3,069 research outputs found

    Descriptive And Review Study Adaptive Control Of Nonlinear Systems In Discrete Time

    Get PDF
    Nowadays, analyzing different control systems is a must for virtually all types of modern industries and factories. Analyzing these control systems allows optimizing and streamlining processes, which in many cases are carried out manually, leading to large errors, delays and costly processes. Continuous-time adaptive control of nonlinear systems has been an area of increasing research activity [1] and globally, regulation and tracking results have been obtained for several types of nonlinear systems [2]. However, the adaptive technique is gradually becoming more dynamic after 25 years of research and experimentation. Important theoretical results on stability and structure have been established. There is still much theoretical work to be done [3]. On the other hand, adaptive control in discrete-time nonlinear systems has received much less attention, in part because of the difficulties associated with the sampled data of nonlinear systems [2]. Thus, it is in some theories where adaptive control laws are implemented admitting the intervening nonlinearities in the real system [4] where investigations about the regulation of the system are created. The purpose of this is to implement a very simple adaptive control law and to check the convergence of the closed loop.  However, Zhongsheng Hou, author of several well-regarded papers proposes a model-free adaptive control approach for a class of discrete-time nonlinear SISO systems with a systematic framework [5]-[6]

    Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control

    Full text link
    In this paper, we consider controlling a class of single-input-single-output (SISO) commensurate fractional-order nonlinear systems with parametric uncertainty and external disturbance. Based on backstepping approach, an adaptive controller is proposed with adaptive laws that are used to estimate the unknown system parameters and the bound of unknown disturbance. Instead of using discontinuous functions such as the sign\mathrm{sign} function, an auxiliary function is employed to obtain a smooth control input that is still able to achieve perfect tracking in the presence of bounded disturbances. Indeed, global boundedness of all closed-loop signals and asymptotic perfect tracking of fractional-order system output to a given reference trajectory are proved by using fractional directed Lyapunov method. To verify the effectiveness of the proposed control method, simulation examples are presented.Comment: Accepted by the IEEE Transactions on Systems, Man and Cybernetics: Systems with Minor Revision

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Optimal Control of Unknown Nonlinear System From Inputoutput Data

    Get PDF
    Optimal control designers usually require a plant model to design a controller. The problem is the controller\u27s performance heavily depends on the accuracy of the plant model. However, in many situations, it is very time-consuming to implement the system identification procedure and an accurate structure of a plant model is very difficult to obtain. On the other hand, neuro-fuzzy models with product inference engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership functions can be easily trained by many well-established learning algorithms based on given input-output data pairs. Therefore, this kind of model is used in the current optimal controller design. Two approaches of designing optimal controllers of unknown nonlinear systems based on neuro-fuzzy models are presented in the thesis. The first approach first utilizes neuro-fuzzy models to approximate the unknown nonlinear systems, and then the feasible-direction algorithm is used to achieve the numerical solution of the Euler-Lagrange equations of the formulated optimal control problem. This algorithm uses the steepest descent to find the search direction and then apply a one-dimensional search routine to find the best step length. Finally several nonlinear optimal control problems are simulated and the results show that the performance of the proposed approach is quite similar to that of optimal control to the system represented by an explicit mathematical model. However, due to the limitation of the feasible-direction algorithm, this method cannot be applied to highly nonlinear and dimensional plants. Therefore, another approach that can overcome these drawbacks is proposed. This method utilizes Takagi-Sugeno (TS) fuzzy models to design the optimal controller. TS fuzzy models are first derived from the direct linearization of the neuro-fuzzy models, which is close to the local linearization of the nonlinear dynamic systems. The operating points are chosen so that the TS fuzzy model is a good approximation of the neuro-fuzzy model. Based on the TS fuzzy model, the optimal control is implemented for a nonlinear two-link flexible robot and a rigid asymmetric spacecraft, thus providing the possibility of implementing the well-established optimal control method on unknown nonlinear dynamic systems

    Data-Driven Robust Control of Unknown MIMO Nonlinear System Subject to Input Saturations and Disturbances

    Get PDF
    This paper presented a new data-driven robust control scheme for unknown nonlinear systems in the presence of input saturation and external disturbances. According to the input and output data of the nonlinear system, a recurrent neural network (RNN) data-driven model is established to reconstruct the dynamics of the nonlinear system. An adaptive output-feedback controller is developed to approximate the unknown disturbances and a novel input saturation compensation method is used to attenuate the effect of the input saturation. Under the proposed adaptive control scheme, the uniformly ultimately bounded convergence of all the signals of the closed-loop nonlinear system is guaranteed via Lyapunov analysis. The simulation results are given to show the effectiveness of the proposed data-driven robust controller
    corecore