2,324 research outputs found

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Novel image markers for non-small cell lung cancer classification and survival prediction

    Get PDF
    BACKGROUND: Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients. RESULTS: In this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection, segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell segmentation results, a set of extensive cellular morphological features are extracted using efficient feature descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the survival prediction performance of the model is also evaluated. CONCLUSIONS: The proposed model have been applied to a lung cancer dataset that contains 122 cases with complete clinical information. The classification performance exhibits high correlations between the discovered image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the statistical model built from the discovered image markers

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Modeling small objects under uncertainties : novel algorithms and applications.

    Get PDF
    Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor Models (ATM) are common approaches to model elastic (deformable) objects. These models require an ensemble of shapes and textures, annotated by human experts, in order identify the model order and parameters. A candidate object may be represented by a weighted sum of basis generated by an optimization process. These methods have been very effective for modeling deformable objects in biomedical imaging, biometrics, computer vision and graphics. They have been tried mainly on objects with known features that are amenable to manual (expert) annotation. They have not been examined on objects with severe ambiguities to be uniquely characterized by experts. This dissertation presents a unified approach for modeling, detecting, segmenting and categorizing small objects under uncertainty, with focus on lung nodules that may appear in low dose CT (LDCT) scans of the human chest. The AAM, ASM and the ATM approaches are used for the first time on this application. A new formulation to object detection by template matching, as an energy optimization, is introduced. Nine similarity measures of matching have been quantitatively evaluated for detecting nodules less than 1 em in diameter. Statistical methods that combine intensity, shape and spatial interaction are examined for segmentation of small size objects. Extensions of the intensity model using the linear combination of Gaussians (LCG) approach are introduced, in order to estimate the number of modes in the LCG equation. The classical maximum a posteriori (MAP) segmentation approach has been adapted to handle segmentation of small size lung nodules that are randomly located in the lung tissue. A novel empirical approach has been devised to simultaneously detect and segment the lung nodules in LDCT scans. The level sets methods approach was also applied for lung nodule segmentation. A new formulation for the energy function controlling the level set propagation has been introduced taking into account the specific properties of the nodules. Finally, a novel approach for classification of the segmented nodules into categories has been introduced. Geometric object descriptors such as the SIFT, AS 1FT, SURF and LBP have been used for feature extraction and matching of small size lung nodules; the LBP has been found to be the most robust. Categorization implies classification of detected and segmented objects into classes or types. The object descriptors have been deployed in the detection step for false positive reduction, and in the categorization stage to assign a class and type for the nodules. The AAMI ASMI A TM models have been used for the categorization stage. The front-end processes of lung nodule modeling, detection, segmentation and classification/categorization are model-based and data-driven. This dissertation is the first attempt in the literature at creating an entirely model-based approach for lung nodule analysis

    Novel Image Markers for Non-Small Cell Lung Cancer Classification and Survival Prediction

    Get PDF
    BACKGROUND: Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients. RESULTS: In this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection, segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell segmentation results, a set of extensive cellular morphological features are extracted using efficient feature descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the survival prediction performance of the model is also evaluated. CONCLUSIONS: The proposed model have been applied to a lung cancer dataset that contains 122 cases with complete clinical information. The classification performance exhibits high correlations between the discovered image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the statistical model built from the discovered image markers

    Dynamical models and machine learning for supervised segmentation

    Get PDF
    This thesis is concerned with the problem of how to outline regions of interest in medical images, when the boundaries are weak or ambiguous and the region shapes are irregular. The focus on machine learning and interactivity leads to a common theme of the need to balance conflicting requirements. First, any machine learning method must strike a balance between how much it can learn and how well it generalises. Second, interactive methods must balance minimal user demand with maximal user control. To address the problem of weak boundaries,methods of supervised texture classification are investigated that do not use explicit texture features. These methods enable prior knowledge about the image to benefit any segmentation framework. A chosen dynamic contour model, based on probabilistic boundary tracking, combines these image priors with efficient modes of interaction. We show the benefits of the texture classifiers over intensity and gradient-based image models, in both classification and boundary extraction. To address the problem of irregular region shape, we devise a new type of statistical shape model (SSM) that does not use explicit boundary features or assume high-level similarity between region shapes. First, the models are used for shape discrimination, to constrain any segmentation framework by way of regularisation. Second, the SSMs are used for shape generation, allowing probabilistic segmentation frameworks to draw shapes from a prior distribution. The generative models also include novel methods to constrain shape generation according to information from both the image and user interactions. The shape models are first evaluated in terms of discrimination capability, and shown to out-perform other shape descriptors. Experiments also show that the shape models can benefit a standard type of segmentation algorithm by providing shape regularisers. We finally show how to exploit the shape models in supervised segmentation frameworks, and evaluate their benefits in user trials
    corecore