9,359 research outputs found

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Multiple description video coding for stereoscopic 3D

    Get PDF
    In this paper, we propose an MDC schemes for stereoscopic 3D video. In the literature, MDC has previously been applied in 2D video but not so much in 3D video. The proposed algorithm enhances the error resilience of the 3D video using the combination of even and odd frame based MDC while retaining good temporal prediction efficiency for video over error-prone networks. Improvements are made to the original even and odd frame MDC scheme by adding a controllable amount of side information to improve frame interpolation at the decoder. The side information is also sent according to the video sequence motion for further improvement. The performance of the proposed algorithms is evaluated in error free and error prone environments especially for wireless channels. Simulation results show improved performance using the proposed MDC at high error rates compared to the single description coding (SDC) and the original even and odd frame MDC

    Multi-user video streaming using unequal error protection network coding in wireless networks

    Get PDF
    In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks

    Semi-automatic semantic enrichment of raw sensor data

    Get PDF
    One of the more recent sources of large volumes of generated data is sensor devices, where dedicated sensing equipment is used to monitor events and happenings in a wide range of domains, including monitoring human biometrics. In recent trials to examine the effects that key moments in movies have on the human body, we fitted fitted with a number of biometric sensor devices and monitored them as they watched a range of dierent movies in groups. The purpose of these experiments was to examine the correlation between humans' highlights in movies as observed from biometric sensors, and highlights in the same movies as identified by our automatic movie analysis techniques. However,the problem with this type of experiment is that both the analysis of the video stream and the sensor data readings are not directly usable in their raw form because of the sheer volume of low-level data values generated both from the sensors and from the movie analysis. This work describes the semi-automated enrichment of both video analysis and sensor data and the mechanism used to query the data in both centralised environments, and in a peer-to-peer architecture when the number of sensor devices grows to large numbers. We present and validate a scalable means of semi-automating the semantic enrichment of sensor data, thereby providing a means of large-scale sensor management

    Overlay networks for smart grids

    Get PDF

    Video streaming with quality adaption using collaborative active grid networks

    Get PDF
    Due to the services and demands of the end users, Distributed Computing (Grid Technology, Web Services, and Peer-to-Peer) has been developedrapidJy in thelastyears. Theconvergence of these architectures has been possible using mechanisms such as Collaborative work and Resources Sharing. Grid computing is a platform to enable flexible, secure, controlled, scalable, ubiquitous and heterogeneous services. On the other hand, Video Streaming applications demand a greater deployment over connected Internet users. The present work uses the Acti ve Grid technology as a fundamental platform to give a solution of multimediacontentrecovery. This solution takes into account the following key concepts: collaborative work, multi-source recovery and adapti ve quality. A new archi tecture is designed to deliver video content over a Grid Network. The acti ve and passi ve roles of the nodes are important to guarantee a high quality and efficiency for the video streaming system. The acti ve sender nodes are the content suppliers, while the passive sender nodes wiU perform the backup functions, based on global resource control policies. The aim of the backup node is minirnize the time to restore the systemin caseoffailures. In this way, all participant peers work in a collaborati ve manner following a mul ti -source recovery scheme. Furthermore, Video La yered Encoding is used to manage the video data in a high scalable way, di viding the video in multiple layers. This video codification scheme enables thequality adaptation according to the availability of system resources. In addition, a buffer by sender peer and by layer is needed for an effecti ve control ofthe video retrieve. The QoS will fit considering the state of each buffer and the measurement tools provide by the Acti ve Grid on the network nodes. Ke ywords: Peer -to-Peer Grid Architecture, Services for Active Grids, Streaming Media, Layered Coding, Quality Adaptation, CoUaborative Work.Peer Reviewe
    • 

    corecore