134 research outputs found

    Text Classification: A Review, Empirical, and Experimental Evaluation

    Full text link
    The explosive and widespread growth of data necessitates the use of text classification to extract crucial information from vast amounts of data. Consequently, there has been a surge of research in both classical and deep learning text classification methods. Despite the numerous methods proposed in the literature, there is still a pressing need for a comprehensive and up-to-date survey. Existing survey papers categorize algorithms for text classification into broad classes, which can lead to the misclassification of unrelated algorithms and incorrect assessments of their qualities and behaviors using the same metrics. To address these limitations, our paper introduces a novel methodological taxonomy that classifies algorithms hierarchically into fine-grained classes and specific techniques. The taxonomy includes methodology categories, methodology techniques, and methodology sub-techniques. Our study is the first survey to utilize this methodological taxonomy for classifying algorithms for text classification. Furthermore, our study also conducts empirical evaluation and experimental comparisons and rankings of different algorithms that employ the same specific sub-technique, different sub-techniques within the same technique, different techniques within the same category, and categorie

    A survey on online active learning

    Full text link
    Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in the context of online active learning. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research. Our review aims to provide a comprehensive and up-to-date overview of the field and to highlight directions for future work

    Optimizing E-Commerce Product Classification Using Transfer Learning

    Get PDF
    The global e-commerce market is snowballing at a rate of 23% per year. In 2017, retail e-commerce users were 1.66 billion and sales worldwide amounted to 2.3 trillion US dollars, and e-retail revenues are projected to grow to 4.88 trillion USD in 2021. With the immense popularity that e-commerce has gained over past few years comes the responsibility to deliver relevant results to provide rich user experience. In order to do this, it is essential that the products on the ecommerce website be organized correctly into their respective categories. Misclassification of products leads to irrelevant results for users which not just reflects badly on the website, it could also lead to lost customers. With ecommerce sites nowadays providing their portal as a platform for third party merchants to sell their products as well, maintaining a consistency in product categorization becomes difficult. Therefore, automating this process could be of great utilization. This task of automation done on the basis of text could lead to discrepancies since the website itself, its various merchants, and users, all could use different terminologies for a product and its category. Thus, using images becomes a plausible solution for this problem. Dealing with images can best be done using deep learning in the form of convolutional neural networks. This is a computationally expensive task, and in order to keep the accuracy of a traditional convolutional neural network while reducing the hours it takes for the model to train, this project aims at using a technique called transfer learning. Transfer learning refers to sharing the knowledge gained from one task for another where new model does not need to be trained from scratch in order to reduce the time it takes for training. This project aims at using various product images belonging to five categories from an ecommerce platform and developing an algorithm that can accurately classify products in their respective categories while taking as less time as possible. The goal is to first test the performance of transfer learning against traditional convolutional networks. Then the next step is to apply transfer learning to the downloaded dataset and assess its performance on the accuracy and time taken to classify test data that the model has never seen before

    Visual Transfer Learning in the Absence of the Source Data

    Get PDF
    Image recognition has become one of the most popular topics in machine learning. With the development of Deep Convolutional Neural Networks (CNN) and the help of the large scale labeled image database such as ImageNet, modern image recognition models can achieve competitive performance compared to human annotation in some general image recognition tasks. Many IT companies have adopted it to improve their visual related tasks. However, training these large scale deep neural networks requires thousands or even millions of labeled images, which is an obstacle when applying it to a specific visual task with limited training data. Visual transfer learning is proposed to solve this problem. Visual transfer learning aims at transferring the knowledge from a source visual task to a target visual task. Typically, the target task is related to the source task, and the training data in the target task is relatively small. In visual transfer learning, the majority of existing methods assume that the source data is freely available and use the source data to measure the discrepancy between the source and target task to help the transfer process. However, in many real applications, source data are often a subject of legal, technical and contractual constraints between data owners and data customers. Beyond privacy and disclosure obligations, customers are often reluctant to share their data. When operating customer care, collected data may include information on recent technical problems which is a highly sensitive topic that companies are not willing to share. This scenario is often called Hypothesis Transfer Learning (HTL) where the source data is absent. Therefore, these previous methods cannot be applied to many real visual transfer learning problems. In this thesis, we investigate the visual transfer learning problem under HTL setting. Instead of using the source data to measure the discrepancy, we use the source model as the proxy to transfer the knowledge from the source task to the target task. Compared to the source data, the well-trained source model is usually freely accessible in many tasks and contains equivalent source knowledge as well. Specifically, in this thesis, we investigate the visual transfer learning in two scenarios: domain adaptation and learning new categories. In contrast to the previous methods in HTL, our methods can both leverage knowledge from more types of source models and achieve better transfer performance. In chapter 3, we investigate the visual domain adaptation problem under the setting of Hypothesis Transfer Learning. We propose Effective Multiclass Transfer Learning (EMTLe) that can effectively transfer the knowledge when the size of the target set is small. Specifically, EMTLe can effectively transfer the knowledge using the outputs of the source models as the auxiliary bias to adjust the prediction in the target task. Experiment results show that EMTLe can outperform other baselines under the setting of HTL. In chapter 4, we investigate the semi-supervised domain adaptation scenario under the setting of HTL and propose our framework Generalized Distillation Semi-supervised Domain Adaptation (GDSDA). Specifically, we show that GDSDA can effectively transfer the knowledge using the unlabeled data. We also demonstrate that the imitation parameter, the hyperparameter in GDSDA that balances the knowledge from source and target task, is important to the transfer performance. Then we propose GDSDA-SVM which uses SVMs as the base classifier in GDSDA. We show that GDSDA-SVM can determine the imitation parameter in GDSDA autonomously. Compared to previous methods, whose imitation parameter can only be determined by either brutal force search or background knowledge, GDSDA-SVM is more effective in real applications. In chapter 5, we investigate the problem of fine-tuning the deep CNN to learn new food categories using the large ImageNet database as our source. Without accessing to the source data, i.e. the ImageNet dataset, we show that by fine-tuning the parameters of the source model with our target food dataset, we can achieve better performance compared to those previous methods. To conclude, the main contribution of is that we investigate the visual transfer learning problem under the HTL setting. We propose several methods to transfer the knowledge from the source task in supervised and semi-supervised learning scenarios. Extensive experiments results show that without accessing to any source data, our methods can outperform previous work

    Combination Methods for Automatic Document Organization

    Get PDF
    Automatic document classification and clustering are useful for a wide range of applications such as organizing Web, intranet, or portal pages into topic directories, filtering news feeds or mail, focused crawling on the Web or in intranets, and many more. This thesis presents ensemble-based meta methods for supervised learning (i.e., classification based on a small amount of hand-annotated training documents). In addition, we show how these techniques can be carried forward to clustering based on unsupervised learning (i.e., automatic structuring of document corpora without training data). The algorithms are applied in a restrictive manner, i.e., by leaving out some \u27uncertain\u27 documents (rather than assigning them to inappropriate topics or clusters with low confidence). We show how restrictive meta methods can be used to combine different document representations in the context of Web document classification and author recognition. As another application for meta methods we study the combination of difierent information sources in distributed environments, such as peer-to-peer information systems. Furthermore we address the problem of semi-supervised classification on document collections using retraining. A possible application is focused Web crawling which may start with very few, manually selected, training documents but can be enhanced by automatically adding initially unlabeled, positively classified Web pages for retraining. The results of our systematic evaluation on real world data show the viability of the proposed approaches.Automatische Dokumentklassifikation und Clustering sind für eine Vielzahl von Anwendungen von Bedeutung, wie beispielsweise Organisation von Web-, Intranet- oder Portalseiten in thematische Verzeichnisse, Filterung von Nachrichtenmeldungen oder Emails, fokussiertes Crawling im Web oder in Intranets und vieles mehr. Diese Arbeit untersucht Ensemble-basierte Metamethoden für Supervised Learning (d.h. Klassifikation basierend auf einer kleinen Anzahl von manuell annotierten Trainingsdokumenten). Weiterhin zeigen wir, wie sich diese Techniken auf Clustering basierend auf Unsupervised Learning (d.h. die automatische Strukturierung von Dokumentkorpora ohne Trainingsdaten) übertragen lassen. Dabei wenden wir die Algorithmen in restriktiver Form an, d.h. wir treffen keine Aussage über eine Teilmenge von "unsicheren" Dokumenten (anstatt sie mit niedriger Konfidenz ungeeigneten Themen oder Clustern zuzuordnen). Wir verwendenen restriktive Metamethoden um unterschiedliche Dokumentrepräsentationen, im Kontext der Klassifikation von Webdokumentem und der Autorenerkennung, miteinander zu kombinieren. Als weitere Anwendung von Metamethoden untersuchen wir die Kombination von unterschiedlichen Informationsquellen in verteilten Umgebungen wie Peer-to-Peer Informationssystemen. Weiterhin betrachten wir das Problem der Semi-Supervised Klassifikation von Dokumentsammlungen durch Retraining. Eine mögliche Anwendung ist fokussiertesWeb Crawling, wo wir mit sehr wenigen, manuell ausgewählten Trainingsdokumenten starten, die durch Hinzufugen von ursprünglich nicht klassifizierten Dokumenten ergänzt werden. Die Resultate unserer systematischen Evaluation auf realen Daten zeigen das gute Leistungsverhalten unserer Methoden

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research
    corecore