3,904 research outputs found

    Fibre segment interferometry using code-division multiplexed optical signal processing for strain sensing applications

    Get PDF
    A novel optical signal processing scheme for multiplexing fibre segment interferometers is proposed. The continuous-wave, homodyne technique combines code-division multiplexing with single-sideband modulation. It uses only one electro-optic phase modulator to achieve both range separation and quadrature interferometric phase measurement. This scheme is applied to fibre segment interferometry, where a number of long-gauge length interferometric fibre sensors are formed by subtracting pairs of signals from equidistantly placed, weak back reflectors. In this work we give a detailed account of the signal processing involved and, in particular, explore aspects such as electronic bandwidth requirements, noise, crosstalk and linearity, which are important design considerations. A signal bandwidth of ±20 kHz permits the resolution of phase change rates of 2.5 × 104 rad s-1 for each of the four 16.5 m long segments in our setup. We show that dynamic strain resolutions below 0.2 nanostrain Hz-0.5 at 2 m sensor gauge length are achievable, even with an inexpensive diode laser. When used in applications that require only relative strain change measurements, this scheme compares well to more established techniques and can provide high-fidelity yet cost-effective measurements

    Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb

    Get PDF
    The quest for extrasolar planets and their characterisation as well as studies of fundamental physics on cosmological scales rely on capabilities of high-resolution astronomical spectroscopy. A central requirement is a precise wavelength calibration of astronomical spectrographs allowing for extraction of subtle wavelength shifts from the spectra of stars and quasars. Here, we present an all-fibre, 400 nm wide near-infrared frequency comb based on electro-optic modulation with 14.5 GHz comb line spacing. Tests on the high-resolution, near-infrared spectrometer GIANO-B show a photon-noise limited calibration precision of <10 cm/s as required for Earth-like planet detection. Moreover, the presented comb provides detailed insight into particularities of the spectrograph such as detector inhomogeneities and differential spectrograph drifts. The system is validated in on-sky observations of a radial velocity standard star (HD221354) and telluric atmospheric absorption features. The advantages of the system include simplicity, robustness and turn-key operation, features that are valuable at the observation sites

    Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb

    Full text link
    This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved stability of the broadened spectrum is obtained by temperature-stabilization of the nonlinear optical fiber. The carrier-envelope offset frequency and the repetition rate are simultaneously frequency stabilized, and their short- and long-term stabilities are characterized. We also measure the transfer of amplitude noise of the pump source to phase noise on the offset frequency and verify an increased sensitivity of the offset frequency to pump power modulation compared to systems with lower repetition rate. Finally, we discuss merits of this 10 GHz system for the generation of low-phase-noise microwaves

    Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL)

    Get PDF
    Experimental results are reported on an optical frequency synthesizer for use in dynamic dense wavelength-division-multiplexing networks, based on a tuneable laser in an optical injection phase-locked loop for rapid wavelength locking. The source combines high stability (50 dB), narrow linewidth (10 MHz), and fast wavelength switching (<10 ns)

    Cavity-enhanced single frequency synthesis via DFG of mode-locked pulse trains

    Full text link
    We show how to synthesize a CW, single-frequency optical field from the frequency-dispersed, pulsed field of a mode-locked laser. This process, which relies on difference frequency generation in an optical cavity, is efficient and can be considered as an optical rectification. Quantitative estimates for the output power and amplitude noise properties of a realistic system are given. Possible applications to optical frequency synthesis and optical metrology are envisaged
    • …
    corecore