levels required for acceptable performance has been 
found to be 2=32 [1], and consequently in this paper the perfor­
mance of the QLD with 32 quantization levels, for all six signals, 
has been examined. For the case of the biased square law detector, 
the log-likelihood function was approximated to the first two terms 
of the power series expansion and the simplified detector's perfor­
mance was assessed. The ASN performance and the acquisition 
performance of all three detectors were determined for two bias 
values viz., the normalized Wald's optimum bias given by: 
*i = Y<m (1 + Yam/2) and a non-optimum bias given by: b 2  = Yw- 
with Yfe, representing the design predetection SNR [7].

6.0 SIMULATION RESULTS AND DISCUSSION
The basic system parameters of the sequential detection system are 
i) T„ ii) 7), iii) bias, b and iv) design predetection SNR, y4m. The 
performance parameters are i) ASN, ii) probability of detection. Pd 
iii) probability of false alarm, Pf. and iv) total mean acquisition 
time, T ^ .  The sequential detector’s acquisition performance was 
found to depend on the threshold settings, the bias and the detector 
type itself. From earlier simulation results [1,2] it had been found 
that the variation of ASN and Pd depend more on Tt than on 7. 
whereas P/a depends more on Tu and that the bias value, b, influ­
ences all these variables. The total mean acquisition time is depen­
dent on a combination of ASN, Pd and Pj, as shown in [1].

For the purpose of the present simulation, three lower threshold 
values, Tt = -S.0,-2.0,-0.5 and an upper threshold value Tm = S.0 are 
employed and the acquisition performance has been obtained for 
both the bias values b\ and b 2. An overall acquisition probability 
of 0.9 is assumed. The sequential detector's acquisition perfor­
mance for the predetection SNR range of -4dB to lOdB has been 
assessed and the optimum design SNR, for the given system 
parameters, namely, b, T„ and 7) is determined. The acquisition 
characteristics have been obtained using this design SNR, with 
y varied about y ^ .

Although the ASN characteristics provide an important insight 
into the detector’s dismissal behaviour of wrong code epochs, in 
this paper emphasis is placed mainly on the mean acquisition time. 
In the figures which follow, the mean acquisition time is plotted as 
a function of the predctection SNR, y. The six curves on each graph

UNCLASSIFIED



UNCLASSIFIED
correspond to the six signal types 1-6 as defined earlier. Signal type 
1 is used as the reference signal for the purpose of comparison. In 
all the figures is maximum at very low y and decreases with 
increasing y. However, as y is increased further, passes through 
a minimum. The reasons for this are attributed to the dominance of 
Pd and Pft which are dependant on y. At a very low y both Pd and 
Pfa are very low and it is the reduced Pd that causes a high 
whereas at a very high y both Pd and Pfa are very high and it is the 
false alarm penalty which causes the to increase once again. 
The best combination of Pd and Pja produces the minimum 
and the y at which it occurs is the optimum y, referred to as y^,. 
However, with changing system parameters, the ASN and the rate 
at which Pd and Pja vary also change. This causes a change in both 
the minimum and the yoft-

Figures 2 and 3 show the characteristics of the LLD with bias 
values b\ and b2. With Wald’s optimum bias, 6 ). signal type 1 pro­
duces the minimum T ^ .  This is approximately 0.5scc and X,p, 
occurs at 7dB. The addition of Doppler shift and/or data modula­
tion is found to degrade both the minimum and the yopt. The 
addition of code Doppler only (signal type 2), degrades 
slightly whereas with the addition of both the Doppler frequency 
offsets (signal type 3), the degradation is severe. For signal type 2, 
the minimum 7 ^  is 1.5sec with a y ^  at 8dB, representing a ldB 
degradation in the y^, and a threefold increase in minimum T ^ .  
Signal type 3 causes 3dB degradation in y^ , and an almost eight­
fold increase in the minimum 7 ^ .  When data is added the degra­
dation is seen to be worse still. With the addition of data (signal 
type 4), the minimum is increased to 2sec whereas with 
Doppler shift ie., signal types S and 6, it is 4sec and 5sec respec­
tively. The degradation in yof< for these signal types is more than 
3dB. When the bias is changed to a non-optimum value, b2, as 
shown in figure 3 the degradation in the minimum at higher 
values of y is similar for all signal types, and the minimum is 
around 5sec. However, the degradation in 7 ^  is quite different at 
lower predection SNRs.

In figures 4 and S, the performance of the QLD is considered. 
With the bias values, b\ and b 2  the QLD has a performance which 
closely matches with that of the LLD. The worst case minimum 
7 ^  for this detector is also found to occur with signal type 6 and it 
is approximately 6sec for a value of yapl at lOdB. The performance 
of the BSD, which is shown in figures 6 and 7, is slightly different 
from the performance of the LLD and the QLD. It has better char­
acteristics at lower y with Wald’s optimum bias, b t . The minimum 
7 ^  varies from 3see to 5sec for signal types 2-6 resulting in an 
increase of 3-5 times compared to that of signal type 1. The y^, is 
close to 8dB for signal types 3-6 which amounts to a degradation of 
2dB only compared to the performance of signal type 1. However, 
for signal type 2, it is at 4dB, representing an improvement of 2dB 
in the yopl. With the non-optimum bias b2, signal types 1 and 4 
show a minimum 7'aef at a higher y; however, the drift towards 
lower y is prom inant with the rest of the signal types. The mini­
mum remains to be close to 5see for signal types 3-6 and lsec 
for signal type 2. This drift in y towards lower values is expected 
because the BSD has been found to be a good approximation to the 
log-likelihood function at low SNRs [8].

7.0 CONCLUSIONS
The degradation due to both carrier and code Doppler frequency

offsets in the presence of data modulation is found to be quite sig­
nificant for all the three types of sequential detector. However, the 
degradation in the performance of the QLD is similar to that of the 
LLD. Both detectors show a drift of +3dB in yapl and (he minimum 
mean acquisition lime is found to increase by 10 times without data 
modulation. With the data modulation, there is a drift of +2dB in 
yCfi and minimum increases by more than 10 times. The per­
formance of the BSD is better at lower y than either the QLD or the 
LLD, particularly at Wald's optimum bias. However, the degrada­
tion in yapt with code and carrier Doppler frequency offsets is 3dB 
and the minimum is increased by 4 times without data modula­
tion; but with data modulation, y is degraded by 3dB and the mini­
mum is increased by S times.

Even though degradation due to code and carrier Doppler in the 
presence of data is quite significant for all the three detectors, when 
only code Doppler is present the degradation seems to be tolerable.
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ABSTRACT

A comparative performance analysis of: a) the non-coherent fixed- 
dwell detector serial-search PN code acquisition, b) the digital 
matched filler and c) the non-coherent sequential detector methods 
is presented using Monte-Carlo simulations to obtain the detector 
characteristics. Their performance was assessed over a predetec­
tion SNR range of -4dB to lOdB for the case of no data modulation. 
The critical dependance of the mean acquisition time on the system 
parameters has been analyzed and the optimization of these param­
eters to obtain minimum mean acquisition time has been achieved 
for each detector.

The results show that the sequential detector, working at an 
optimized design predetector SNR, performs better than both the 
single-dwell detector and the matched filter at low input SNRs. 
However, as the predetection SNR is increased, the matched filter 
has a significantly improved performance and performs the best at 
high SNRs.

1.0 INTRODUCTION

Code acquisition is a critical aspect of spread-spectrum receivers 
and several code acquisition strategies, namely, serial search tech­
niques, maximum likelihood detection and sequential estimation, 
have been used for this purpose. In this paper, our examination is 
restricted to serial search techniques. PN code synchronization is 
generally carried out prior to carrier synchronization and data bit 
synchronization and it is usual to use a non-coherent synchronizer 
to remove the effects of data modulation and residual carrier 
Doppler frequency offsets. Figure 1 shows a schematic of a typical 
non-coherent serial search synchronizer using an active correlator. 
The code is first correlated with the local code, and the baseband 
output gives a measure of phase synchronization between the two 
codes. This output is corrupted by noise however, and it must be 
further processed in the detector to improve the probability of cor­
rectly identifying whether the signal corresponds to a coarse 
in-lock correlation or an out-of-lock correlation. If the latter deci­
sion is made, the local code phase is advanced by one cell (usually 
half a chip) and the search is continued. If the former decision is 
made, the search is stopped and code synchronization is then veri­
fied by longer term correlation and a tracking loop initiated.

The acquisition performance of the system is determined by the 
correlator type, the detector type and the SNR at the input to the 
detector (defined here as the predetector SNR, which is related to 
the receiver input SNR via the spread-spectrum process gain).

Three acquisition systems are considered, namely: a) a non-coher­
ent single-dwell detector, b) a matched filter and c) a non-coherent 

-sequential detector. In the fixed-dwell detector, the baseband 
samples from the active correlator are simply accumulated for a 
fixed time period. At the end of this period a simple threshold 
detector is used to decide whether the correlator output signal cor­
responds to the coarse in-lock case or the out-of-lock case. 
Because of the noise, short integration periods result in a low prob­
ability, P4 , of detecting the wanted (ie in-lock) signals and a high 
probability of false alarm detections, Pf,. Long integration periods, 
on the other hand, improve the probability of a correct decision, but 
the time taken to dismiss each code cell is longer. Consequently, at 
every value of predetector SNR there is an optimum dwell-time 
which results in minimum acquisition time.

In the digital matched filter, the known code sequence is stored 
as the tap weights of the filter. The matched filter combines the 
action of the correlator and fixed-dwell integrator, and the output 
samples from the matched filter are fed directly to the threshold 
detector. In this case, if the signal does not exceed the threshold the 
out-of-lock condition is assumed and the next sample of the incom­
ing sequence is clocked into the matched filter and a new filtered 
output sample is obtained which is checked against the threshold. If 
the threshold is exceeded, coarse synchronization is declared. Due 
to the effects of noise, it is possible to either miss wanted signal 
samples or for false alarm synchronization decisions to be made. 
Both of these events lengthen the acquisition time, as for the the 
fixed-dwell system.

The fixed-dwell detector supplies samples to the threshold 
detector at a relatively slow rate (typically the sequence repetition 
frequency), whereas the digital matched filter provides samples at 
the chip rate. It would appear, therefore, that the matched filter 
should always offer faster acquisition than the fixed-dwell detector. 
However, as will be shown', at low SNRs, Pd can be lower and Pfm 
can be much higher for the matched filter than the fixed-dwell 
detector and this overturns any benefits resulting from the higher 
sample rate.

Fixed-dwell systems are inefficient because they take just as 
long to dismiss each of the many wrong code epochs as to obtain 
the correct epoch. Serial-search techniques employing a variable- 
dwell time controlled by a sequential detector can overcome this 
problem by minimizing the time taken to dismiss out-of-lock sig­
nals. The incoming and locally generated codes are actively corre­
lated, as before, and the likelihood that each correlator sample is 
either the in-lock signal or an out-of-lock signal is obtained in the
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sequential detector using a priori information regarding the noise 
statistics of the channel. These likelihood ratios are accumulated 
and the accumulator value is tested against two thresholds. The 
lower threshold Tlt indicates that the two codes are not in-lock, and 
causes the local code epoch to be incremented by one cell and the 
search continued. The upper threshold T„, indicates detection of the 
correct code epoch. If the accumulated likelihood ratio falls 
between the two threshold levels, a further correlator sample is 
taken without advancing the local code epoch, and the sequential 
probability ratio test repeated.

The performance of all these techniques depends critically on 
many system parameters and the input SNR range of interest [1-?]. 
The analytical approch, using signal flow graph techniques devel­
oped in (1,2], present general expressions for mean acquisition time 
and its variance. These analyses require the knowledge of the gen­
erating function of the acquisition time which depends on the tran­
sition probability distributions of the underlying discrete-time Mar­
kov process that describes the acquisition process. In many cases 
however, obtaining the probability distribution of the acquisition 
lime in closed form is extremely difficult and a system simulation is 
required to evaluate these probability distibulions before the ana­
lytical expressions can be used. In this paper, a performance analy­
sis of the three types of detector employing a serial-search strategy 
is presented by means of the Monte-Cario simulation method. This 
is used to obtain the operating characteristics of each detector and 
from this the acquisition performance of each search strategy has 
been evaluated analytically. Because the detector characteristics 
are being found by simulation, fewer approximations have been 
made than would be the case for a fully analytic solution of the 
integral equations describing the detector characteristics.

2.0 DETECTOR THEORY

A. Sequential detector

In the sequential detector, the likelihood ratio, which is the ratio of 
the a priori probabilities of the incoming signal sample corre­
sponding to the in-lock and the out-of-lock conditions, is accumu­
lated and compared against thresholds Tt and Tu to decide whether 
the in-lock signal is present or absent. The test is expressed as:

do : v, 2: Tu =* hypothesis Hy (signal present)

d\ : v, <, Tt =s hypothesis H0(signal absent) (1)

</2 : Tt < Vj < Tm =* take sample vi+1 and continue

where T, < 0 < Tu and v,- is the log-likelihood ratio for i samples
given by:

n
v,- = In —— (2)

n  foCy*) *«1
P\(yk) and Po(yk) are the a priori probabilities corresponding to 
the in-lock signal plus noise and the out-of-lock signal plus noise, 
respectively. If the noise in the spread-spectrum channel is assumed 
to be broadband Gaussian noise, P\(yf) has a Rician distribution 
and P 0 (yk) has a Rayleigh distribution if the out-of-lock signal 
level is assumed to be zero. On substituting these distributions into

(2), the log-likeiihood function becomes: 

v, = £ ( -y +  ln[/„(2ytVy2or )]) 

y  = A 2  f id 1

(3)

(4)
where /#( ) is the modified Bessel function of the first kind and; 
zero order, y is the predetection SNR, A is therms signal amplitude,: 
d 2 =N9Bf2  is the variance of the Gaussian noise process with N , : 
as the one sided noise spectral density and B is the predetector filter 

i bandwidth.
The mean acquisition time of the sequential detector can be 

approximately related to the average sample number, ASN, and the 
detector probabilities by:

Tm~ — T f, 1 + (Jf+Tv)P/«
ln( 1 - P 4 ) (5)

where is the mean dismissal time given by:
T4 ,=  ASN IB (6)

P ^  is the probability of overall acquisition (assumed to be equal 
to 0.9 in the present simulation), T„ and are the false alarm veri­
fication and truncation times (each assumed to be 50ms) and q is 
the total number of code cells in the uncertainly region to be 
searched.

The decision probabilities P4  and Pp and the ASN of the 
sequential detector are governed by integral equations of the form 
shown below. The probability that the test ends with either decision 
d 0  or d\ satisfies the integral equation [4]:

P.CO = *o(*„) + *„(*«) J Pi(y) dF(ylxa) (7)

where (x;) represents the sample sequence, p,(x.) represents the 
probability that the sequential test starting at sample x, ends with 
the decision d,, »=0 ,1,2, F(x*/jq_j) is the probability distribution 
functioo governed by the transitions of the stationary Markov pro­
cess describing the samples and is the probability of making 
one of the decisions

The average sample number (ASN) also satisfies a similar inte­
gral equation [4]:

•t(*#) = *•(*») + tt,(x«) J m 1 (y) dFfylxf) (8)
where m 1 (x,) is the first moment of the distribution of the test dura­
tion which is the ASN. The rest of the symbols are as defined ear­
lier. These equations are extremely difficult solve analytically for 
realistic system configurations, and for this reason the detector 
characteristics have been found by simulation.

B. Digital matched filter

For a code sequence of length L, with a chip rate f e = 1 ITe, the 
correlator signal consists of a train of impulses occuring at a fre­
quency Llfc corresponding to the in-lock condition. Because of 
noise on the input signal, the matched filter output samples have a 
random component giving rise to false alarms and missed detec­
tions of this in-lock signal. Let Ty be the time interval in which a 
false alarm occuring can affect the v* impulse at an instant (v, and
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let Pgy be the probability of detecting this correlation impulse. If 
Pg is the probability of detection of a correlation impulse, ny, is the 
false alarm rate of the detector with Tw as the false alarm verifica­
tion lime, then the mean acquisition time T ^ ,  is given by 15]:

+IC2v+iyv,no-'V|
l*»l J

(9)

(10) 

(11)

Using an approximate analysis based on the Gaussian assumption 
of the decision statistic applicable to die low input SNRs, and 
assuming a practical case where the correlator length M, satisfies 
l « M « L  for a very long code length L, the probability of 
detection Pg and the probability of false alarm Pf, are given by:

where Pg* and Ty are given by: 

Pgv -P g  e*P (-ti/gT v)
7*v = min (T^, [v+ 05] Llft)

Pg = Qfa.Pd) * Jx exp[-l/2fxJ+Ŷ J)]/#(y^x) dx
fig

Pf, = exp - 1/ 2 -

(12)

(13)
\+%G.{p)

where Q (yg.fig) is the Marcum ^-function with yd and $g given by

k -y [ -

2 My, (l-l'ply
l+ytG,(p)

1+TcGi {p)

and

G,(p) = p 2
= 1-2 I p  I +2p 2

c - 2 % M T .

1=1 
1 =  0

(14)

(15)

06)

(17)

where c is the normalized threshold with R, as the correlator out­
put, Yc is the decision SNR on a per cell basis, MTC is the correla­
tion time in seconds and p  is the code phase offset Alternatively, 
an exact analysis of the noncoherent I-Q matched filter detector has 
been derived by Polydoros and Weber [2].

C. Single-dwell detector

The mean acquisition time of the single-dwell detector can be 
derived analytically using the Markov chain model of the acquisi­
tion process, and is given by the relationship:

(2-PgXUKPfg)
T~<------- 2Tg---- (18)

where Pg and Pjg are the detector decision probabilities and K  is 
the false alarm penality factor (Tw = Kig sec). The envelope detec­
tor output is sampled at a rate IITt £B  which ensures sufficiant 
sample decorrelation so that the samples can be treated as indepen­
dant identically distributed random variables. In this case the 
integrator output (for a large number of samples to enable the 
application of the central-limit theorem) may be assumed to have

Gaussian statistics and the detector probabilities are given by:

Pfg = (2 IP) (19)
Pg = G((M BVfW i+27] (20)

where Q [x] is the Gaussian probability integral with P given by

P = (T^T ,W flt7 (21)
For a given Pg, Pf,, y, B and normalized threshold level, if; the
dwell time Xg can be determined easily. However, a basic design
problem is to choose the optimum threshold and dwell time that 
can provide a minimum mean acquisition time for a given input 
SNR. Since Pg and Pf, are functions of the threshold, the dwell 
time and yand, moreover, they are related transceodentally, in this 
paper, these equations are solved numerically as a two dimensional 
problem and the simulated performance is compared with these 
results.

3.0 SYSTEM DESCRIPTION

The generalized block diagram of the serial search process is 
shown in figure 1. For comparison purposes, the direct-sequence 
PN code was simulated as a maximal length sequence of length 
L = 127, chip rate f c =1/Te=100 kchips/sec. For each detector, the 
correlator output samples was assumed to be conupted with addi­
tive white Gaussian noise.

For each set of system parameters and for each detector, at least 
100 tests were carried out. In each test, the incoming code sequence 
was started with a random phase and the search was carried out by 
examining the correlator output corresponding to each code cell 
and the number of correct detections, missed detections and false 
alarms were recorded to obtain the detector characteristics. For the 
given system parameters, these tests achieve Pg to an accuracy of 
1 x 10"3 and Pf, to an accuracy of 1 x IO*4.

For the case of the sequential detector, both the ideal log-likeli­
hood function and the biased square law approximation to the log- 
likelihood function were simulated. The ASN and the acquisition 
characteristics of the two versions were obtained for two bias val­
ues, namely, Wald’s normalized optimum bias b\ =y(l+y2) and a 
non-optimum bias 6 2 = 7  for three different threshold settings. 
From the acquisition characteristics obtained over the predetector 
SNR range -4dB to -t-lOdB, corresponding to a receiver input SNR 
range of -25dB to -1 ldB, the optimum design SNR to achieve min­
imum mean acquisition time was determined.

For the case of the serial-search system using a digital matched 
filter, the input to the matched filter was first passed through a one- 
bit A/D converter and the quantized input signal was fed to the 
one-bit digital matched filter, of length equal to the code length. 
The detector characteristics were obtained for a range of thresholds 
and the input SNRs and the acquisition performance was computed. 
The single dwell serial-search system was simulated for the same 
input signals without a hard quantizer and the detector operating 
characteristics were determined with the threshold and the dwell 
lime varied for different input SNRs. The mean acquisition time 
was computed using the simulated values of Pg and Pjg and the 
three dimensional acquisition characteristcs were obtained and 
compared with the acquisition characteristics evaluated numeri­
cally.
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4.0 SIMULATION RESULTS

A. Sequential detector

The acquisition performance of the sequential detector depends on 
the thresholds, T, and T,, the bias, b and the predetection SNR, Y- 
The total mean acquisition time is a function of ASN, P4, Pf* via 
(5), but all these parameters are interrelated. From the simulation 
results [6,7] it was found that Pd is mainly decided by Tt and b 
while Pf* is decided by Tm and b. However, in each case the other 
threshold has a minor influence. In this simulation, three sets of 
thresholds have been employed with Tu ■ 5.0 and Tt « >5.0, -2.0 
and -0.5 and for each set two bias values b\ and b2 are used.

Figures 2 and 3 show the variation of ASN and the with Y 
for various threshold levels of the ideal log-likelihood sequential 
detector (LLD) and the biased square law sequential detector 
(BSD). These results are obtained entirely from the simulation. 
The ASN of the sequential detector increases with decreasing yand 
T,. However, when biased at Wald's optimum b \, the ASN is 
always better than for the non-optimum bias b2. There is an opti­
mum value of input SNR at which the acquisition time is a 
minimum for both types of sequential detector. The reason is that at 
low SNRs Pf, and hence ASN are high (equivalent to a long dwcll- 
time), whereas at higher SNRs, although the ASN is low, Pd is 
reduced due to a very high bias b (which is related to Y) and this 
becomes the dominant term in (5).

For the LLD, the minimum is always better with bi than 
with b2 whereas for the BSD it is better at the non-optimum bias 
b 2. This is due to the nature of the approximations of the BSD to 
the ideal log-likelihood function, which are more applicable at low 
SNRs and the non-optimum bias, b2 is always lower than the opti­
mum bias, b !. The optimum y at which the minimum occurs is 
considered as the design y  denoted by %̂  for that set of parame­
ters. It is found to be around 7dB for the t i n  with a minimum T*^ 
of typically 0.5sec. For the BSD, it is around lOdB (at a non-opti­
mum bias, bx) with a similar value for the minimum 7 ^ .  At lower 
input SNRs the BSD at the non-optimum bias has a better perfor­
mance than the LLD at the optimum bias.

B. Digital matched filter

The performance of the matched filler system is dependant on the 
detector threshold and the receiver input SNR. The simulation has 
been used to obtain the detector characteristics, Pd and Pf, over a 
range of detector thresholds from 0.0 to 0.4 with the input SNR in 
the range of -28dB to -lOdB (corresponding to an equivalent 
predetection SNR y  range of -7dB to +lldB). Using these simu­
lated detector characteristics, has been computed using (9), 
(10) and (11). The variations of the probability of detection Pd and 
the false alarm rate nj* with the threshold and input SNR are shown 
in figures 4 and 5.

For the 1 bit digital matched filter, the probability of detecting 
the wanted signal falls with input SNR, whilst the false alarm rate 
is largely independent of the input SNR, (when the SNR is suffi­
ciently low). This is due to the effects of quantization which acts 
like an AGC system operating on the total input level to the 
receiver. At SNRs worse than -lOdB this is effectively the noise 
level, so the false alarm rate, which is determined almost entirely 
by the noise level, remains constant. As the input SNR is reduced

however, the effective wanted signal power is reduced by AGC 
action to maintain the total input power constant, and this causes 
Pd to be reduced. As the input SNR is reduced, it is necessary to 
reduce the threshold level in order to attempt to maintain P4. How­
ever, there is a very heavy penalty in reducing the threshold below 
about 0.2 because this causes the probability of false alarm Pf,, and 
equivalently the false alarm rate, nj,, to increase significantly, as 
shown in figure S. As for the cases of the sequential detector and 
the single-dwell system, there is a tradeoff between setting the: 
threshold level low so that P4 is high, with a correspondingly high 
Pf, and setting the threshold high so that P4 is low but with a low 
Pf,. This is clearly illustrated in figure 6 which shows that the mean 
acquisition time of the matched filter passes through a minimum as 
the threshold level is varied for a wide range of receiver input 
SNRs

It will be noted that the acquisition time is extremely sensitive 
to the threshold value and for practical implementations this effect - 
could pose many practical problems. It is also of interest to note 
that the optimum performance of the matched filter is obtained at a 
much lower probability of detection P4 (always < 0.2) and at a 
false alarm rate nf, which is also quite low ( < 100). This implies 
that the optimum detector always performs on the tails of the prob­
ability distributions of both signal and noise. From figure 6 , it is 
seen that the best case minimum mean acquisition lime is dose to 
1 x 10~z sec at -lOdB input SNR but this increases to about lsec 
when the input SNR is -28dB (for the design parameters consid­
ered).

C. Single-dwell detector

The acquisition performance of the single dwdl detector depends 
on the threshold q, x4, and the predetection SNR Y- A three dimen­
sional acquisition characteristic was obtained by numerical solu­
tion to (18) - (21) and is shown in figure 7. This shows as a 
function of q  and x4 for an input SNR at -13dB (corresponding to 
an equivalent predetector SNR, y  -  6dB). The acquisition charac­
teristics show a minimum with On the low t* side of the mini­
mum, this is due to the fall in P4 with lower V  Although Pf, 
increases over the same range of x4, unless the penalty factor K is 
very large, from (18) 7 ^  is reduced. At higher values of Xd, 
increases due to the direct effect of Xd in (18). However, as the 
threshold q is decreased, P4 starts increasing even at a lower values■ 
of x4 and the minimum can be reduced further. Although the 
minimum value of can be decreased by lowering both the q 
and the 14, Pd and Pf, start saturating, and then is solely 
determined by the optimum value of x4. The curves also show a 
barrier for lower values of x4 and higher values of q which is due to 
the wanted signal always being below the threshold level which 
gives 100% missed detections. The single dwell detector has also 
been simulated at a fixed value of SNR to obtain its detector char­
acteristics, rather than solving (19) - (21). The simulated detector 
characteristics are shown in figure 8 for an input SNR of -15dB.' 
The simulation also shows similar characteristics (for the limited 
range of parameters considered) with the barrier at low x4 and high 
q. The characteristic also shows the minimum with dwell-time 
which is typically Xd ■ 25 msec for an input SNR *= -lSdB. The 
minimum for this SNR is found to be around 0.88sec which is1 
comparable to that of the matched filter in the worst case situation.
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5.0 COMPARISON OF ACQUISITION PERFORMANCE 
AND CONCLUSIONS

From the simulated performance of the three detectors operating at 
their optimum design parameters, the matched filter shows a very 
good performance at the higher SNR when compared with the 
single-dwell detector and the sequential detectors. However, when 
the input SNR is decreased the performance of all the detectors 
show a deterioration. The performance of the matched filter how­
ever, falls at a much faster rate, rendering it difficult to operate in 
SNRs less than typically -25dB. The ideal log-likelihood detector 
is found to work well at predetection SNRs close to the design SNR 
when biased optimally. However, the biased square law detector 
(BSD), shows a better low SNR performance at a non-optimum 
bias. The LLD achieves a minimum close to 0.5 sec at an opti­
mum design SNR of 7dB, corresponding to a receiver input SNR of 
-14dB. Though the design SNR is different for the BSD, it also 
achieves minimum of the same order as the LLD. The digital 
matched filter, however, needs to be optimized at an optimum 
threshold q = 0.3 and the optimum threshold is quite sharp with 
respect to the input SNR. The single-dwell detector needs the 
dwell-lime to be optimized for better performance at higher thresh­
olds. Nevertheless, at lower thresholds the minimum is fully 
determined by the dwell-time itself if the verification penalty fac­
tor, K, is small.

At a moderate input SNR of -15dB, the single dwell detector 
has a minimum = 0.88sec whereas the matched filter shows an 
acquisition time around 0.6sec. The sequential detector at an equiv­
alent predetection SNR (around 7dB) produces an acquisition time 
of around 0.5sec. When the SNR is very poor, for example at an 
input SNR = -25dB, the sequential detector, particularly the BSD, 
shows the best performance.
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Figure 1 Schematic block diagram of the serial-search PN code acquisition system
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Figure 4 Probability of detection vs threshold of a digital matched 
filter with input SNR = -10, -15, -18, -23 and -25dB.
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Figure 5 False alarm rate vs threshold of a digital matched filter 
with input SNR = -10. -15, -18, -23 and -25dB.

Figure 6 Mean acquisition time vs threshold of a digital matched 
filter with input SNR = -10, -15, -18, -23 and -25dB.

UNCLASSIFIED



UNCLASSIFIED

Figure 7a Mean acquisition time vs threshold and the dwell time o f a single dwell detector with 
input SNR = -15dB ; numerical results for a wide range o f dwell time.

,o i

Figure 7b Mean acquisition time vs threshold and the dwell time of a single dwell detector with input
SNR = -15dB ; numerical results for normal range o f threshold and dwell time (corresponding to 
simulation).

Figure 8 Mean acquisition time vs threshold and the dwell time o f a single dwell detector with 
input SNR = -1 5 d B ; simulated characteristics.
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