1,306 research outputs found

    Dynamic Analysis of Executables to Detect and Characterize Malware

    Full text link
    It is needed to ensure the integrity of systems that process sensitive information and control many aspects of everyday life. We examine the use of machine learning algorithms to detect malware using the system calls generated by executables-alleviating attempts at obfuscation as the behavior is monitored rather than the bytes of an executable. We examine several machine learning techniques for detecting malware including random forests, deep learning techniques, and liquid state machines. The experiments examine the effects of concept drift on each algorithm to understand how well the algorithms generalize to novel malware samples by testing them on data that was collected after the training data. The results suggest that each of the examined machine learning algorithms is a viable solution to detect malware-achieving between 90% and 95% class-averaged accuracy (CAA). In real-world scenarios, the performance evaluation on an operational network may not match the performance achieved in training. Namely, the CAA may be about the same, but the values for precision and recall over the malware can change significantly. We structure experiments to highlight these caveats and offer insights into expected performance in operational environments. In addition, we use the induced models to gain a better understanding about what differentiates the malware samples from the goodware, which can further be used as a forensics tool to understand what the malware (or goodware) was doing to provide directions for investigation and remediation.Comment: 9 pages, 6 Tables, 4 Figure

    A Deep-Learning Based Robust Framework Against Adversarial P.E. and Cryptojacking Malware

    Get PDF
    This graduate thesis introduces novel, deep-learning based frameworks that are resilient to adversarial P.E. and cryptojacking malware. We propose a method that uses a convolutional neural network (CNN) to classify image representations of malware, that provides robustness against numerous adversarial attacks. Our evaluation concludes that the image-based malware classifier is significantly more robust to adversarial attacks than a state-of-the-art ML-based malware classifier, and remarkably drops the evasion rate of adversarial samples to 0% in certain attacks. Further, we develop MINOS, a novel, lightweight cryptojacking detection system that accurately detects the presence of unwarranted mining activity in real-time. MINOS can detect mining activity with a low TNR and FPR, in an average of 25.9 milliseconds while using a maximum of 4% of CPU and 6.5% of RAM. Therefore, it can be concluded that the frameworks presented in this thesis attain high accuracy, are computationally inexpensive, and are resistant to adversarial perturbations

    Design of secure and robust cognitive system for malware detection

    Full text link
    Machine learning based malware detection techniques rely on grayscale images of malware and tends to classify malware based on the distribution of textures in graycale images. Albeit the advancement and promising results shown by machine learning techniques, attackers can exploit the vulnerabilities by generating adversarial samples. Adversarial samples are generated by intelligently crafting and adding perturbations to the input samples. There exists majority of the software based adversarial attacks and defenses. To defend against the adversaries, the existing malware detection based on machine learning and grayscale images needs a preprocessing for the adversarial data. This can cause an additional overhead and can prolong the real-time malware detection. So, as an alternative to this, we explore RRAM (Resistive Random Access Memory) based defense against adversaries. Therefore, the aim of this thesis is to address the above mentioned critical system security issues. The above mentioned challenges are addressed by demonstrating proposed techniques to design a secure and robust cognitive system. First, a novel technique to detect stealthy malware is proposed. The technique uses malware binary images and then extract different features from the same and then employ different ML-classifiers on the dataset thus obtained. Results demonstrate that this technique is successful in differentiating classes of malware based on the features extracted. Secondly, I demonstrate the effects of adversarial attacks on a reconfigurable RRAM-neuromorphic architecture with different learning algorithms and device characteristics. I also propose an integrated solution for mitigating the effects of the adversarial attack using the reconfigurable RRAM architecture.Comment: arXiv admin note: substantial text overlap with arXiv:2104.0665

    GRASE: Granulometry Analysis with Semi Eager Classifier to Detect Malware

    Get PDF
    Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale network which allows monitoring and controlling of physical devices. But many times, it costs the security as MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’ providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones, detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper proposes a malware classification using a visualization methodology wherein the disassembled malware code is transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is promising since the proposed technique requires less training time to learn the semantics of higher-level malicious behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system. An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively

    Applying Machine Learning to Advance Cyber Security: Network Based Intrusion Detection Systems

    Get PDF
    Many new devices, such as phones and tablets as well as traditional computer systems, rely on wireless connections to the Internet and are susceptible to attacks. Two important types of attacks are the use of malware and exploiting Internet protocol vulnerabilities in devices and network systems. These attacks form a threat on many levels and therefore any approach to dealing with these nefarious attacks will take several methods to counter. In this research, we utilize machine learning to detect and classify malware, visualize, detect and classify worms, as well as detect deauthentication attacks, a form of Denial of Service (DoS). This work also includes two prevention mechanisms for DoS attacks, namely a one- time password (OTP) and through the use of machine learning. Furthermore, we focus on an exploit of the widely used IEEE 802.11 protocol for wireless local area networks (WLANs). The work proposed here presents a threefold approach for intrusion detection to remedy the effects of malware and an Internet protocol exploit employing machine learning as a primary tool. We conclude with a comparison of dimensionality reduction methods to a deep learning classifier to demonstrate the effectiveness of these methods without compromising the accuracy of classification

    Malware Pattern of Life Analysis

    Get PDF
    Many malware classifications include viruses, worms, trojans, ransomware, bots, adware, spyware, rootkits, file-less downloaders, malvertising, and many more. Each type may share unique behavioral characteristics with its methods of operations (MO), a pattern of behavior so distinctive that it could be recognized as having the same creator. The research shows the extraction of malware methods of operation using the step-by-step process of Artificial-Based Intelligence (ABI) with built-in Density-based spatial clustering of applications with noise (DBSCAN) machine learning to quantify the actions for their similarities, differences, baseline behaviors, and anomalies. The collected data of the research is from the ransomware sample repositories of Malware Bazaar and Virus Share, totaling 1300 live malicious codes ingested into the CAPEv2 malware sandbox, allowing the capture of traces of static, dynamic, and network behavior features. The ransomware features have shown significant activity of varying identified functions used in encryption, file application programming interface (API), and network function calls. During the machine learning categorization phase, there are eight identified clusters that have similar and different features regarding function-call sequencing events and file access manipulation for dropping file notes and writing encryption. Having compared all the clusters using a “supervenn” pictorial diagram, the characteristics of the static and dynamic behavior of the ransomware give the initial baselines for comparison with other variants that may have been added to the collected data for intelligence gathering. The findings provide a novel practical approach for intelligence gathering to address ransomware or any other malware variants’ activity patterns to discern similarities, anomalies, and differences between malware actions under study
    corecore