1,620 research outputs found

    On the Design of PAMINSA: A New Class of Parallel Manipulators with High-Load Carrying Capacities

    Get PDF
    International audience1 This paper deals with the new results concerning the topologically decoupled parallel manipulators called PAMINSA. The conceptual design of these manipulators, in which the copying properties of pantograph linkage are used, allows obtaining a large payload capability. A newly synthesized fully decoupled 3 degrees of freedom manipulator is discussed and a systematic approach for motion generation of input point of each limb is presented. It is shown that the conditions of complete static balancing of limbs are not effective in the case of dynamic mode of operation. This is approved by numerical simulations and experiments

    Pantopteron-4: a New 3T1R Decoupled Parallel Manipulator for Pick-and-Place Applications

    Get PDF
    International audienceIn this paper, a novel 4-DOF decoupled parallel manipulator with Schoenflies motions, called the Pantopteron-4, is presented. This manipulator is able to perform the same movements as the Isoglide4 or the Quadrupteron, but, due to its architecture which is made of three pantograph linkages, an amplification of the movements between the actuators and the platform displacements is achieved. Therefore, having the same actuators for both robots, the Pantopteron-4 displaces (theoretically) many-times faster than the Isoglide4 or the Quadrupteron, depending on the magnification factor of the pantograph linkages. Thus, this mechanism is foreseen to be used in applications where the velocities and accelerations have to be high, as in pick-and-place. First, the kinematics of the Pantopteron-4 is presented. Then, its workspace is analyzed. Finally, a prototype of the mechanism is shown and conclusions are given

    Pantopteron: a New Fully-Decoupled 3-DOF Translational Parallel Robot for Pick-and-Place Applications

    Get PDF
    International audienceIn this paper, a novel 3-DOF fully decoupled translational parallel robot, called the Pan-topteron, is presented. This manipulator is similar to the Tripteron Cartesian parallel manipulator, but due to the use of three pantograph linkages, an amplification of the ac-tuators displacements is achieved. Therefore, equipped with the same actuators, the mobile platform of the Pantopteron moves many-times faster than that of the Tripteron. This amplification is defined by the magnification factor of the pantograph linkages. The kinematics, workspace and constraint singularities of the proposed parallel robot are studied in detail. Design considerations are also discussed and a possible prototype is illustrated.

    A New 3-DoF Planar Parallel Manipulator with Unlimited Rotation Capability

    Get PDF
    International audienceMost of three-degree-of-freedom (3-DoF) planar parallel manipulators encountered today have a common disadvantage that is their low rotational capability. However, for many industrial applications, by example in automated assembly systems, cutting machines, simulators, or micro-motion manipulators, a high rotation capability is needed. To overcome such a difficulty, this paper focuses its attention on the proposal of a new 3-DoF planar parallel manipulator capable of high rotational capability. Firstly, structure and mobility of the suggested manipulator are discussed. Then the forward and inverse kinematic problems are analyzed, as well as it is disclosed its singular configurations. The shaking force and shaking moment balancing are also considered. The proposed design concept is illustrated by a driven demonstrator which is a first model of the suggested manipulator

    Static force capabilities and dynamic capabilities of parallel mechanisms equipped with safety clutches

    Get PDF
    Cette thèse étudie les forces potentielles des mécanismes parallèles plans à deux degrés de liberté équipés d'embrayages de sécurité (limiteur de couple). Les forces potentielles sont étudiées sur la base des matrices jacobienne. La force maximale qui peut être appliquée à l'effecteur en fonction des limiteurs de couple ainsi que la force maximale isotrope sont déterminées. Le rapport entre ces deux forces est appelé l'efficacité de la force et peut être considéré ; comme un indice de performance. Enfin, les résultats numériques proposés donnent un aperçu sur la conception de robots coopératifs reposant sur des architectures parallèles. En isolant chaque lien, les modèles dynamiques approximatifs sont obtenus à partir de l'approche Newton-Euler et des équations de Lagrange pour du tripteron et du quadrupteron. La plage de l'accélération de l'effecteur et de la force externe autorisée peut être trouvée pour une plage donnée de forces d'actionnement.This thesis investigates the force capabilities of two-degree-of-freedom planar parallel mechanisms that are equipped with safety clutches (torque limiters). The force capabilities are studied based on the Jacobian matrices. The maximum force that can be applied at the end-effector for given torque limits (safety index) is determined together with the maximum isotropic force that can be produced. The ratio between these two forces, referred to as the force effectiveness, can be considered as a performance index. Finally, some numerical results are proposed which can provide insight into the design of cooperation robots based on parallel architectures. Considering each link and slider system as a single body, approximate dynamic models are derived based on the Newton-Euler approach and Lagrange equations for the tripteron and the quadrupteron. The acceleration range or the external force range of the end-effector are determined and given as a safety consideration with the dynamic models

    Static and Dynamic Analysis of the PAMINSA

    Get PDF
    International audienceIn this paper we present an analytical approach for the static and dynamic analysis of the PAMINSA 1 , a new 4 degrees of freedom parallel manipulator that has been designed at the I.N.S.A. 2 in Rennes. On the base of the developed static model, the input torques due to the static loads are reduced by means of the optimum redistribution of the moving link masses. The analytical dynamic modeling of the PAMINSA by means of Lagrange equations is achieved. A numerical example and a comparison between the suggested analytical model and an ADAMS software simulation are presented. INTRODUCTION The complex nonlinear dynamics appears to be one of the most important parallel manipulator characteristics. Even in the static model, the expression of the torques (or forces) applied to the actuators due to the weight of the platform and links, are nonlinear. Driving torques on parallel manipulators are highly nonlinear functions of the position, velocity and acceleration of the mechanical actuator links. It should be noted that there are algorithms to regulate the problems of non-linearity (static or dynamic) and to ensure an efficient control and an acceptable computation cost. However, the simplification of the manipulator mechanical model is desirable and a mechanica

    PKM mechatronic clamping adaptive device

    Get PDF
    This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. The paper describes the kinematics and dynamics of this mechatronic system. A first campaign of experimental trails has been carried out on the prototype, obtaining promising results

    Complete Shaking Force and Shaking Moment Balancing of the Position-Orientation Decoupled PAMINSA Manipulator

    Get PDF
    International audienceThis paper deals with the complete shaking force and shaking moment balancing of the position-orientation decoupled PAMINSA manipulator. The dynamic reaction forces on the manipulator's base are eliminated by making the total mass center of the moving links stationary. The reaction moments on the frame are eliminated by optimal control of the end-effector, which rotates with prescribed velocity. The numerical simulations carried out using ADAMS software demonstrate that the balanced manipulators transmit no inertia loads to their bases
    • …
    corecore