4 research outputs found

    A New Method to Detect Driver Fatigue Based on EMG and ECG Collected by Portable Non-Contact Sensors

    Get PDF
    Recently, detection and prediction on driver fatigue have become interest of research worldwide. In the present work, a new method is built to effectively evaluate driver fatigue based on electromyography (EMG) and electrocardiogram (ECG) collected by portable real-time and non-contact sensors. First, under the non-disturbance condition for driver’s attention, mixed physiological signals (EMG, ECG and artefacts) are collected by non-contact sensors located in a cushion on the driver’s seat. EMG and ECG are effectively separated by FastICA, and de-noised by empirical mode decomposition (EMD). Then, three physiological features, complexity of EMG, complexity of ECG, and sample entropy (SampEn) of ECG, are extracted and analysed. Principal components are obtained by principal components analysis (PCA) and are used as independent variables. Finally, a mathematical model of driver fatigue is built, and the accuracy of the model is up to 91%. Moreover, based on the questionnaire, the calculation results of model are consistent with real fatigue felt by the participants. Therefore, this model can effectively detect driver fatigue.</p

    The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology

    Full text link
    [EN] Objective :The most relevant source of signal contamination in the cardiac electrophysiology (EP) laboratory is the ubiquitous powerline interference (PLI). To reduce this perturbation, algorithms including common fixed-bandwidth and adaptive-notch filters have been proposed. Although such methods have proven to add artificial fractionation to intra-atrial electrograms (EGMs), they are still frequently used. However, such morphological alteration can conceal the accurate interpretation of EGMs, specially to evaluate the mechanisms supporting atrial fibrillation (AF), which is the most common cardiac arrhythmia. Given the clinical relevance of AF, a novel algorithm aimed at reducing PLI on highly contaminated bipolar EGMs and, simultaneously, preserving their morphology is proposed. Approach: The method is based on the wavelet shrinkage and has been validated through customized indices on a set of synthesized EGMs to accurately quantify the achieved level of PLI reduction and signal morphology alteration. Visual validation of the algorithm¿s performance has also been included for some real EGM excerpts. Main results: The method has outperformed common filtering-based and wavelet-based strategies in the analyzed scenario. Moreover, it possesses advantages such as insensitivity to amplitude and frequency variations in the PLI, and the capability of joint removal of several interferences. Significance: The use of this algorithm in routine cardiac EP studies may enable improved and truthful evaluation of AF mechanisms.Research supported by grants DPI2017-83952-C3 MINECO/AEI/FEDER, UE and SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha.Martinez-Iniesta, M.; Ródenas, J.; Rieta, JJ.; Alcaraz, R. (2019). The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology. Physiological Measurement. 40(7):1-17. https://doi.org/10.1088/1361-6579/ab2cb8S117407Addison, P. S. (2017). The Illustrated Wavelet Transform Handbook. doi:10.1201/9781315372556Allen, D. P. (2009). A frequency domain Hampel filter for blind rejection of sinusoidal interference from electromyograms. Journal of Neuroscience Methods, 177(2), 303-310. doi:10.1016/j.jneumeth.2008.10.019Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024Atienza, F., Almendral, J., Moreno, J., Vaidyanathan, R., Talkachou, A., Kalifa, J., … Berenfeld, O. (2006). Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans. Circulation, 114(23), 2434-2442. doi:10.1161/circulationaha.106.633735Bahoura, M., & Ezzaidi, H. (2011). FPGA-Implementation of Discrete Wavelet Transform with Application to Signal Denoising. Circuits, Systems, and Signal Processing, 31(3), 987-1015. doi:10.1007/s00034-011-9355-0Baumert, M., Sanders, P., & Ganesan, A. (2016). Quantitative-Electrogram-Based Methods for Guiding Catheter Ablation in Atrial Fibrillation. Proceedings of the IEEE, 104(2), 416-431. doi:10.1109/jproc.2015.2505318Castillo, E., Morales, D. P., García, A., Martínez-Martí, F., Parrilla, L., & Palma, A. J. (2013). Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques. Journal of Applied Mathematics, 2013, 1-13. doi:10.1155/2013/763903Chen, S.-W., & Chen, Y.-H. (2015). Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing. Sensors, 15(10), 26396-26414. doi:10.3390/s151026396El B’charri, O., Latif, R., Elmansouri, K., Abenaou, A., & Jenkal, W. (2017). ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform. BioMedical Engineering OnLine, 16(1). doi:10.1186/s12938-017-0315-1Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586Ganesan, A. N., Kuklik, P., Lau, D. H., Brooks, A. G., Baumert, M., Lim, W. W., … Sanders, P. (2013). Bipolar Electrogram Shannon Entropy at Sites of Rotational Activation. Circulation: Arrhythmia and Electrophysiology, 6(1), 48-57. doi:10.1161/circep.112.976654Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215GOLDBERGER, J. J. (2017). Substrate Ablation for Treatment of Atrial Fibrillation: Back to Basics. Journal of Cardiovascular Electrophysiology, 28(2), 156-158. doi:10.1111/jce.13149Gutiérrez-Gnecchi, J. A., Morfin-Magaña, R., Lorias-Espinoza, D., Tellez-Anguiano, A. del C., Reyes-Archundia, E., Méndez-Patiño, A., & Castañeda-Miranda, R. (2017). DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomedical Signal Processing and Control, 32, 44-56. doi:10.1016/j.bspc.2016.10.005Hamilton, P. S. (1996). A comparison of adaptive and nonadaptive filters for reduction of power line interference in the ECG. IEEE Transactions on Biomedical Engineering, 43(1), 105-109. doi:10.1109/10.477707Heijman, J., Algalarrondo, V., Voigt, N., Melka, J., Wehrens, X. H. T., Dobrev, D., & Nattel, S. (2015). The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovascular Research, 109(4), 467-479. doi:10.1093/cvr/cvv275Honarbakhsh, S., Schilling, R. J., Orini, M., Providencia, R., Keating, E., Finlay, M., … Hunter, R. J. (2019). Structural remodeling and conduction velocity dynamics in the human left atrium: Relationship with reentrant mechanisms sustaining atrial fibrillation. Heart Rhythm, 16(1), 18-25. doi:10.1016/j.hrthm.2018.07.019Jadidi, A. S., Lehrmann, H., Weber, R., Park, C.-I., & Arentz, T. (2013). Optimizing Signal Acquisition and Recording in an Electrophysiology Laboratory. Cardiac Electrophysiology Clinics, 5(2), 137-142. doi:10.1016/j.ccep.2013.01.005JARMAN, J. W. E., WONG, T., KOJODJOJO, P., SPOHR, H., DAVIES, J. E. R., ROUGHTON, M., … PETERS, N. S. (2014). Organizational Index Mapping to Identify Focal Sources During Persistent Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 25(4), 355-363. doi:10.1111/jce.12352KOTTKAMP, H., BERG, J., BENDER, R., RIEGER, A., & SCHREIBER, D. (2015). Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(1), 22-30. doi:10.1111/jce.12870Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280Lau, D. H., Schotten, U., Mahajan, R., Antic, N. A., Hatem, S. N., Pathak, R. K., … Sanders, P. (2015). Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. European Heart Journal, 37(20), 1573-1581. doi:10.1093/eurheartj/ehv375Lenis, G., Pilia, N., Loewe, A., Schulze, W. H. W., & Dössel, O. (2017). Comparison of Baseline Wander Removal Techniques considering the Preservation of ST Changes in the Ischemic ECG: A Simulation Study. Computational and Mathematical Methods in Medicine, 2017, 1-13. doi:10.1155/2017/9295029Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1). doi:10.1186/1475-925x-4-50Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684-688. doi:10.1016/j.sigpro.2009.07.010Liu, H., Li, Y., Zhou, Y., Jing, X., & Truong, T.-K. (2018). Joint power line interference suppression and ECG signal recovery in transform domains. Biomedical Signal Processing and Control, 44, 58-66. doi:10.1016/j.bspc.2018.04.001Mamun, M., Al-Kadi, M., & Marufuzzaman, M. (2013). Effectiveness of Wavelet Denoising on Electroencephalogram Signals. Journal of Applied Research and Technology, 11(1), 156-160. doi:10.1016/s1665-6423(13)71524-4Martens, S. M. M., Mischi, M., Oei, S. G., & Bergmans, J. W. M. (2006). An Improved Adaptive Power Line Interference Canceller for Electrocardiography. IEEE Transactions on Biomedical Engineering, 53(11), 2220-2231. doi:10.1109/tbme.2006.883631Mart�nez, M., R�denas, J., Alcaraz, R., & Rieta, J. J. (2017). Application of the Stationary Wavelet Transform to Reduce Power-line Interference in Atrial Electrograms. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.112-049Martínez-Iniesta, M., Ródenas, J., Alcaraz, R., & Rieta, J. J. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering, 45(8), 1890-1907. doi:10.1007/s10439-017-1832-6Metting van Rijn, A. C., Peper, A., & Grimbergen, C. A. (1990). High-quality recording of bioelectric events. Medical & Biological Engineering & Computing, 28(5), 389-397. doi:10.1007/bf02441961Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054Naseri, H., & Homaeinezhad, M. R. (2012). Computerized quality assessment of phonocardiogram signal measurement-acquisition parameters. Journal of Medical Engineering & Technology, 36(6), 308-318. doi:10.3109/03091902.2012.684832NG, J., BORODYANSKIY, A. I., CHANG, E. T., VILLUENDAS, R., DIBS, S., KADISH, A. H., & GOLDBERGER, J. J. (2010). Measuring the Complexity of Atrial Fibrillation Electrograms. Journal of Cardiovascular Electrophysiology, 21(6), 649-655. doi:10.1111/j.1540-8167.2009.01695.xNg, J., Sehgal, V., Ng, J. K., Gordon, D., & Goldberger, J. J. (2014). Iterative Method to Detect Atrial Activations and Measure Cycle Length From Electrograms During Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 61(2), 273-278. doi:10.1109/tbme.2013.2290003Oesterlein, T. G., Lenis, G., Rudolph, D.-T., Luik, A., Verma, B., Schmitt, C., & Dössel, O. (2015). Removing ventricular far-field signals in intracardiac electrograms during stable atrial tachycardia using the periodic component analysis. Journal of Electrocardiology, 48(2), 171-180. doi:10.1016/j.jelectrocard.2014.12.004Platonov, P. G., Corino, V. D. A., Seifert, M., Holmqvist, F., & Sornmo, L. (2014). Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace, 16(suppl 4), iv110-iv119. doi:10.1093/europace/euu249Poornachandra, S., & Kumaravel, N. (2008). A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digital Signal Processing, 18(2), 116-126. doi:10.1016/j.dsp.2007.03.011Quintanilla, J. G., Pérez-Villacastín, J., Pérez-Castellano, N., Pandit, S. V., Berenfeld, O., Jalife, J., & Filgueiras-Rama, D. (2016). Mechanistic Approaches to Detect, Target, and Ablate the Drivers of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 9(1). doi:10.1161/circep.115.002481Ravelli, F., Masè, M., Cristoforetti, A., Marini, M., & Disertori, M. (2014). The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Progress in Biophysics and Molecular Biology, 115(2-3), 186-197. doi:10.1016/j.pbiomolbio.2014.07.006Schanze, T. (2017). Removing noise in biomedical signal recordings by singular value decomposition. Current Directions in Biomedical Engineering, 3(2), 253-256. doi:10.1515/cdbme-2017-0052Schotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492Singh, B. N., & Tiwari, A. K. (2006). Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing, 16(3), 275-287. doi:10.1016/j.dsp.2005.12.003Van Wagoner, D. R., Piccini, J. P., Albert, C. M., Anderson, M. E., Benjamin, E. J., Brundel, B., … Wehrens, X. H. T. (2015). Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm, 12(1), e5-e29. doi:10.1016/j.hrthm.2014.11.011Venkatachalam, K. L., Herbrandson, J. E., & Asirvatham, S. J. (2011). Signals and Signal Processing for the Electrophysiologist. Circulation: Arrhythmia and Electrophysiology, 4(6), 965-973. doi:10.1161/circep.111.96430

    Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology

    Full text link
    [EN] Atrial fibrillation (AF) is the most common arrhythmia in clinical practice with an increasing prevalence of about 15% in the elderly. Despite other alternatives, catheter ablation is currently considered as the first-line therapy for the treatment of AF. This strategy relies on cardiac electrophysiology systems, which use intracardiac electrograms (EGM) as the basis to determine the cardiac structures contributing to sustain the arrhythmia. However, the noise-free acquisition of these recordings is impossible and they are often contaminated by different perturbations. Although suppression of nuisance signals without affecting the original EGM pattern is essential for any other later analysis, not much attention has been paid to this issue, being frequently considered as trivial. The present work introduces the first thorough study on the significant fallout that regular filtering, aimed at reducing acquisition noise, provokes on EGM pattern morphology. This approach has been compared with more refined denoising strategies. Performance has been assessed both in time and frequency by well established parameters for EGM characterization. The study comprised synthesized and real EGMs with unipolar and bipolar recordings. Results reported that regular filtering altered substantially atrial waveform morphology and was unable to remove moderate amounts of noise, thus turning time and spectral characterization of the EGM notably inaccurate. Methods based on Wavelet transform provided the highest ability to preserve EGM morphology with improvements between 20 and beyond 40%, to minimize dominant atrial frequency estimation error with up to 25% reduction, as well as to reduce huge levels of noise with up to 10 dB better reduction. Consequently, these algorithms are recommended as a replacement of regular filtering to avoid significant alterations in the EGMs. This could lead to more accurate and truthful analyses of atrial activity dynamics aimed at understanding and locating the sources of AF.This work was supported by the projects TEC201452250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla-La Mancha.Martinez-Iniesta, M.; Rodenas, J.; Alcaraz, R.; Rieta, JJ. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering. 45(8):1890-1907. https://doi.org/10.1007/s10439-017-1832-6S18901907458Addison, P. S. Wavelet transforms and the ECG: a review. Physiol. Meas. 26(5):R155–R199, 2005.Aksu, T., T. E. Guler, K. Yalin, and A. Oto. Unanswered questions in complex fractionated atrial electrogram ablation. Pacing Clin. Electrophysiol. 39(11):1269–1278, 2016.Alcaraz, R., F. Hornero, and J. J. Rieta. Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiol. Meas. 32(1):99–114, 2011.Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, and O. Berenfeld. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm 6(1):33–40, 2009.Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114(23):2434–2442, 2006.Blanco-Velasco, M., B. Weng, and K. E. Barner. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38(1):1–13, 2008.Boardman, A., F. S. Schlindwein, A. P. Rocha, and A. Leite. A study on the optimum order of autoregressive models for heart rate variability. Physiol. Meas. 23(2):325–336, 2002.Botteron, G. W. and J. M. Smith. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42(6):579–586, 1995.Castells, F., R. Cervigón, and J. Millet. On the preprocessing of atrial electrograms in atrial fibrillation: understanding Botteron’s approach. Pacing Clin. Electrophysiol. 37(2):133–143, 2014.Chang, K.-M. Ensemble empirical mode decomposition for high frequency ECG noise reduction. Biomed. Tech. (Berl.) 55(4):193–201, 2010.Chen, S.-W. and Y.-H. Chen. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing. Sensors (Basel) 15(10):26396–26414, 2015.Chugh, S. S., R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J. Benjamin, R. F. Gillum, Y.-H. Kim, J. H. McAnulty, Jr, Z.-J. Zheng, M. H. Forouzanfar, M. Naghavi, G. A. Mensah, M. Ezzati, and C. J. L. Murray. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129(8):837–847, 2014.Ciaccio, E. J., A. B. Biviano, and H. Garan. Computational method for high resolution spectral analysis of fractionated atrial electrograms. Comput. Biol. Med. 43(10):1573–1582, 2013.Corino, V. D. A., M. W. Rivolta, R. Sassi, F. Lombardi, and L. T. Mainardi. Ventricular activity cancellation in electrograms during atrial fibrillation with constraints on residuals’ power. Med. Eng. Phys. 35(12):1770–1777, 2013.de Bakker, J. M. T. and F. H. M. Wittkampf. The pathophysiologic basis of fractionated and complex electrograms and the impact of recording techniques on their detection and interpretation. Circ. Arrhythm. Electrophysiol. 3(2):204–213, 2010.Donoho, D. and I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455, 1994.Donoho, D. and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90:1200–1224, 1995.Everett, IV, T. H., L. C. Kok, R. H. Vaughn, J. R. Moorman, and D. E. Haines. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans. Biomed. Eng. 48(9):969–978, 2001.Faes, L., G. Nollo, R. Antolini, F. Gaita, and F. Ravelli. A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Trans. Biomed. Eng. 49(12 Pt 2):1504–1513, 2002.Flandrin, P., G. Rilling, and P. Goncalves. Empirical mode decomposition as a filter bank. IEE Signal Process. Lett. 11:112–114, 2004.Gutiérrez-Gnecchi, J. A., R. Morfin-Magana, D. Lorias-Espinoza, A. C. Tellez-Anguiano, E. Reyes-Archundia, A. Méndez-Patino, and R. Castaneda-Miranda. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed. Signal Process. Control 32:44–56, 2017.Haïssaguerre, M., M. Hocini, A. Denis, A. J. Shah, Y. Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, M.-Q. Picat, A. Quotb, L. Jesel, H. Lim, S. Ploux, P. Bordachar, G. Attuel, V. Meillet, P. Ritter, N. Derval, F. Sacher, O. Bernus, H. Cochet, P. Jaïs, and R. Dubois. Driver domains in persistent atrial fibrillation. Circulation 130(7):530–538, 2014.Heijman, J., V. Algalarrondo, N. Voigt, J. Melka, X. H. T. Wehrens, D. Dobrev, and S. Nattel. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc. Res. 109(4):467–479, 2016.Houben, R. P. M. and M. A. Allessie. Processing of intracardiac electrograms in atrial fibrillation. Diagnosis of electropathological substrate of AF. IEEE Eng. Med. Biol. Mag. 25(6):40–51, 2006.Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454:903–995, 1998.Issa, Z. F., J. W. Miller, and D. P. Zipes. Clinical Arrhythmology and Electrophysiology: A Comparison to Braunwald’s Heart Disease, 2nd ed. Amsterdam: Elsevier, 2012.Jenkal, W., R. Latif, A. Toumanari, et al. An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. Biocybern. Biomed. Eng. 36(3):499–508, 2016.Kabir, M. A. and C. Shahnaz. Denoising ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control 7:481–489, 2012.Koutalas, E., S. Rolf, B. Dinov, S. Richter, A. Arya, A. Bollmann, G. Hindricks, and P. Sommer. Contemporary mapping techniques of complex cardiac arrhythmias–identifying and modifying the arrhythmogenic substrate. Arrhythm. Electrophysiol. Rev. 4(1):19–27, 2015.Lahmiri, S. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc. Technol. Lett. 1(3):104–109, 2014.Lian, J., G. Garner, D. Muessing, and V. Lang. A simple method to quantify the morphological similarity between signals. Signal Process. 90:684–688, 2010.Liang, H., Q.-H. Lin, and J. D. Z. Chen. Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease. IEEE Trans. Biomed. Eng. 52(10):1692–1701, 2005.Luo, S. and P. Johnston. A review of electrocardiogram filtering. J. Electrocardiol. 43(6):486–496, 2010.Mallat, S. A Wavelet Tour of Signal Processing. Burlington: Academic Press, 1999.Narayan, S. M. and J. A. B. Zaman. Mechanistically based mapping of human cardiac fibrillation. J. Physiol. 594(9):2399–2415, 2016.Nedios, S., P. Sommer, A. Bollmann, and G. Hindricks. Advanced mapping systems to guide atrial fibrillation ablation: electrical information that matters. J. Atr. Fibrillation 8(6):1337, 2016.Ng, J., A. I. Borodyanskiy, E. T. Chang, R. Villuendas, S. Dibs, A. H. Kadish, and J. J. Goldberger. Measuring the complexity of atrial fibrillation electrograms. J. Cardiovasc. Electrophysiol. 21(6):649–655, 2010.Ng, J. and J. J. Goldberger, eds. Intracardiac electrograms. In Practical Signal and Image Processing in Clinical Cardiology. London: Springer, 2010, pp. 319–348.Ng, J., A. H. Kadish, and J. J. Goldberger. Technical considerations for dominant frequency analysis. J. Cardiovasc. Electrophysiol. 18(7):757–764, 2007.Ng, J., V. Sehgal, J. K. Ng, D. Gordon, and J. J. Goldberger. Iterative method to detect atrial activations and measure cycle length from electrograms during atrial fibrillation. IEEE Trans. Biomed. Eng. 61(2):273–278, 2014.Nollo, G., M. Marconcini, L. Faes, F. Bovolo, F. Ravelli, and L. Bruzzone. An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms. IEEE Trans. Biomed. Eng. 55(9):2275–2285, 2008.Oesterlein, T. G., G. Lenis, D.-T. Rudolph, A. Luik, B. Verma, C. Schmitt, and O. Dössel. Removing ventricular far-field signals in intracardiac electrograms during stable atrial tachycardia using the periodic component analysis. J. Electrocardiol. 48(2):171–180, 2015.Poornachandra, S. and N. Kumaravel. A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digital Signal Process. 18(2):116–126, 2008.Potter, B. J. and J. Le Lorier. Taking the pulse of atrial fibrillation. Lancet 386(9989):113–115, 2015.Rafiee, J., M. A. Rafiee, N. Prause, and M. P. Schoen. Wavelet basis functions in biomedical signal processing. Expert Syst. Biomed. Signal Process. 38:6190–6201, 2011.Ravelli, F., M. Masè, A. Cristoforetti, M. Marini, and M. Disertori. The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Prog. Biophys. Mol. Biol. 115(2–3):186–197, 2014.Sanchez, C., J. J. Rieta, F. Castells, J. Ródenas, and J. Millet. Atrial activity extraction in Holter registers using adaptive Wavelet analysis. Annual International Conference of Computers in Cardiology, vol. 30, pp. 569–572, 2003.Sanders, P., O. Berenfeld, M. Hocini, P. Jaïs, R. Vaidyanathan, L.-F. Hsu, S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-Snyder, J. Jalife, and M. Haïssaguerre. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112(6):789–797, 2005.Schnabel, R. B., X. Yin, P. Gona, M. G. Larson, A. S. Beiser, D. D. McManus, C. Newton-Cheh, S. A. Lubitz, J. W. Magnani, P. T. Ellinor, S. Seshadri, P. A. Wolf, R. S. Vasan, E. J. Benjamin, and D. Levy. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386(9989):154–162, 2015.Schotten, U., D. Dobrev, P. G. Platonov, H. Kottkamp, and G. Hindricks. Current controversies in determining the main mechanisms of atrial fibrillation. J. Intern. Med. 279(5):428–438, 2016.Singh, B. N. and A. K. Tiwari. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process. 16:275–287, 2006.Smital, L., M. Vítek, J. Kozumplík, and I. Provazník. Adaptive wavelet Wiener filtering of ECG signals. IEEE Trans. Biomed. Eng. 60(2):437–445, 2013.Stevenson, W. G. and K. Soejima. Recording techniques for clinical electrophysiology. J. Cardiovasc. Electrophysiol. 16(9):1017–1022, 2005.Tikkanen, P. E. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol. Cybern. 80(4):259–267, 1999.Venkatachalam, K. L., J. E. Herbrandson, and S. J. Asirvatham. Signals and signal processing for the electrophysiologist. Part I: electrogram acquisition. Circ. Arrhythm. Electrophysiol. 4(6):965–973, 2011.Venkatachalam, K. L., J. E. Herbrandson, and S. J. Asirvatham. Signals and signal processing for the electrophysiologist. Part II: signal processing and artifact. Circ. Arrhythm. Electrophysiol. 4(6):974–981, 2011.Wodchis, W. P., R. S. Bhatia, K. Leblanc, N. Meshkat, and D. Morra. A review of the cost of atrial fibrillation. Value Health 15(2):240–248, 2012.Wynn, G. J., M. Das, L. J. Bonnett, S. Panikker, T. Wong, and D. Gupta. Efficacy of catheter ablation for persistent atrial fibrillation: a systematic review and meta-analysis of evidence from randomized and nonrandomized controlled trials. Circ. Arrhythm. Electrophysiol. 7(5):841–852, 2014.Xiong, F., X. Qi, S. Nattel, and P. Comtois. Wavelet analysis of cardiac optical mapping data. Comput. Biol. Med. 65:243–255, 2015.Zoni-Berisso, M., F. Lercari, T. Carazza, and S. Domenicucci. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 6:213–220, 2014
    corecore