309 research outputs found

    Methods and Algorithms for Cardiovascular Hemodynamics with Applications to Noninvasive Monitoring of Proximal Blood Pressure and Cardiac Output Using Pulse Transit Time

    Get PDF
    Advanced health monitoring and diagnostics technology are essential to reduce the unrivaled number of human fatalities due to cardiovascular diseases (CVDs). Traditionally, gold standard CVD diagnosis involves direct measurements of the aortic blood pressure (central BP) and flow by cardiac catheterization, which can lead to certain complications. Understanding the inner-workings of the cardiovascular system through patient-specific cardiovascular modeling can provide new means to CVD diagnosis and relating treatment. BP and flow waves propagate back and forth from heart to the peripheral sites, while carrying information about the properties of the arterial network. Their speed of propagation, magnitude and shape are directly related to the properties of blood and arterial vasculature. Obtaining functional and anatomical information about the arteries through clinical measurements and medical imaging, the digital twin of the arterial network of interest can be generated. The latter enables prediction of BP and flow waveforms along this network. Point of care devices (POCDs) can now conduct in-home measurements of cardiovascular signals, such as electrocardiogram (ECG), photoplethysmogram (PPG), ballistocardiogram (BCG) and even direct measurements of the pulse transit time (PTT). This vital information provides new opportunities for designing accurate patient-specific computational models eliminating, in many cases, the need for invasive measurements. One of the main efforts in this area is the development of noninvasive cuffless BP measurement using patient’s PTT. Commonly, BP prediction is carried out with regression models assuming direct or indirect relationships between BP and PTT. However, accounting for the nonlinear FSI mechanics of the arteries and the cardiac output is indispensable. In this work, a monotonicity-preserving quasi-1D FSI modeling platform is developed, capable of capturing the hyper-viscoelastic vessel wall deformation and nonlinear blood flow dynamics in arbitrary arterial networks. Special attention has been dedicated to the correct modeling of discontinuities, such as mechanical properties mismatch associated with the stent insertion, and the intertwining dynamics of multiscale 3D and 1D models when simulating the arterial network with an aneurysm. The developed platform, titled Cardiovascular Flow ANalysis (CardioFAN), is validated against well-known numerical, in vitro and in vivo arterial network measurements showing average prediction errors of 5.2%, 2.8% and 1.6% for blood flow, lumen cross-sectional area, and BP, respectively. CardioFAN evaluates the local PTT, which enables patient-specific calibration and its application to input signal reconstruction. The calibration is performed based on BP, stroke volume and PTT measured by POCDs. The calibrated model is then used in conjunction with noninvasively measured peripheral BP and PTT to inversely restore the cardiac output, proximal BP and aortic deformation in human subjects. The reconstructed results show average RMSEs of 1.4% for systolic and 4.6% for diastolic BPs, as well as 8.4% for cardiac output. This work is the first successful attempt in implementation of deterministic cardiovascular models as add-ons to wearable and smart POCD results, enabling continuous noninvasive monitoring of cardiovascular health to facilitate CVD diagnosis

    Computational Fluid Dynamic Analysis of the Left Atrial Appendage to Predict Thrombosis Risk

    Get PDF
    During Atrial Fibrillation (AF) more than 90% of the left atrial thrombi responsible for thromboembolic events originate in the left atrial appendage (LAA), a complex small sac protruding from the left atrium (LA). Current available treatments to prevent thromboembolic events are oral anticoagulation, surgical LAA exclusion, or percutaneous LAA occlusion. However, the mechanism behind thrombus formation in the LAA is poorly understood. The aim of this work is to analyse the hemodynamic behaviour in four typical LAA morphologies - “Chicken wing”, “Cactus”, “Windsock” and “Cauliflower” - to identify potential relationships between the different shapes and the risk of thrombotic events. Computerised tomography (CT) images from four patients with no LA pathology were segmented to derive the 3D anatomical shape of LAA and LA. Computational Fluid Dynamic (CFD) analyses based on the patient-specific anatomies were carried out imposing both healthy and AF flow conditions. Velocity and shear strain rate (SSR) were analysed for all cases. Residence time in the different LAA regions was estimated with a virtual contrast agent washing out. CFD results indicate that both velocity and SSR decrease along the LAA, from the ostium to the tip, at each instant in the cardiac cycle, thus making the LAA tip more prone to fluid stagnation, and therefore to thrombus formation. Velocity and SSR also decrease from normal to AF conditions. After four cardiac cycles, the lowest washout of contrast agent was observed for the Cauliflower morphology (3.27% of residual contrast in AF), and the highest for the Windsock (0.56% of residual contrast in AF). This suggests that the former is expected to be associated with a higher risk of thrombosis, in agreement with clinical reports in the literature. The presented computational models highlight the major role played by the LAA morphology on the hemodynamics, both in normal and AF conditions, revealing the potential support that numerical analyses can provide in the stratification of patients under risk of thrombus formation, towards personalised patient care

    Noninvasive cardiac output and central systolic pressure from cuff-pressure and pulse wave velocity

    Get PDF
    Goal: We introduce a novel approach to estimate cardiac output (CO) and central systolic blood pressure (cSBP) from noninvasive measurements of peripheral cuff-pressure and carotid-to-femoral pulse wave velocity (cf-PWV). Methods: The adjustment of a previously validated one-dimensional arterial tree model is achieved via an optimization process. In the optimization loop, compliance and resistance of the generic arterial tree model as well as aortic flow are adjusted so that simulated brachial systolic and diastolic pressures and cf-PWV converge towards the measured brachial systolic and diastolic pressures and cf-PWV. The process is repeated until full convergence in terms of both brachial pressures and cf-PWV is reached. To assess the accuracy of the proposed framework, we implemented the algorithm on in vivo anonymized data from 20 subjects and compared the method-derived estimates of CO and cSBP to patient-specific measurements obtained with Mobil-O-Graph apparatus (central pressure) and two-dimensional transthoracic echocardiography (aortic blood flow). Results: Both CO and cSBP estimates were found to be in good agreement with the reference values achieving an RMSE of 0.36 L/min and 2.46 mmHg, respectively. Low biases were reported, namely -0.04 +/- 0.36 L/min for CO predictions and -0.27 +/- 2.51 mmHg for cSBP predictions. Significance: Our one-dimensional model can be successfully "tuned" to partially patient-specific standards by using noninvasive, easily obtained peripheral measurement data. The in vivo evaluation demonstrated that this method can potentially be used to obtain central aortic hemodynamic parameters in a noninvasive and accurate way

    Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet

    Get PDF
    Aging; Arteriosclerosis; HemodynamicsEnvelliment; Arteriosclerosi; HemodinàmicaEnvejecimiento; Arteriosclerosis; HemodinámicaArterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life.This article is based upon work from COST Action “Network for Research in Vascular Ageing” (VascAgeNet, CA18216), supported by COST (European Cooperation in Science and Technology, www.cost.eu). This work was supported by British Heart Foundation Grants PG/15/104/31913 (to J.A. and P.H.C.), FS/20/20/34626 (to P.H.C.), and AA/18/6/34223, PG/17/90/33415, SPG 2822621, and SP/F/21/150020 (to A.D.H.); Kaunas University of Technology Grant INP2022/16 (to B.P.); European Research Executive Agency, Marie-Sklodowska Curie Actions Individual Fellowship Grant 101038096 (to S.P.); Istinye University, BAP Project Grant 2019B1 (to S.P.); “la Caixa” Foundation Grant LCF/BQ/PR22/11920008 (to A.G.); and National Institute for Health and Care Research Grant AI AWARD02499 and EU Horizon 2020 Grant H2020 848109 (to A.D.H.)

    A pipeline for image based intracardiac CFD modeling and application to the evaluation of the PISA method

    Get PDF
    International audienceMitral regurgitation is one of the most prevalent valvular heart disease. Proper evaluation of its severity is necessary to choose appropriate treatment. The PISA method, based on Color Doppler echocardiography, is widely used in the clinical setting to estimate various relevant quantities related to the severity of the disease. In this paper, the use of a pipeline to quickly generate image-based numerical simulation of intracardiac hemodynamics is investigated. The pipeline capabilities are evaluated on a database of twelve volunteers. Full pre-processing is achieved completely automatically in 55 minutes, on average, with small registration errors compared to the image spatial resolution. This pipeline is then used to study the intracardiac hemodynamics in the presence of diseased mitral valve. A strong variability among the simulated cases, mainly due to the valve geometry and regurgitation specifics, is found. The results from those numerical simulations is used to assess the potential limitations of the PISA method with respect to different MR types. While the PISA method provides reasonable estimates in the case of a simple circular regurgitation, it is shown that unsatisfying estimates are obtained in the case of non-circular leakage. Moreover, it is shown that the choice of high aliasing velocities can lead to difficulties in quantifying MR

    Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities

    Get PDF
    The emergence of new cardiac diagnostics and therapeutics of the heart has given rise to the challenging field of virtual design and testing of technologies in a patient-specific environment. Given the recent advances in medical imaging, computational power and mathematical algorithms, patient-specific cardiac models can be produced from cardiac images faster, and more efficiently than ever before. The emergence of patient-specific computational fluid dynamics (CFD) has paved the way for the new field of computer-aided diagnostics. This article provides a review of CFD methods, challenges and opportunities in coronary and intra-cardiac flow simulations. It includes a review of market products and clinical trials. Key components of patient-specific CFD are covered briefly which include image segmentation, geometry reconstruction, mesh generation, fluid-structure interaction, and solver techniques

    3D Printing and Engineering Tools Relevant to Plan a Transcatheter Procedure

    Get PDF
    Advance cardiac imaging techniques such as three-dimensional (3D) printing technology and engineering tools have experienced a rapid development over the last decade in many surgical and interventional settings. In presence of complex cardiac and extra-cardiac anatomies, the creation of a physical, patient-specific model is useful to better understand the anatomical spatial relationships and formulate the best surgical or interventional plan. Although many case reports and small series have been published over this topic, at the present time, there is still a lack of strong scientific evidence of the benefit of 3D models and advance engineering tools, including virtual and augmented reality, in clinical practice and only qualitative evaluation of the models has been used to investigate their clinical use. Patient-specific 3D models can be printed in many different materials including rigid, flexible and transparent materials, depending on their application. To plan interventional procedure, transparent materials may be preferred in order to better evaluate the device or stent landing zone. 3D models can also be used as an input for augmented and virtual reality application and advance fluido-dynamic simulation, which aim to support the interventional cardiologist before entering the cath lab. The aim of this chapter is to present an overview on how 3D printing, extended reality platforms and the most common computational engineering methodologies"finite element and computational fluid dynamics"are currently used to support percutaneous procedures in congenital heart disease (CHD), with examples from the scientific literature

    Arterial pulse wave modelling and analysis for vascular age studies: a review from VascAgeNet

    Get PDF
    Arterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life
    • 

    corecore