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Abstract: The quest for extrasolar planets and their characterization as well as studies of
fundamental physics on cosmological scales rely on capabilities of high-resolution astronomical
spectroscopy. A central requirement is a precise wavelength calibration of astronomical
spectrographs allowing for extraction of subtle wavelength shifts from the spectra of stars and
quasars. Here, we present an all-fiber, 400 nm wide near-infrared frequency comb based on
electro-optic modulation with 14.5 GHz comb line spacing. Tests on the high-resolution, near-
infrared spectrometer GIANO-B show a photon-noise limited calibration precision of < 10 cm/s
as required for Earth-like planet detection. Moreover, the presented comb provides detailed
insight into particularities of the spectrograph such as detector inhomogeneities and differential
spectrograph drifts. The system is validated in on-sky observations of a radial velocity standard
star (HD221354) and telluric atmospheric absorption features. The advantages of the system
include simplicity, robustness and turn-key operation, features that are valuable at the observation
sites.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High-resolution spectrographs are invaluable tools in modern astrophysics that allow for a broad
scope of applications ranging from exoplanetary science [1] to cosmology and fundamental
physics [2]. The former relies on astronomical spectrographs for exoplanet detection and
characterization with the radial velocity technique, i.e. detection of Doppler-shifted absorption
features in stellar spectra (Fig. 1a). Furthermore, high-resolution spectroscopy allows for probing
exoplanet atmospheres [3–5]. Similarly, monitoring spectra of distant astronomical objects
enables measurements of the physical constants variability and constraining the nature of the
dark matter [2, 6, 7]. Both, radial velocity technique and physical constant measurement, require
extremely precise and accurate instruments, e.g. detection of an Earth analogue necessitates
a radial velocity precision of 9 cm/s over a period of several years, while a measurement of the
Hubble constant requires two decades of quasar monitoring with a precision of 2 cm/s. In view of
the extend of the science cases that high-precision astronomical spectroscopy addresses, there is
a great interest in developing extremely stable instruments capable of detecting radial velocity
shifts at the cm/s level.
Modern astronomical spectrographs use a cross-dispersion scheme that divides the observed

spectra into Echelle-orders on a detector array (Fig. 1b). Wavelength calibration provides a
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Fig. 1. Radial velocity measurement and astronomical spectrograph calibration. a)
Exoplanet detection with radial velocity method. Due to the gravitational pull of a companion,
the host star follows an orbit around the system’s centre of mass resulting in periodic Doppler
shifts of spectral features. b) Scheme of a cross-dispersed Echelle-spectrograph. c) Examples
of wavelength calibrators and their spectra: hollow cathode lamps, Fabry-Pérot cavity and
laser frequency combs.

pixel-to-wavelength mapping of the detector array and thus serves as a wavelength reference
for the measured spectra. In order to meet the precision requirements, it is essential to use a
broadband, well-characterized light source providing a grid of accurately and precisely defined
optical lines of uniform intensity with line separations well resolved by the spectrograph. Absolute
calibration is crucial for long-term radial velocity monitoring, as it provides a possibility of
comparing data from different epochs and instruments. Figure 1c shows different calibration
sources and their respective Echelle-spectra. Traditionally, gas cells and hollow cathode lamps
have been used as wavelength calibrators providing a performance limited to a precision of
about 1 m/s due to sparse lines with high dynamic range in intensity, line blending and unstable
intensity profile. Alternatively, Fabry-Pérot interferometers (FPI), fed by an intense white light
source produce broadband spectra composed of quasi-equidistant lines (Fig. 1c). Enclosed in
a vacuum chamber with mechanical and thermal stabilization, FPIs can provide a one-night
stability of 10 cm/s [8, 9]. However, a long term stability of both, hollow cathode lamps and FPIs,
is not guaranteed; aging of the lamps or mirror coatings as well as limited long term mechanical
stability deteriorate their performance.

A solution that can overcome limitations of standard calibration methods is the laser frequency
comb (LFC) technology [10–13] (Fig. 1c). The unprecedented precision and accuracy of
these systems has already brought revolutionary progress to the radial velocity field [14–27].
Frequency combs provide spectra composed of narrow, equally spaced emission lines in the
frequency domain, with each optical line frequency fn described by the relation fn = n · frep + foff ,
where frep and foff are two radio frequencies (RF) - the repetition rate and the carrier-envelope
offset frequency, respectively. The control over both frep and foff allows linking the LFC to the
cesium-based atomic time and frequency definition resulting in absolute calibration.
There are several approaches for frequency comb generation. Most commonly, LFCs are

generated by mode-locked laser (MLLs) that periodically emit femtosecond pulses. Stabilization
and referencing of the comb lines to an RF-standard proceeds via f -2 f -self-referencing [10–13].
As the native repetition rate, i.e. the comb’s line spacing, of MLLs is typically well below
10 GHz, actively stabilized filtering cavities are used to suppress unwanted modes and hence
increase the repetition rate to a value resolvable by astronomical spectrographs. Attention
must be paid to the suppression of the side modes so as not to introduce shifts in the apparent
frequency of the transmitted mode that may lead to systematic errors [28–31]. A distinct way
of generating frequency combs is provided by Kerr-nonlinear optical microresonators [32–34].
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Fig. 2. Electro-optical modulation-based frequency comb set-up. a) Scheme represent-
ing the EOM-based LFC. MLL - mode-locked laser, IM - intensity modulator, PM - phase
modulator, CFBG - chirped fiber-Bragg grating, EDFA - erbium-doped fiber amplifier, FBG
- fiber-Bragg grating b) Resulting spectrum spanning 400 nm within 20dB with line spacing
of 14.5 GHz. Inset: Heterodyne beatnote of the comb with an additional laser measured at
1430 nm showing a width of 1 MHz corresponding to the linewidth of the 1430 nm laser
and providing an upper limit to the EOM LFC linewidth.

Recent advances in the field were marked by the first demonstrations of microresonator frequency
combs used as wavelength calibrators on astronomical spectrographs [35, 36].
Electro-optical modulation (EOM) of a continuous wave (CW) laser is another alternative

technique for generating LFCs [24, 37–44]. Here, phase modulation of a CW component results
in sideband generation with a line spacing given by an external modulation source driving the
electro-optic modulators. When driven by a microwave source, EOM-based combs allow for
comb line separation in excess of 10 GHz, which is directly compatible with the requirements of
astronomical spectrographs. A pioneering demonstration by Yi et al. [24] showed an operation
of an electro-optical frequency comb with a repetition rate of 12 GHz on the CSHELL and
NIRSPEC spectrographs. More recently, an advanced EOM-based astrocomb system with a line
spacing of 30 GHz in the short-wavelength near-infrared was used to demonstrate the intrinsic
stability of the HPF spectrograph of <10 cm/s over several days. Notably, this demonstration
included the telescope optics, dual-fiber spectrograph illumination as well as data reduction [45].
In this article, we present a turn-key EOM-based astrocomb with a line spacing of 14.5 GHz

spanning over a wavelength range from 1400 nm to 1800 nm. In contrast to previous work, the
EOM-based LFC is referenced to the fundamental cesium-based time and frequency standard (via
a GPS-disciplined Rb-clock and a self-referenced mode-locked laser) providing absolute accuracy
free of drift, aging and uncertainty encountered in optical absorption cell references [46]. With
this system, we demonstrate a calibration precision reaching < 10 cm/s as well as validation in
on-sky stellar observation. Specifically, the performance of the EOM-based LFCwas tested on the
GIANO-B high-resolution spectrograph. In addition to wavelength calibration and spectrograph
drift measurements, relative radial velocity measurements of HD221354 were carried out. The
LFC is able to precisely track spectrograph drifts, trace subtle instrumental features and provide
precise and accurate wavelength calibration for stellar observations.

2. Results

2.1. Setup

The EOM-based LFC consists of a 1560 nm CW laser sent through a series of synchronized
intensity and two phase modulators driven by a microwave (MW) signal generator at 14.5 GHz
[Fig. 2(a)]. While phase modulation imprints a chirp on the light wave, the intensity modulator
carves out the half period of the phase modulation with a quadratic phase change in time. With
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this scheme, multiple sidebands are generated around the initial CW laser line resulting in a
frequency comb with a flat-top spectrum of 5 nm span. By compensating the dispersion via a
chirped fiber Bragg grating (CFBG) (approximately 4 ps/nm), the formation of a train of pulses
with a duration of about 2 ps is achieved. These pulses are amplified in an erbium-doped fiber
amplifier (EDFA) reaching an average power of 3.5 W. Next, nonlinear optical pulse compression
in length-optimized stretches of normal and anomalous dispersion optical fibers results in pulses
of 150 fs duration with peak power exceeding 1 kW (2.3 W of average power). Owing to this
high peak power, a short-length highly-nonlinear fiber (HNLF) is used for nonlinear spectral
broadening generating a coherent broadband comb spectrum from 1400 nm to 1800 nm (Fig. 2b).
The HNLF (OFS with dispersion of -0.35 ps · nm−1 · km−1 and dispersion slope of 0.0038
ps · nm−2 · km−1 at 1550 nm) was chosen such that a flat spectral envelope is achieved over the
entire spectral range. This permits using the comb without additional filters or spectral equalizers,
which would otherwise significantly increase the system’s complexity. The low-intensity feature
in the central part of the generated spectrum results from suppression of the pump component by
a fiber-Bragg grating (FBG). This feature can be avoided in future work by using an adapted
FBG with reduced reflection. With an average output power of 0.8 W, the power per mode is
at the level of 300 µW, exceeding by several orders of magnitude the photon flux needed for
spectrograph calibration.

In order to provide accurate frequency calibration, the CW laser and the MW signal generator
are phase-coherently linked to the 10 MHz RF signal of a rubidium (Rb) atomic clock itself linked
to the absolute and long-term stable fundamental cesium-based time and frequency standard via
the global-positioning system (GPS-disciplined Rb-clock). The resulting accuracy of the comb is
well below 1 cm/s after only 10 seconds of averaging. So as to establish the RF-to-optical-link for
the CW laser, a portable home-build self-referenced 100 MHz MLL is used. A wavelength-meter
provides an approximate measurement of the CW laser wavelength such that the 100 MHz
ambiguity of the MLL can be lifted. The EOM-based frequency comb shows a high line contrast
across the entire spectrum as indicated by a heterodyne beatnote with an additional 1430 nm diode
laser in the far-out wing of the comb, where the linewidth is expected to be the largest [44](cf.
Fig2b, inset). The beatnote’s width of 1 MHz is an upper limit on the LFC linewidth and indeed
corresponds to the linewidth of the CW diode laser. Coupling to the spectrograph is achieved by
a free-space transition from the comb’s output single-mode fiber to the multi-mode fiber guiding
the light to the spectrometer. A rotating scattering disc spatial mode scrambler between the
single and multi-mode fiber is used to remove modal noise, which would otherwise introduce
calibration errors [47].
The system is all-fiber-based with polarization maintaining components that ensure stable

operation despite temperature fluctuations or mechanical vibration. It employs highly reliable off-
the-shelf optical fiber components allowing stable operation immediately after the system start-up.
The prototype system is mounted on three easily transportable 45 cm x 45 cm breadboards. These
properties are a great asset from the vantage point of astronomy, where low-complexity systems
and low-maintenance operation are indispensable for routine operation at remote sites such as
astronomical observatories.

2.2. Wavelength calibration of the GIANO-B spectrograph.

The demonstration of the EOM-based LFC was performed during several days in November 2017
on the GIANO-B spectrograph (Fig. 3e) mounted on the 3.6 m Telescopio Nazionale Galileo
(TNG) at the Roque de los Muchachos Observatory in La Palma, Spain [49]. GIANO-B is a NIR
Echelle spectrograph with a resolution of 50’000 covering the wavelength range from 0.95 µm to
2.45 µm. Observed spectra are composed of 50 spectral orders organized on a detector array
of 2048 x 2048 pixels (Hawaii2RG). The extent of a single optical frequency on the detector is
given horizontally by the spectrograph’s point-spread-function (PSF) and vertically by the size of
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Fig. 3. Spectrometer raw data. a) Echelle-spectrum of a uranium-neon hollow cathode
lamp. b) Echelle-spectrum of the electro-optic modulation-based laser frequency comb.
The dark area in the middle of the 49th order corresponds to the suppressed pump laser. c)
The vertical extend of each comb line is given by the slit height, the horizontal profile by
the spectrometer’s point-spread-function. d) 1-dimensional data obtained by summing the
signal in the analogue-to-digital units (ADU) along the slit with a Gaussian fit. e) GIANO-B
spectrograph at the Telescopio Nazionale Galileo [48].

the entrance slit.
An example of a uranium-neon (U-Ne) hollow-cathode lamp spectrum, a standard calibration

source, is shown in Fig. 3a (120 s exposure time). The spectrum exhibits sparse lines of variable
intensity, which limit the precision of the wavelength solution. Fig. 3b presents the same spectral
region for the EOM-based LFC after a 10 s exposure. The LFC provides a dense grid of lines
that is well resolved by the spectrograph (Fig. 3c). The observed LFC line-shapes are given by
the spectrometer’s PSF, which is many orders of magnitude larger than the width of the LFC’s
modes (cf. inset in Fig. 2b).
Deriving a wavelength calibration starts with extracting 1-dimensional data for each Echelle-

order by summing the signal (analogue-to-digital units, ADU) over the inner 20 pixels along the
vertical direction of the slit (Figs. 3c and 3d). The position of each comb line is determined by
fitting a Gaussian function (corresponding to the instrument’s PSF) followed by ascribing an
exact optical frequency determined on the basis of the known frequency comb parameters. The
uncertainty on the fitting is generally below 100 MHz ( 2% of the PSF’s linewidth), the error
being due to fundamental statistical photon noise (or shot noise) [50]. The result of assigning
comb-frequencies to pixel-positions is shown in Fig. 4a. Subtracting a third order polynomial
from the data (for visibility) reveals subtle structures related to particularities of the spectrograph
optics and detector (Figs. 4b and 4c). Most notably, one can observe a discontinuity in the middle
of each order (Fig. 4c). This results from the GIANO-B detector being actually a mosaic of
four 1024 x 1024 pixel detectors. In the middle of every order there is a discontinuity in the
frequency-vs-pixel function due to the detector stitching inducing micrometer deviations in the
regular pixel arrangement.

Finally, the wavelength solution, i.e. a complete pixel-to-optical frequency mapping is derived
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area indicates the order 49 not taken into account for the analysis.

by fitting the data shown in Fig. 4a. We employ bounded optimal knots (BOK) free-knot
splines method that is based on the algorithm developed by Molinari et al. [51]. The Python
implementation of this algorithm is provided by the PyCS Python package [52, 53]. Regular
spline regression divides the data into parts and fits each section using a low order polynomial
that is relied to other sections by knots. The advantage of the BOK free-knot-splines is its
improved knot-position optimization. The algorithm minimizes the χ2 by adjusting spline knots
positions and fits sections of data with a third order polynomial, taking also into account errors
at each data point. This algorithm proves to be an excellent tool in fitting highly variable data
(e.g. in the analysis of quasar time series), capturing well the structures in the data without
over-fitting (Fig. 4d). The (BOK) free-knot splines are applied to each order separately and
generate a frequency vs pixel function for each of 2048 pixels for every order covered by the
LFC. This provides a wavelength solution which corrects for spectrograph imperfections.
One way of determining the calibration precision is comparing two consecutive wavelength

calibrations. Here, we consider two wavelength solutions that are separated in time by 2
minutes. For each order, a mean value of the pixelwise differences between the wavelength
calibrations is calculated; the standard error for each order is estimated based on the number of
statistically independent calibration points (i.e. the number of comb lines). The global drift of
the spectrograph is given by a weighted mean over all orders and the precision by the standard
error of the weighted mean. The measured spectrometer drift was 70 ± 14 cm/s indicating a
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epochs of -544 m/s.

global precision of < 10 cm/s for an individual wavelength solution, fulfilling in principle the
requirements for Earth-like planet detection. This value is an upper-limit estimation on the
wavelength calibration precision, as it also contains the intrinsic spectrograph instability. We
point out that reaching this level of precision in practice largely depends on the observation
conditions, the coupling of the star light into the spectrometer as well as the global and differential
drift rate of the spectrograph. Note that order 49 is excluded from the analysis due to the spectral
hole stemming from the not-optimized pump suppression.

2.3. GIANO-B drift measurements.

Next, the spectrograph’s drift is investigated by taking frequent LFC exposures during several
hours. The first part of the experiment consisted in alternating the LFC and U-Ne exposures
followed by a series of only LFC exposures. The results of the drift measurement are presented in
Fig. 4e. Both, the LFC and U-Ne lamp based wavelength calibrations agree with each other and
show the same drift with the LFC resulting in significantly more precise values (reduced scatter).

Additionally, we performed an analysis of a possible wavelength-dependent differential drift of
the spectrograph. The insets in Fig. 4e show a detector view for three chosen LFC exposures
well separated in time. The results show that the right part of the detector drifts at a different rate
than the left part during a phase of global linear drift. The wavelength-dependent drift pattern
changed after the spectrograph steadied and started to drift in the other direction. The observed
effect may be due mechanical drift of the spectrograph and/or thermal regulation of the detector.
These results show that the LFC is not only capable of following very precisely the spectrograph’s
global drift, but it also provides a detailed map of differential drifts which are a valuable insight
into the characteristics of the spectrograph.

2.4. On-sky observations.

We could benefit from two slots for observations of HD221354 - a nearby K-type star with a
visible magnitude of 6.7 and a constant radial velocity within ∼2 m/s [54, 55]. The observations
were separated in time by 48 hours and each stellar observation (10 min exposure) was bracketed
by two LFC exposures (10 s exposure each). A linear drift of the instrument during the stellar
exposure is assumed, so that the final wavelength calibration for the stellar data is the mean value
of the respective bracketing exposures. Deriving radial velocities from the stellar data is not a
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straightforward task, as the observed spectra are composed of not only stellar absorption features
but also telluric lines - absorption features caused by the Earth’s atmosphere. Separating telluric
and stellar absorption features is a first step to undertake for extraction of radial velocities. To do
so, we use the synthetic telluric spectra as provided by TAPAS (Transmissions Atmosphériques
Personnalisées Pour l’AStronomie) [56, 57] for the specific time, location and meteorological
conditions. Figure 5a shows a section of the stellar, TAPAS and LFC sprectra.The TAPAS
spectrum accurately predicts positions and contrast of telluric lines making it a well-suited tool
for generating a mask with which the observed spectrum can be divided into stellar and telluric
parts. Next, for both interference-free stellar and telluric spectral portions, the algorithm finds
positions of lines and fits a Gaussian. Relative radial velocities between the two observations are
determined for every absorption line; for the telluric radial velocity distribution sigma clipping is
performed to reject the outliers. Fig. 5b shows the distribution of the measured radial velocities
for both stellar and telluric lines and the stacked histogram for the radial velocity measurements.
Both stellar and telluric radial velocity distributions are joined and a bimodal distribution is fitted
(right panel of Fig. 5b). The final results quoted are the medians of the output parameters of the
bimodal distribution fit, for which multiple realizations were preformed by marginalizing over
the initial fit parameters and number of histogram bins to ensure robustness.
Based on the observed lines, an apparent radial velocity shift of -536 m/s is measured for

HD221354, while 32 m/s is found for the telluric lines. These are close to the expected values
for a correctly calibrated spectrometer. The apparent change in the star’s radial velocity results
from the difference between the Earth’s barycentric velocity, equal to -544 m/s between the two
observations, whereas close to zero shift is expected for the telluric lines in the atmosphere
(co-moving with the telescope and only subject to changes in meteorological conditions). The
error on the radial velocity shifts for the telluric lines results mainly from the error introduced by
the spectrograph slit where a few tens of m/s is expected due to inhomogeneous illumination of
the slit caused by imperfect telescope pointing and guiding. The distribution of relative radial
velocities for stellar lines is significantly larger than for the telluric lines, which we attribute to
the blending between stellar lines with imperfectly masked telluric lines. We anticipate that a
dedicated mask for stellar lines, which was not available for this star, can significantly reduce the
scatter found for the stellar lines to the level obtained for the telluric lines. It is noteworthy that
with regard to the on-sky observations the calibration performance is not limited by the LFC but
corresponds to the inherent performance limit of the slit-illuminated GIANO-B spectrograph in
conjunction with telescope pointing and observational conditions [58] as well as challenges in
the data analysis.

3. Conclusion

To summarize, we demonstrated broadband astronomical spectrograph calibration of an EOM
based laser frequency comb. The frequency comb is adjustment-free owing to its polarization
maintaining all-fiber design that does not include free-space elements such as filtering cavities or
spectral equalizers. Turn-key operation enables start-up times of a fewminutes from a powered-off
state to a fully, phase-coherent GPS- and atomic-clock-referenced operation. Based on mature
optical telecommunication components, the system is of lower complexity, higher robustness and
lower cost compared to astrocombs based on filtered mode-locked lasers. The actual calibrated
wavelength range of nearly 400 nm results in a photon-noise-limited calibration precision of
< 10 cm/s on the high-resolution near-infrared GIANO-B spectrograph significantly outperforming
the currently used standard calibrator (uranium-neon hollow-cathode lamp). In particular, the
precise measurement of the spectrograph drift reveals fine structures of the wavelength calibration,
i.e. detector inhomogeneities and differential instrument drifts, impossible to grasp with standard
calibration methods. Importantly, we could also for the first time validate the performance of
an EOM-comb in on-sky observations of the radial velocity standard HD221354 and telluric
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atmospheric absorption features.
Further increasing the calibration precision is possible by generating a comb with wider

spectral span. This can be achieved, without compromising on simplicity and robustness, by
using stronger phase modulation and higher-power optical amplification along with all-fiber
femtosecond pulse compression, as we demonstrate here. In this case an optical microwave-noise
suppression stage might need to be inserted into the system in order to achieve narrow comb lines
in the far out wings of the spectrum, known from octave spanning combs [44]. Alternatively,
with the existence of CW lasers, amplifiers and electro-optic modulators at both edges of the
NIR band, it is conceivable to duplicate the system at 1 µm and/or 2 µm in order to increase
the spectral coverage. In conclusion, the demonstrated EOM-technology is a uniquely suited
tool for spectrometer calibration not only for its performance but notably its robustness and low
operational complexity. It is of immediate relevance for the next generation of astronomical
precision instruments but also of high interest to a large number of existing instruments that
currently use gas lamps as calibrators.
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