60 research outputs found

    Development and characterisation of a process technology for a 0.25µm SiGe:C RF-BiCMOS embedded flash memory

    Get PDF
    Integrating an embedded-flash memory module into a 0.25µm SiGe:C BiCMOS technology provides an important base for realising microelectronic systems that combine complex logic functionality with highest frequency analogue performance („System-on-Chip“). This dissertation presents for the first time an embedded flash memory module integrated in a 0.25µm SiGe:C BiCMOS process technology and describes the implementation into a process pilot line. The principle process flow and important process steps are described in detail, reviewing also the impact on the original BiCMOS process. The results are assessed geometrically by means of electron microscopy and electrically by characterisation of the developed electronic devices. The influence of important technological parameters is hereby investigated. The feasibility of the process for medium density memory production is finally demonstrated by a first 1-Mbit memory circuit that has been developed and produced based on the presented process technology

    Top-down Si nanowire technology in discrete charge storage nonvolatile memory application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Forensic applications of atomic force microscopy

    Get PDF
    The first project undertaken was to develop a currently non-existent forensic technique -- data recovery from damaged SIM cards. SIM cards hold data valuable to a forensic investigator within non-volatile EEPROM/flash memory arrays. This data has been proven to be able to withstand temperatures up to 500°C, surviving such scenarios as house fires or criminal evidence disposal. A successful forensically-sound sample extraction, mounting and backside processing methodology was developed to expose the underside of a microcontroller circuit's floating gate transistor tunnel oxide, allowing probing via AFM-based electrical scanning probe techniques. Scanning Kelvin probe microscopy has thus far proved capable of detecting the presence of stored charge within the floating gates beneath the thin tunnel oxide layer, to the point of generating statistical distributions reflecting the threshold voltage states of the transistors. The second project covered the novel forensic application of AFM as a complimentary technique to SEM examination of quartz grain surface textures. The analysis and interpretation of soil/sediment samples can provide indications of their provenance, and enable exclusionary comparisons to be made between samples pertinent to a forensic investigation. Multiple grains from four distinct sample sets were examined with the AFM, and various statistical figures of merit were derived. Canonical discriminant analysis was used to assess the discriminatory abilities of these statistical variables to better characterise the use of AFM results for grain classification. The final functions correctly classified 65.3% of original grouped cases, with the first 3 discriminant functions used in the analysis (Wilks' Lambda=0.336, p=0.000<0.01). This degree of discrimination shows a great deal of promise for the AFM as a quantitative corroborative technique to traditional SEM grain surface examination

    Optimization and evaluation of variability in the programming window of a flash cell with molecular metal-oxide storage

    Get PDF
    We report a modeling study of a conceptual nonvolatile memory cell based on inorganic molecular metal-oxide clusters as a storage media embedded in the gate dielectric of a MOSFET. For the purpose of this paper, we developed a multiscale simulation framework that enables the evaluation of variability in the programming window of a flash cell with sub-20-nm gate length. Furthermore, we studied the threshold voltage variability due to random dopant fluctuations and fluctuations in the distribution of the molecular clusters in the cell. The simulation framework and the general conclusions of our work are transferrable to flash cells based on alternative molecules used for a storage media

    Application of novel gate materials for performance improvement in flash memory devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fabrication of SOI micromechanical devices

    Get PDF
    This work reports on studies and the fabrication process development of micromechanical silicon-on-insulator (SOI) devices. SOI is a promising starting material for fabrication of single crystal silicon micromechanical devices and basis for monolithic integration of sensors and integrated circuits. The buried oxide layer of an SOI wafer offers an excellent etch stop layer for silicon etching and sacrificial layer for fabrication of capacitive sensors. Deep silicon etching is studied and the aspect ratio dependency of the etch rate and loading effects are described and modeled. The etch rate of the deep silicon etching process is modeled with a simple flow conductance model, which takes into account only the initial etch rate and reaction probability and flow resistance of the etched feature. The used model predicts qualitatively the aspect-ratio-dependent etch rate for varying trench widths and rectangular shapes. The design related loading can be modeled and the effects of the loading can be minimized with proper etch mask design. The basic SOI micromechanics process is described and the drawbacks and limitations of the process are discussed. Improvements to the process are introduced as well as IR microscopy as a new method to inspect the sacrificial etch length of the SOI structure. A new fabrication process for SOI micromechanics has been developed that alleviates metallization problems during the wet etching of the sacrificial layer. The process is based on forming closed cavities under the structure layer of SOI with the help of a semi-permeable polysilicon film. Prototype SOI device fabrication results are presented. High Q single crystal silicon micro resonators have potential for replacing bulky quartz resonators in clock circuits. Monolithic integration of micromechanical devices and an integrated circuit has been demonstrated with the developed process using the embedded vacuum cavities.reviewe

    Etude d'architectures et d'empilements innovants de mémoires Split-Gate (grille séparée) à couche de piégeage discret

    Get PDF
    Du fait de l'augmentation de la demande de produits pour les applications grand public, industrielles et automobiles, des mémoires embarquées fiables et à faible coût de fabrication sont de plus en plus demandées. Dans ce contexte, les mémoires split-gate à piégeage discret sont proposées pour des microcontrôleurs. Elles combinent l'avantage d'une couche de stockage discrète et de la con guration split-gate. Durant ce travail de recherche, des mémoires split-gate à couche de piégeage discret ayant des longueurs de grille de 20nm sont présentées pour la première fois. Celles-ci on été réalisées avec des nanocristaux de silicium (Si-nc), du nitrure de silicium (SiN) ou un hybride Si-nc/SiN avec diélectrique de control de type SiO2 ou AlO et sont comparées en termes de performances lors des procédures d'eff acement et de rétention. Ensuite, la miniaturisation des mémoires split-gate à piégeage de charge est étudié, en particulier au travers de l'impact de la réduction de la longueur de grille sur la fenêtre de mémorisation, la rétention et la consommation. Le rôle des défauts dans le diélectrique de contrôle (alumine) utilisé dans les mémoires de type TANOS a été étudié. Des travaux ont été menés pour déterminer l'origine des pièges dans ce matériau, par le biais de la simulation atomistique ainsi que d'analyses physico-chimiques précises. Nous avons montré que la concentration de pièges dans AlO pouvait être réduite par ajustement des conditions de procédé de fabrication, débouchant ainsi sur l'amélioration de la rétention dans les mémoires à piégeage de charge. Ce résultat est convenable pour les applications de type embarquéDue to the increasing demand for consumer, industrial and automotive products, highly reliable, and low integration cost embedded memories are more and more required. In this context, split-gate charge trap memories were proposed for microcontroller products, combining the advantage of a discrete storage layer and of the split-gate con guration. In this thesis, split-gate charge trap memories with electrical gate length down to 20nm are presented for the 1st time. Silicon nanocristals (Si-nc), or silicon nitride (SiN) and hybrid Si-nc/SiN based split-gate memories, with SiO2 or AlO control dielectrics, are compared in terms of program erase and retention. Then, the scalability of split-gate charge trap memories is studied, investigating the impact of gate length reduction on the memory window, retention and consumption. We thus studied the role of defects on alumina control dielectric employed in TANOS-like memory. We used atomistic simulation, consolidated by a detailed alumina physico-chemical material analysis, to investigate the origin of traps in alumina. We showed that the trap concentration in AlO can be decreased by adjusting the process conditions leading to improved retention behaviour in charge trap memory, suitable for embedded applications.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    ELECTRICAL CHARACTERIZATION, PHYSICS, MODELING AND RELIABILITY OF INNOVATIVE NON-VOLATILE MEMORIES

    Get PDF
    Enclosed in this thesis work it can be found the results of a three years long research activity performed during the XXIV-th cycle of the Ph.D. school in Engineering Science of the Università degli Studi di Ferrara. The topic of this work is concerned about the electrical characterization, physics, modeling and reliability of innovative non-volatile memories, addressing most of the proposed alternative to the floating-gate based memories which currently are facing a technology dead end. Throughout the chapters of this thesis it will be provided a detailed characterization of the envisioned replacements for the common NOR and NAND Flash technologies into the near future embedded and MPSoCs (Multi Processing System on Chip) systems. In Chapter 1 it will be introduced the non-volatile memory technology with direct reference on nowadays Flash mainstream, providing indications and comments on why the system designers should be forced to change the approach to new memory concepts. In Chapter 2 it will be presented one of the most studied post-floating gate memory technology for MPSoCs: the Phase Change Memory. The results of an extensive electrical characterization performed on these devices led to important discoveries such as the kinematics of the erase operation and potential reliability threats in memory operations. A modeling framework has been developed to support the experimental results and to validate them on projected scaled technology. In Chapter 3 an embedded memory for automotive environment will be shown: the SimpleEE p-channel memory. The characterization of this memory proven the technology robustness providing at the same time new insights on the erratic bits phenomenon largely studied on NOR and NAND counterparts. Chapter 4 will show the research studies performed on a memory device based on the Nano-MEMS concept. This particular memory generation proves to be integrated in very harsh environment such as military applications, geothermal and space avionics. A detailed study on the physical principles underlying this memory will be presented. In Chapter 5 a successor of the standard NAND Flash will be analyzed: the Charge Trapping NAND. This kind of memory shares the same principles of the traditional floating gate technology except for the storage medium which now has been substituted by a discrete nature storage (i.e. silicon nitride traps). The conclusions and the results summary for each memory technology will be provided in Chapter 6. Finally, on Appendix A it will be shown the results of a recently started research activity on the high level reliability memory management exploiting the results of the studies for Phase Change Memories

    A Novel Non-Destructive Silicon-on-Insulator Nonvolatile Memory - LDRD 99-0750 Final Report

    Full text link

    Towards integrating chalcogenide based phase change memory with silicon microelectronics

    Get PDF
    The continued dominance of floating gate technology as the premier non-volatile memory (NVM) technology is expected to hit a roadblock due to issues associated with its inability to catch up with CMOS scaling. The uncertain future of floating gate memory has led to a host of unorthodox NVM technologies to surface as potential heirs. Among the mix is phase change memory (PCM), which is a non-volatile, resistance variable, memory technology wherein the state of the memory bit is defined by the resistance of the memory material. This research study examines novel, bilayer chalcogenide based materials composed of Ge-chalcogenide (GeTe or Ge2Se3) and Sn-chalcogenide (SnTe or SnSe) for phase change memory applications and explores their integration with CMOS technology. By using a layered arrangement, it is possible to induce phase change response in materials, which normally do not exhibit such behavior, and thus form new materials which may have lower threshold voltage and programming current requirements. Also, through the incorporation of a metal containing layer, the phase transition characteristics of the memory layer can be tailored in order to obtain in-situ, a material with optimized phase change properties. Using X-ray diffraction (XRD) and time resolved XRD, it has been demonstrated that stacked phase change memory films exhibit both structural and compositional dependency with annealing temperature. The outcome of the structural transformation of the bottom layer, is an annealing temperature dependent residual stress. By the incorporation of a Sn layer, the phase transition characteristics of Ge-chalcogenide thin films can be tuned. Clear evidence of thermally induced Ge, Sn and chalcogen inter-diffusion, has been discerned via transmission electron microscopy and parallel electron energy loss spectroscopy. The presence of Al2O3 as capping layer has been found to mitigate volatilization and metallic Sn phase separation at high temperatures. Two terminal PCM cells employing these bilayers have been designed, fabricated and tested. All devices exhibit threshold switching and memory switching behavior. By the application of suitable voltage programming pulses, RESET state switching can be accomplished in these devices, thus demonstrating single bit memory functionality. A process for integrating bilayer PCM technology with 2 µm CMOS has been designed and developed. The baseline RIT CMOS process has been modified to incorporate 12 levels of photolithography, 3 levels of metal and the addition of PCM as a BEOL process. On electrical testing, NMOS connected PCM devices exhibit switching behavior. The effect of the state (SET/RESET) of the series connected PCM cell on the drain current of the NMOS has also been investigated. It is determined that threshold switching of the PCM cell is essential in order to observe any change in MOS drain current with variation in drain voltage. Thus, successful integration of bilayer PCM with CMOS has been demonstrated
    corecore