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ABSTRACT OF THE DISSERTATION

A DEEP-LEARNING BASED ROBUST FRAMEWORK AGAINST

ADVERSARIAL P.E. AND CRYPTOJACKING MALWARE

by

Faraz Naseem

Florida International University, 2020

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

This graduate thesis introduces novel, deep-learning based frameworks that are re-

silient to adversarial P.E. and cryptojacking malware. We propose a method that

uses a convolutional neural network (CNN) to classify image representations of mal-

ware, that provides robustness against numerous adversarial attacks. Our evaluation

concludes that the image-based malware classifier is significantly more robust to ad-

versarial attacks than a state-of-the-art ML-based malware classifier, and remarkably

drops the evasion rate of adversarial samples to 0% in certain attacks. Further, we

develop MINOS, a novel, lightweight cryptojacking detection system that accurately

detects the presence of unwarranted mining activity in real-time. MINOS can detect

mining activity with a low TNR and FPR, in an average of 25.9 milliseconds while

using a maximum of 4% of CPU and 6.5% of RAM. Therefore, it can be concluded

that the frameworks presented in this thesis attain high accuracy, are computationally

inexpensive, and are resistant to adversarial perturbations.
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CHAPTER 1

INTRODUCTION

Malware and Adversarial Machine Learning: Machine Learning (ML) tech-

niques have been the de-facto solutions for several domains (e.g., speech recognition,

natural language processing, computer vision, computer and network security, data

mining, etc.) due to their ability to automatically generalize (i.e., classify or cluster)

in both known and never before seen input samples [GMP18]. In fact, one of the

main applications of ML in computer and network security has been the detection of

mal icious software (malware) [GMP20,MTICGN19,YLAI17]. Currently, ML-based

models run in cloud environments in order to classify unknown samples [YLAI17].

Machine learning and especially its subset - deep learning (DL) - based mod-

els can provide superior performance over traditional methods (i.e., signature-based

or heuristic-based) for malware detection [BBCC19]. However, recent research has

shown that the efficiency of ML-based techniques can drop drastically due to ad-

versaries attacking these systems via adversarially crafted/perturbed inputs. Such

attacks have their roots in the computer vision domain with the study of Szegedy et

al. [SZS+14], and then followed by others [GSS15,PMJ+16,CW17]. Researchers soon

realized that it is possible to attack ML-models even without knowing the proper-

ties of the target classifier (e.g., features, classification algorithm, parameters, etc.)

due to the transferability property [SZS+14, PMG16] of adversarial samples among

different ML-based models. However, one needs to consider the domain-specific con-

straints while adopting such attacks. For instance, the adversarial manipulations to

the samples should be imperceptible to the human eye [GMP18] in the computer

vision domain, inaudible to the human ear in the audio domain [CW18], and should

preserve semantics in the text domain [ERLD18], but should result in the sample

evading the target classifiers.
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In the malware detection domain, adversarial attacks to ML-based malware detec-

tors involve adding carefully crafted perturbations to the malware samples that pre-

serve the malicious functionality of the malware while allowing the samples to evade

the target ML-based malware classifiers (i.e., modified malware samples are classified

as benign). Researchers were able to craft adversarial malware samples and success-

fully evaded ML-based malware detection systems including Windows Portable Ex-

ecutable (PE)-based malware detectors [KDB+18, KBA+18, CRY+19], Android mal-

ware detectors [YKXG17, CHY17], PDF-malware classifiers [rL14, XQE16] and even

cloud based proprietary anti-virus engines (e.g., Kaspersky, Eset, Sophos) [CSD19].

These examples clearly demonstrate that it is possible for attackers to evade state-

of-the-art ML-based malware classifiers not by complex concealment techniques (e.g.,

polymorphism, metamorphism, encryption, packing), but by simple, minute adver-

sarial perturbations. In order to defend ML-based malware classifiers from such at-

tacks, researchers employed defense mechanisms such as adversarial training [SZS+14].

However, such mechanisms are computationally costly and also suffer from model poi-

soning and decreased detection accuracy [CRY+19]. Therefore, defending ML-based

malware detection systems against adversarial attacks is still an open problem.

Cryptojacking Malware: In recent years, a new type of fileless malware that ex-

ploits the computational resources of end-users via browsers, has become increas-

ingly common [CBOS20]. This new strain of malware, known as Cryptojacking

(a.k.a., drive-by-mining) malware, performs unauthorized and covert cryptocurrency

mining operations in browsers without the end-users’ knowledge [ELMC18]. Both

the tremendous rise in the monetary value of cryptocurrencies and the profitability

of browser-based mining have been major driving forces behind the use of crypto-

jacking. As such, there have been a number of major cryptojacking incidents that

have affected various popular services and websites in the past. For instance, some
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of these cryptojacking incidents have affected popular streaming services and web

applications like YouTube [you], Openload, Streamango, Rapidvideo, OnlineVideo-

Converter [adg], Los Angeles Times [los], and some other organizational websites

(e.g., US and UK government websites) [usu]. A prime example that made the

news recently constitutes the episode of the Starbucks’ WiFi network in Buenos

Aires [sta], which was injecting cryptojacking malware through all its outgoing con-

nections due to 1.4 million compromised MikroTik routers [BBD19]. Also, several

researchers [ELMC18,MWJR18,KVM+18,MWJR19,KMM+19] confirmed that cryp-

tojacking is prevalent in the wild based on their analyses’ of websites in the Alexa

and Zmap top 1 million lists.

The birth of cryptojacking can be attributed to a number of emerging tech-

nologies such as WebAssembly (Wasm), WebWorkers, and WebSockets. In general,

these technologies have served to facilitate high-performing, scalable web applica-

tions running on browsers. In the context of cryptocurrency, Monero came for-

ward with the promise of untraceable transactions, which caught the attention of

malicious entities in the dark web [Kre18]. The Coinhive mining service provided

WebAssembly-based Monero-mining scripts to website owners as an alternative source

of income/profit [MWJR18, ELMC18, Kre18]. Thus, cryptojacking was born, a new

cryptocurrency mining malware running on end-user browsers covertly that relies

on the latest web technologies and easily reaching its victims via websites without

requiring any software installation. The misuse of Coinhive scripts by malicious enti-

ties without the consent of end-users facilitated the shut down of Coinhive in March

2019 [VGOB20]. Although Coinhive is no longer maintained or operational, numer-
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ous studies [BMZ20, VGOB20] indicate that cryptojacking malware is still in use in

the wild. The findings of our study add further support to this statement.

1.1 Research Problems

This thesis has the following five major research components and problems investi-

gated:

1. A detailed investigation into the use of image-based novel malware classification

as a robust solution to adversarial attacks with high detection accuracy and low

implementation overhead.

2. The introduction of two new adversarial attacks against ML-based malware clas-

sifiers that can evade state-of-the-art ML-based malware detectors while preserving

the functionality of the modified malware.

3. The design of a novel cryptojacking detection mechanism that implements a Wasm

binary classifier in a lightweight, computationally inexpensive, and incredibly fast

end-to-end framework - MINOS

4. The use of a novel Wasm binary classification technique that utilizes gray-scale

image representations of the binaries to train a convolutional neural network.

In general, to protect end-users from malware and adversarial attacks, a framework

must ensure high accuracy in detecting the malware with low false positive and true

negative rates. Additionally, the proposed framework must be robust to adversarial

perturbations. Also, the proposed framework should be scalable and reproducible to

ensure effectiveness against potential future malware threats. Finally, all the com-

ponents of the proposed framework must work in real-time with low computational

overhead to ensure efficient performance.

4



1.2 Organization of the Thesis

The rest of this thesis is organized as follows: In Chapter 2, we present pertinent

background information that serves to support this thesis. In Chapter 3, the studies

in the literature related to the work in this thesis, is presented. Chapter 4 introduces

a novel deep-learning framework that is resilient to adversarial perturbations to P.E.

malware. Then, in Chapter 5, we present a novel cryptojacking detection framework,

MINOS. Finally, we conclude the thesis and propose future research directions in

Chapter 6.
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CHAPTER 2

BACKGROUND

In this section, we provide background information pertinent to the context of the

thesis. This includes a brief explanation regarding the structure of PE (portable ex-

ecutable) files, followed by an explanation of the process of representing a malware

binary in the form of a gray-scale image. In addition, this section will provide nec-

essary information regarding cryptojacking malware and the mechanisms it uses to

operate. Further information can be found in the associated chapters.

2.0.1 Portable Executable Files and Visualization

The vast majority of malware on the Internet has the structure of Windows Portable

Executable (PE) files and nearly 64% of malware detected by Symantec in 2018

were in PE format [sym19]. For this reason, we selected PE-based malware families

for evaluation purposes in this study. In the following sub-sections, we will briefly

describe the PE structure and also depict how a PE-based malware binary can be

represented as a gray-scale image.

Portable Executable (PE) Format

Portable Exectubale (PE) is the format used to create executable files, Dynamic

Link Libraries (DLLs), common object files in 32-bit and 64-bit Windows operating

systems (OS) [PEF20,GMP20]. It contains the necessary information needed by the

OS for managing the executable file and provides an architecture-independent, and

thus portable description. Each PE file consists of a PE header and various sections

which are used by the linker in the loading process. The PE header possesses section,

symbol, and optional headers’ information. There can be several sections in a PE file,

but the sections that are common in the majority of PE files are as follows:
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• .text : encloses the program’s actual code,

• .rdata : includes the read-only initialized data (e.g., strings, constants, etc.),

• .data : contains the initiliazed data,

• .rsrc : holds the resources utilized by the program, such as icons and images

used by the program.

In addition to these sections, there are sections containing imported and exported

symbols (i.e., .idata and .edata), uninitialized data (.bss), and thread-local storage

(.tls) [PEF20].

Visualization of Malware Binaries

A malware binary can be represented as a sequence of zeros and ones. Indeed, it

is possible for this vector of binary values to be modified and transformed into an

image [NKJM11]. Specifically, to enable such a conversion, the malware binary is

represented as a vector of 8 bit unsigned integers (uint8) and then shaped into a

two-dimensional array. The array is then divided by 255 to represent the array as

a gray-scale image where the pixels take a value in the range of 0 to 255 (0 being

black, and 255 being white). Fig. 2.1 shows an example of a malware binary from the

Ramnit family being converted to an image using this technique. As shown in the

figure, distinct regions in the gray-scale image of a PE malware binary correspond to

specific sections in the PE structure. Examples of malware to image transformations

of two unique malware families are shown in Figure 2.2. It can be observed that

malware samples belonging to the same family of malware are visually extremely

similar when converted to gray-scale images. Another observation is that the images

of malware belonging to a specific family will be distinct from those belonging to a

different family.

7



.src
.text
.data
.rsrc

.idata
Sections

Header

Figure 2.1: An image depicting a malware binary from the Ramnit family of malware
(left) and PE file structure (right). Each section of the image is labelled corresponding
to the respective section of the PE file excluding the PE Header.

Figure 2.2: The first row represents gray-scale images of malware samples belonging
to the Ramnit [RRF+18] family of malware while the second row represents gray-
scale images of malware samples belonging to the Kelihos ver3 [RRF+18] family of
malware.

2.0.2 Cryptocurrency Mining and Cryptojacking

Cryptocurrency mining started with CPU-bound PoW schemes that mine Bitcoin or

Ether currencies [MWJR18]. When one of the miners computes a block successfully,

a new block for the blockchain is generated by the miner, and in return, the miner

receives a certain amount of cryptocurrency as a reward. Since the revenue that could

be obtained was directly proportional to the amount of processing power, Application-

Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs),

and Graphics Processing Units (GPUs) became the de facto platforms for CPU-

bound PoW schemes instead of ordinary desktop computers [MWJR18,ELMC18]. In
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Webpage
C/C++		 WASM

Module
WASM
Binary

WebAssembly.instantiateStreaming

Figure 2.3: We illustrate the process of implementing malicious Wasm modules that
mine cryptocurrecy in webpages. The right-most image shows the resulting Wasm
module through a binary dissassembler. The highlighted portions of text (i.e. strings
found in the binary) confirm that the module was compiled using Emscripten and
that the binary is indeed executing cryptocurreny mining functions.

order to remedy this issue, new cryptocurrencies (i.e., Monero, Bytecoin, etc.) that

utilize memory-bound PoW schemes emerged. These schemes were based on hash

puzzles that required voluminous interactions with the memory rather than CPU

power. Hence, ordinary computers started to be suitable mining environments for

such cryptocurrencies.

Cryptocurrency mining in browsers first started with the Coinhive miner, which

promised an alternative income opportunity to website owners in 2017 [ELMC18,

MWJR18, Kre18]. In Coinhive mining, website owners were placing cryptocurrency

mining scripts on their websites that would trigger the mining process within the vis-

itors’ browsers. There were also legitimate websites that would receive the consent of

users to mine cryptocurrency. However, this extra income opportunity caught the at-

tention of malicious entities. These individuals began to covertly mine cryptocurrency

without the explicit consent of users. This phenomena is known as cryptojacking, or

drive-by mining/ coinjacking [ELMC18]. In this new type of malware, attackers mis-

use the processing power of victims and derive revenue from it.

A malicious cryptocurrency mining script, namely cryptojacking malware, can be

injected into websites in a number of ways [CBOS20,ELMC18]: i) Website owners can

place such scripts in their websites and activate them taking consent of the visitors. ii)

Third-party services can inject such scripts without informing neither website owners.
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iii) Malicious browser extensions can run cryptocurrency miners in the background

silently. iv) Attackers can breach servers, browser extensions, third-party services, and

inject cryptojacking. v) Vulnerable network devices such as routers, access points,

etc. can be exploited to inject cryptojacking to web traffic.

A browser-based cryptocurrency miner typically consists of a JavaScript code

snippet that has the identification number of the script owner, and corresponding

code that configures the mining process communicates with the cryptocurrency ser-

vice provider and starts the mining operation. The identification number of the script

owner discriminates the malicious entity that owns the script amid other entities from

the cryptocurrency service provider’s point of view. In this way, service providers can

monitor and measure the total hashing power provided by script owners. The ser-

vice provider communicates with miners through high-performance communication

primitives, like WebSockets. In order to increase profit, cryptocurrency miners use

WebWorkers to run the mining process in parallel via multiple threads. Further, to

solve hash puzzles with high efficiency, they utilize miner implementations in We-

bAssembly instead of JavaScript [MWJR18].

2.0.3 WebAssembly and Cryptojacking Malware

WebAssembly (Wasm) is a low-level binary instruction format that promises to run

code near native speeds in a stack-based virtual machine within the browsers [was20].

It is currently supported by four major, widely-used browsers, including Google

Chrome, Mozilla Firefox, Microsoft Edge, and Safari. Its use of binary encoding

results in efficiency in size and load-time, and execution speeds that are comparative

to native machine code [was20]. Other principle features include it being easy to

decode, hardware and platform-independent, and compact [RTH+18].
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Rather than replacing JavaScript (JS), Wasm is meant to supplement and run

in parallel with JS. The language is designed to be used as a target for compilation

of numerous high-level languages such as C, C++, and Rust. Webpages, written in

JS, will instantiate Wasm modules that are then compiled in a sandbox environment.

Using the same Web APIs available to JS, Wasm modules have the ability to call in

and out of the JS context, and access browser functionality. The most widely used

toolchain for compiling modules written in C/C++ into Wasm is the open source

LLVM compiler, Emscripten. The near native speed of Wasm is achieved due to the

fact that the modules have already been optimized during compilation, and memory

management is done without the use of a garbage collector.

Advantageous features of WebAssembly make it suitable to implement and exe-

cute browser-based cryptocurrency mining functions that require substantial compu-

tational power such as cryptonight hash. As such, a vast majority of browser-based

cryptojacking malware implements Wasm to execute the cryptocurrency mining pay-

load. This is apparent as Konoth et al. [KVM+18] reported that 100% of the 1,735

cryptocurrency mining websites they identified in their study utilized Wasm. In par-

allel to this study, Musch et al. [MWJR19] analyzed the prevalence of WebAssembly

in the wild. They inspected Alexa top 1 million websites and realized that 0.16%

of the websites employ WebAssembly. Their analysis revealed that more than half

of the websites that employ WebAssembly are using it for malicious purposes. They

highlighted that cryptojacking is the major application among malicious use-cases.

Crytojacking malware authors write code in C/C++ that performs mining func-

tions including cryptonight create, cryptonight destroy, and cryptonight hash.

They then compile this to a Wasm module using the Emscripten toolchain. This

Wasm module is then accessed through the JavaScript function, WebAssembly.

instantiateStreaming. The fetch() method of the Fetch JavaScript API is used

11
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Figure 2.4: An image depicting a Wasm binary with each section of the image being
labelled corresponding to each of the 12 respective sections described in Section 2.0.4.

as the function’s first argument. This method fetches, compiles, and instantiates

the module, enabling access to the raw byte code. During the compilation phase,

the Wasm binary has already undergone optimization and can hook directly into

the backend where machine code is generated and executed. This code performs

mathematical operations that facilitate solving convoluted hash puzzles i.e., mining

cryptocurrency. A visual depiction of this procedure can be seen in Figure 2.3.

2.0.4 Structure of WebAssembly Modules

A Wasm module comprises 12 distinct sections, each with its own section ID ranging

from 0 to 11. The following list describes each module and includes each section’s

corresponding ID number (Figure 2.4).

0. Custom section: This section is either used for debugging purposes or by

third-party extensions for custom purposes. It contains a name that identifies
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the section as the custom section and a custom sequence of bytes for use by

third-party extensions.

1. Type section: The type section decodes or defines a vector of function types.

This component contains every function type utilized in the module.

2. Import section: This section decodes a vector of a set of imports that are

required in order to confirm that the module is valid during instantiation. Each

import definition consists of a module name and a name for an element within

that specific module.

3. Function section: The function section consists of a vector of type indices

representative of the type parameter of the functions defined in the module.

Each function definition consists of 3 parameters: type, locals, and body. The

locals and body parameters are encoded in the code section.

4. Table section: This section contains a vector of tables that are defined by

their table type. A table consists of a vector of values of a specific element type.

5. Memory section: This component decodes into a vector of linear memories

described by their memory type, consisting of raw, uninterpreted bytes.

6. Global section: The global section contains a vector of global variables

used in the module. Each global variable definition consists of a single value

describing its type.

7. Export section: This section consists of a vector of a set of exports that the

host environment can access after module instantiation.

8. Start section: The start component defines the index of an optional start

function that is invoked during module instantiation after tables and memories

are initialized. This function is used to initialize the state of the module.
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9. Element section: The element section is comprised of a vector of element

segments that initialize a subrange of a table based on a specifically defined

offset.

10. Code section: The code section contains a vector of code entries that consist

of pairs of expressions and value types. The four value types that Wasm vari-

ables can take include 32 and 64-bit integers and 32 and 64-bit floating-point

data. In the module’s code, these types are represented by the terms i32 and

i64, and f32 and f64 respectively. Each code entry is comprised of the size of

the function code in bytes, and the function code. The function code, in turn,

consists of local variables and the body of the function as expressions. These

correspond to the local and body parameters of the sections of the function

mentioned previously.

11. Data section: This section is comprised of a vector of data segments that

initialize a range of memory based on a specifically defined offset.
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CHAPTER 3

LIERATURE REVIEW

In this chapter, we present the studies in the literature that are closely related to the

research presented in this thesis.

3.1 Image-based malware detection, Adversarial Attacks to

Malware Classifiers and Defense Methodologies

Adversarial Machine Learning and malware detection are two broad research areas

and many prior studies exist in these fields. We do not go into the details of malware

analysis and ML-based malware detection techniques in this thesis. Nevertheless,

we refer the readers to the works of Elisan and Hypponen [EH13] and Sikorski and

Honig [SH12] for malware analysis; Gilbert et al. [GMP20] and Ucci et al. [UAB19]

for ML-based malware detection. Here, we briefly review the works on image-based

malware detection, adversarial attacks to malware classifiers and defense methodolo-

gies.

3.1.1 Image-based Malware Detection

In 2011, Nataraj et al. [NKJM11] converted malware binaries into gray-scale images

and realised that malware samples belonging to the same family look very similar

to each other. Based on this, they extracted the features of gray-scale malware im-

ages and used K-Nearest Neighbor for classification, which enabled them to achieve

98% classification accuracy. Since then several studies (i.e., [BSK19], [FXW+18],

[KM13], [HLI13] and [NQZ18] to name a few) employed malware images and visual-

ization techniques for malware classification.
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3.1.2 Adversarial Attacks to Machine Learning Systems

Adversarial attacks to ML systems emerged in the computer vision domain with

the work of Szegedy et al. [SZS+14]. They realized that it is possible to cause a

deep learning model to misclassify an image simply by adding perturbations that are

imperceptible to the human eyes. Szegedy et al. used gradient-based optimization al-

gorithms to find optimum perturbations that maximize the prediction error and cause

the model to misclassify the input. After this work, several studies were performed

in computer vision using gradient-based approaches. Some of the well-known adver-

sarial attacks include L-BFGS [SZS+14], FGSM [GSS15], JSMA [PMJ+16], Deep-

Fool [MFF16] and C&W [CW17]. Researchers also proposed defense and detection

mechanisms to counter these attacks (adversarial training [SZS+14], defensive distil-

lation [PMW+16], feature squeezing [XEQ18]). We refer the readers to [GMP18],

[QLZW19] and [WLK+19] for a comprehensive review of attacks (training time and

test time attacks), detection and defense mechanisms.

3.1.3 Adversarial Attacks to Malware Classifiers

Adversarial attacks in computer vision are relatively easy to implement since the

domain-specific constraint is that the generated perturbations should be impercepti-

ble to the human eye [GMP18, LCBDR19, AHHO18]. However, in malware domain,

it becomes much harder since the perturbations have to preserve the functionality

of the functionality malware executable while bypassing the ML-based malware

classifier [LCBDR19,AHHO18,CSR19,CSD19,AKF+18,KBA+18,SCJ19].

Adversarial attacks to malware classifiers can be grouped into three classes based

on the type of malware: Windows Portable Executable (PE) malware, Android mal-

ware, and Portable Document Format (PDF) malware. To the best of our knowledge,
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adversarial attacks to GNU/Linux malware and Mac OS malware do not exist. We

focus on Windows PE malware in this thesis since the majority of malware on the

Internet has the structure of PE files [CYB17, CSR19, RSRE18] and nearly 64% of

malware detected by Symantec in 2018 were in that format [sym19].

In terms of PE malware, several studies proposed adversarial attacks to ML-based

malware classifiers. These attacks can be grouped into three categories: 1) Addition

of Bytes: This refers to the addition of crafted bytes to the end of the malware

samples [KDB+18,KBA+18,SCJ19,CRY+19], to unused sections [KBA+18], or mod-

ification of slack bytes that are added by compilers for alignment purposes [SCJ19].

Bytes can be crafted randomly, using parts of benign binaries, or via one of adver-

sarial attacks applied to ML systems in computer vision (e.g., FGSM, JSMA, CW,

etc.). 2) Modification of Features: This method involves the addition or removal of

API call features to bypass ML-based malware classifiers [RSRE18,CYB17,AHHO18,

AKF+18,FRZ+,CSD19,CSR19,LCBDR19,HT17], or the use of a Generative Adver-

sarial Network (GAN) to craft adversarial malware [HT17]. 3) Other Modifications:

This process includes using a tool like the LIEF library [lie20] to perform changes on

the malware which do not intend to break the functionality [AKF+18,FRZ+,CSD19,

CSR19, LCBDR19], and malicious code injection to benign files [FRZ+] using a tool

like ROPInjector [PNX].

When we consider these attacks, we see that preservation of malware functionality

is not always achieved. Attacks that append bytes to the end of a malware binary

do not touch the executable code part of the binary, and therefore guarantee the

preservation of functionality. Modifying slack bytes also results in the preservation of

functionality, however it has a low evasion rate [SCJ19] since the amount of such bytes

is quite small. Among the set of feature modification attacks, the only attack that

preserves the functionality is proposed by Rosenberg et al. [RSRE18]. Their attack
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is complicated as it does not alter the malware, but uses API hook mechanism and

wraps it with proxy code and operating system Dynamic-link Libraries. The majority

of the other modification attacks use the LIEF library to modify the malware PE,

but nearly all of the studies using this method indicated that the functionality of the

modified malware is not always preserved. In addition, malicious injection which uses

ROPInjector, has several limitations and can not always inject malicious samples.

3.1.4 Defense Mechanisms Against Adversarial Attacks to

Malware Classifiers

There exist only a few defense studies against adversarial PE-based malware pertur-

bations in the literature. Al-Dujaili et al. [AHHO18] proposed a secure learning frame-

work, which performs training by considering the adversarial loss of malware samples

and natural loss of benign samples. As a defense mechanism, Chen et al. [CYB17]

proposed SecDefender which progressively retrains the classifier using adversarial ex-

amples and also tries to maximize the cost of evasion for the attackers. The last

study [CRY+19] analyzed the performance of the adversarial training approach of

Szegedy [SZS+14] and proposed a pre-detection mechanism. However, adversarial

training has high computational cost, can lower the detection performance and can

also be affected by model poisoning [GMP18].

3.1.5 Adversarial Attacks to Image-based Malware Classi-

fiers

The three categories of adversarial attacks described earlier are all against non-image-

based classifiers. On the other hand, adversarial attacks to image-based malware clas-
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sifiers started to be a focus of research recently. A crucial factor that must be taken

into consideration when generating adversarial malware to evade image-based classi-

fiers, is creating an adversarial sample whose image representation can evade

the classifier, while retaining its malicious functionality. There are four

studies in the literature which aim to evade image-based malware classifiers but can-

not achieve both of these conditions. Park et al. [PKY19] employed FGSM and

C&W attacks to generate an adversarial image of a malware sample first. Then, us-

ing their algorithm, they inserted semantic no-operation (NOP) instructions into the

original malware sample to make it appear like the an advesarial sample. Although

adding NOP instructions do not change the actual logic of a binary, adding instruc-

tions changes the section size and addresses, and therefore breaks the executable.

Liu et al. [LZLL19] converted the malware binaries to images and then generated an

adversarial image using the FGSM attack which can evade the image-based classi-

fier. However the resulting file may have a series of unmeaningful character sequences

which can break its functionality.In the work of Vi et al. [VNNT19], a malware binary

is converted into an image, and then the resource section of the image is determined

and perturbed via FGSM to evade the classifier. Following this, the perturbed pixels

of the resource section is converted back to binary and is used to modify the original

malware’s resource section. This approach can cause the Windows PE loader to fail

to load the malware, since this section has to follow a certain structure for successful

parsing [pec20].Khormali et al. [KAC+19] proposed COPYCAT that uses adversarial

example (AE) padding and sample injection attacks. AE padding generates an ad-

versarial image of a sample using well-known attacks (e.g., FGSM, C&W, etc.) and

then converts the image to bytes and appends the generated bytes to the end of the

original malware, essentially doubling the size of the sample. The sample injection

attack injects targeted class samples after the exit code of the malware which has
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a high probability of breaking the malware PE due to changing the offsets of the

sections after the code section of the malware.

3.2 Cryptojacking Detection Systems

The current literature has a plethora of works on the detection of malicious cryptocur-

rency miners. We can group the works into three categories based on perimeter of the

detection system: i) browser-based detection (targeting cryptojacking), ii) host-based

detection (targeting stand-alone miners that run as a malicious software on hosts),

iii) network-based detection (targeting any type of miners). In this section, we will

briefly examine the detection systems for each class respectively. In addition, we will

outline the need for a new cryptojacking detection system.

3.2.1 Browser-based Mining (Cryptojacking) Detection

Several researchers proposed highly accurate detection systems against cryptojack-

ing malware. Hong et al. [HYY+18] proposed CMTracker that uses the cumula-

tive time spent on hashing operations and stack characteristics of threads. Wang

et al. [WFX+18] proposed SEISMIC, as a semantic signature-matching-based detec-

tion system that instruments the Wasm modules to count specific instructions in

runtime. Rodriguez and Posegga [RP18] proposed RAPID, a Support Vector Ma-

chine (SVM) based classifier that uses CPU and memory events, and network traffic

features. Kharraz et al. [KMM+19] proposed OUTGUARD, that builds an SVM

classifier using features of runtime, network, mining, and browser events. Bian et

al. [BMZ20] proposed MineThrottle, which uses a block-level profiler and dynamic

instrumentation of the Wasm code that is pointed by the profiler at compile time.

Kelton et al. [KBRS20] proposed CoinSpy which utilizes computation, memory, and
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network features. Conti et al. proposed [CGLP19] that uses Hardware Performance

Counters (HPC) data to detect cryptojacking. Konoth et al. [KVM+18] proposed

MineSweeper that firstly analyzes the Wasm modules and counts number of specific

instructions. It tries to find out how similar the analyzed module is to cryptojacking

malware Wasms. In addition, it monitors cache events during runtime.

3.2.2 Host-based Stand-alone Mining Detection

In terms of malicious cryptocurrency miners not targeting browsers but directly

hosts, Darabian et al. [HHD+20] proposed a detection system that uses opcode se-

quences and system calls of Windows Portable Executable (PE) files. Berecz and

Czibula [BC19] employed both static features (i.e., entropy, and header, section, and

function information) and API calls. Vladimı́r and Žádńık [V9] presented two tech-

nique, in which the first technique uses a decision tree on the flow features, and the

second technique acts like a miner client probing the miner server.

3.2.3 Network-based Detection

As a network-level detection mechanism, Neto et al. [NLFM20] proposed MineCap,

a network-flow-based detection and blocking mechanism to protect the network of

devices controlled by the SDN controller. MineCap relies on Apache Spark Streaming

library and incremental ML model to detect the cryptocurrency mining flows.

3.2.4 Challenges and Need for a New Detection System

Cryptojacking detection is challenging. Benign web applications frequently use the

technologies that are also used by cryptojacking malware (e.g., WebAssembly, Web-

Workers, WebSockets). Similar to cryptojacking scripts, benign web applications can
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consume high CPU and memory resources. All of these characteristics can affect the

accuracy and false positive rates of detection systems. In addition, end-users browse

the web through a variety of browsers using various operating systems that require so-

lutions to be platform-independent. Moreover, end-users expect pages to load quickly

and run flawlessly, which force detection solutions to be lightweight and efficient. In

addition, attackers can throttle the resource consumption of their malware, change

function names and strings, use proxies, dynamically generated domain names, and

encrypted communications that make the detection increasingly challenging.

However, considering the challenges and approaches proposed in prior work, cryp-

tojacking detection can still be improved drastically. Existing detection approaches,

albeit useful, have several drawbacks. First of all, cryptojacking is moving from

JavaScript to WebAssembly for various reasons (e.g., performance, hardware sup-

port) [KMM+19]. However, only a small portion of prior studies [WFX+18,KVM+18,

KMM+19] take this change into account. Secondly, cryptojacking detection sys-

tems [WFX+18,KVM+18,KMM+19,RP18,BMZ20,KBRS20] relying on dynamic anal-

ysis features can suffer from high computational overhead, reduced measurement ac-

curacies due to noise caused by other processes and false positives resulted from

benign websites using the same technologies. For this reason, practical applications

of such schemes may cause quality-of-experience issues for end-users. Moreover, at-

tackers can easily find ways to circumvent existing detection systems. To be more

specific, fixed threshold values used by CMTracker [HYY+18] can be evaded easily.

The techniques of Vladimı́r and Žádńık [V9] are not effective against private mining

pools or mining pools hidden behind proxies. Cryptojacking scripts can use encrypted

communication, dynamic domain names, alternative communication primitives (e.g.,

XMLHttpRequest), and proxies to bypass detections systems that use network-based

features [MWJR18]. In addition, some detection systems have drawbacks that may
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limit their acceptance and usage by end-users. For instance, one of the features

used by OUTGUARD [KMM+19] (i.e., MessageLoop event) is browser-dependent.

MineCap [NLFM20] can be utilized only by operators which employ SDN in their

networks. Therefore, individual users cannot use it. Instrumentation code added by

SEISMIC [WFX+18] may severely affect the performance of legitimate web applica-

tions that use Wasm, which may degrade the quality of experience of end-users.
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CHAPTER 4

A LIGHTWEIGHT IMAGE-BASED MALWARE CLASSIFICATION

SYSTEM RESISTANT TO ADVERSARIAL MACHINE LEARNING

ATTACKS

4.1 Introduction

In this chapter, we show that converting the malware detection problem into image-

based malware classification problem provides robustness against adversarial pertur-

bations. The underlying robustness stems from the fact that adversarial attacks,

which are relatively easy to apply to background image in the computer vision do-

main, are extremely difficult to apply to transformed background image of malware

samples. This is because such an operation that adds adversarial noise to a malware

image has a very high possibility of breaking the functionality of the actual malware

when the image is converted back to a malware binary. There have been a few adver-

sarial attack attempts [PKY19,LZLL19,VNNT19,KAC+19] to image-based malware

classifiers recently. However, most of the attacks fail to preserve the functionality

of the adversarial malware sample. To prove the robustness of image-based malware

detection against adversarial attacks, we select adversarial attacks that preserve the

functionality of the malware sample while evading the state-of-the-art malware clas-

sifiers. In addition, we introduce two novel adversarial attacks that preserve the mal-

ware functionality after modifications. For our evaluation, we used the 2015 Microsoft

Malware Classification Challenge dataset [RRF+18] which includes real malware sam-

ples from nine different malware families in the Windows Portable Executable (PE)

format. We trained a convolutional neural network (CNN)-based classifier using the

gray-scale background image of the malware in the dataset. We applied adversarial

attacks including our two novel attacks to our image-based malware classifier. The
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results of our evaluation show that the image-based malware detection approach is

robust against adversarial attacks that can easily fool a state-of-the-art ML-based

malware detector. The evasion rate of adversarial samples dropped to 0% in certain

attacks. Furthermore, our tests demonstrate that even if an adversary increases the

amount of adversarial perturbations by up to 20% of the malware sample’s original

size, our image-based malware detector still provides a detection accuracy of above

80%. Moreover, we analyzed the overhead incurred by implementation. The analysis

indicates that the image-based malware detection technique provides a 70% decrease

in training time and a three-fold reduction in RAM usage during the training pro-

cess in comparison to a start-of-the-art ML-based malware classifier. Our extensive

analysis shows that image-based classifiers are both efficient and also robust against

adversarial attacks that preserve the functionality of the malware. For this reason,

employing an image-based malware classifier does not require additional defense mech-

anisms, such as adversarial training; hence, it remains immune to model poisoning.

To the best of our knowledge, this is the first work in the adversarial malware litera-

ture that demonstrates and analyzes the robustness of image-based classifiers against

adversarial attacks.

Contributions: In summary, the main contributions of this chapter are as follows:

• Proposition of image-based novel malware classification as a robust solution to

adversarial attacks with high detection accuracy and low implementation overhead,

• Introduction of two new adversarial attacks against ML-based malware classifiers

that can evade state-of-the-art ML-based malware detectors while preserving the func-

tionality of the modified malware.
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4.2 Differences from Prior Works

Considering the related work, we can see that although adversarial attacks to ML

systems and image-based malware classifiers exist, whether image-based malware

classifiers are robust against adversarial attacks remains an open question. Most

of the proposed attacks cannot preserve the functionality of the malware. The de-

fense mechanisms have high computational costs and suffer from model poisoning

and reduced detection accuracy issues. This study, however, analyzes the robustness

of image-based malware classifiers against adversarial PE-based malware perturba-

tions. Our analysis shows that image-based classifiers are robust against adversarial

attacks that preserve the functionality the malware. For this reason, employing an

image-based malware classifier does not require adversarial training; hence, it remains

immune to model poisoning. To the best of our knowledge, this is the first work in

the adversarial malware literature that demonstrates and analyzes the robustness of

image-based classifiers against adversarial attacks.

4.3 Image-based malware classification and adversarial at-

tacks

In this section, we describe the structure of our evaluation architecture in which

we convert malware binaries to gray-scale background image, train a CNN classi-

fier, apply adversarial attacks and test the performance of malware classifiers (our

image-based classifier and the state-of-the-art ML-based classifier, Malconv) against

adversarial malware samples. We also propose two novel black-box adversarial at-

tacks that utilize brute-force techniques to generate adversarial samples, followed by

our threat model.
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Figure 4.1: An overview of the architecture of our proposed approach. Malware
binaries are converted into gray-scale background image before being fed to the CNN
for the training process. A total of 4 adversarial attacks are applied to malware
binaries, each appending bytes to the end of the samples. Similar to the training
process, these samples are converted to background image and then fed to the model
as input in order to classify them according to the malware family they belong to.

4.3.1 Overview

Our proposed method consists of a three-stage process. A visual depiction of the

architecture of our approach is illustrated in Figure 3. In the first stage, each malware

binary undergoes pre-processing during which each binary in our dataset is converted

to an array of unsigned 8-bit integers and normalized to a common size. These

arrays, which represent the binaries as gray-scale background image, are then used to

train a convolutional neural network (CNN) in the second stage. In the third stage,

adversarial examples are then generated using each of the 4 attack vectors outlined in

Section 4.4, converted to gray-scale background image and tested against the trained

CNN. The CNN then makes a prediction as to which class of malware the adversarially

crafted malware samples belong to. The following sub-sections describes each stage

of our method in detail and includes how the binaries are converted into background

image to be used to train the model, details of the structure of the model and the
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tools utilized to create the model and finally, the methods used to craft adversarial

malware.

4.3.2 Preprocessing: Conversion of Malware Binary to Im-

age

Algorithm 1: Malware Binary to Gray-scale Image

Input : Malware Binary
Output: Gray-scale Image Array of Malware Binary

1 for file in getCwd() do
2 f → open(file)
3 ln → getSize(file)
4 width→ math.pow(ln, 0.5)
5 rem → ln%width
6 a → array(′B′)
7 a.fromfile(f, ln− rem)
8 f.close()
9 g → reshape(a, (len(a)/width), width)

10 g → uint8(g)
11 h → resize(g, size, size)
12 h → h/255

13 return h

Before the model can be trained, the dataset needs to be preprocessed in order to

convert the data into a format that the model is able to use as input. This involves

converting each malware binary in the training set to a gray-scale image and then

resizing it to a common size. The details of this procedure are depicted in Algorithm

3.

In Line 1, a for loop ensures that each file in the training set directory is visited

with each iteration of the loop. Lines 3-5 calculate size parameters ensuring that

the final array will have a relatively similar length and width. In line 6, the file is

converted to an array of unsigned integers. Lines 2-8 convert the malware binary to
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Figure 4.2: The structure of the convolutional neural network used to classify malware
binaries.

an array of integers. Lines 9-10 reshape the created array and convert it into an array

of 8 bit unsigned integers (uint8) that range in values from 0 to 255. The value of

each integer in the array represents the brightness of a pixel ranging from black to

white (0 to 255). In lines 11-12, the image array is resized to a common size of 100 by

100 and the pixel values are normalized to a range of 0 to 1 by dividing the array by

255. This normalization is done as it is easier for the model to process input arrays

with a smaller range of values. This process continues for each file in the directory

until each file has been successfully converted to an image array.

4.3.3 Convolutional Neural Network

The malware classifier consists of a convolutional neural network (CNN) built us-

ing the TensorFlow software library, specifically using TensorFlow’s high-level API,

Keras. The CNN was written in Python 3 using TensorFlow version 1.13.1. The

model was trained on a system running Ubuntu 16.04.01 with dual Intel Xeon E5-

2630 V4 processors and 62 GB of available RAM. The system has a total of 20 cores

with each processor running a base frequency of 2.20 GHz.

The structure of the CNN consists of 3 sets of convolution layers followed by max-

pool layers with an increasing number of filters in each successive convolution layer
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(16, 32 and 64). The kernel size used in each convolution layer is set to (3,3) while

the pool size of each max-pool layer is set to (2,2). These layers are followed by two

dense layers with the final output being a vector representing the probability that

a sample belongs to each of the 9 classes in the dataset. A visual depiction of the

overall structure can be seen in Figure 4.

The model is trained on labeled, pre-processed malware samples from our dataset

with a validation split of 0.2, i.e., the model was trained on 80% of the samples

while the remaining 20% are used to validate or test the accuracy of the model. The

samples are labeled 0-8 according to which malware family they belong to. The CNN

is trained with the number of epochs being set to 100 and the batch size set to 32.

The model achieved an accuracy of 98% when tested against the malware samples in

the validation set.

4.3.4 Adversarial Malware Generation

As we explained in the Section 2.3, the functionality of the modified malware is guar-

anteed only for a subset of byte append attacks and one of the feature modification

attacks. Taking this into consideration, we apply four byte-append attacks to gener-

ate adversarial samples that are able to evade MalConv [RBS+18], a state-of-the-art

ML-based malware classifier. MalConv is a CNN-based malware classifier that ana-

lyzes the raw bytes of PE-based malware samples. It is a popular malware detector

that is used in various other studies as a target model to create adversarial samples

from PE-based malware files [KBA+18,KDB+18,FRZ+, SCJ19,CRY+19].

From the adversarial ML point of view, our attacks can be organized into two cate-

gories: black-box and white-box attacks. It should be noted that the following attacks

considered in this study guarantee that malware functionality remains intact as each

of the attacks appends bytes to unreachable portions of the binary. In this case, all
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attacks append bytes to the end of the binary, and therefore the executable code in

the binary remains unaffected, section sizes and offsets don’t change, and malware

functionality is preserved. As an additional constraint, given a malware binary x of

size s, appended by byte perturbations p, p can not exceed 10% of the original sample

size. This is because from an adversarial point of view, the added perturbations are

meant to be small, seemingly undetectable additions to the original malware binaries,

relative to the original size of the binary. Other works in the literature append a max-

imum of only 1% of the original sample size [CRY+19], [KDB+18], [SCJ19], therefore,

a maximum upper bound of 10% is suitable. In other words, the the generation of

adversarial samples through each method is bounded by the equation:

x+ p <= 1.1s. (4.1)

Black-box Attacks:

In this case, it is assumed that the adversary has no knowledge regarding the internal

parameters or the structure of the target/victim model. The only information the

adversary has access to is the final classification result of the model with respect to a

given input file. The following two black-box attacks are novel methods that utilize

brute-force techniques to generate adversarial malware samples.

Brute-Force Random Byte Append: In this attack, randomly generated bytes

are appended to the end of a malware binary with each iteration until it is classified

as benign or the size of the resulting binary reaches the threshold set in Equation

4.1 is . In the event that the adversarial sample, x′, generated through this method

is still being classified correctly once this threshold is reached, 10-byte increments

are extracted from random points in x and appended to the end of the binary. This

iterative process continues until the sample is classified as benign. A combination of
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both of these random byte-append techniques ensures that adversarial samples are

generated for all of the malware binaries in our validation set.

Brute-Force Benign Byte Append: In this scenario, portions of benign files are

appended to the end of a malware binary x until it is either classified as benign or

reaches the upper bound in equation 4.1. To accomplish this, with each iteration

of the attack, a file is chosen at random from the set of benign files and a section

of 10 bytes is extracted from a random location in that file, and appended to the

end of the malware binary. If the adversarial sample generated reaches the upper

bound, and is still classified correctly, the perturbations are removed and the process

is repeated with another random benign file being selected from the data set, until x′

is misclassified as a benign file.

White-box Attacks:

In this case, the adversary has complete access to the structure of the victim model,

including the internal parameters, hyperparameters and weights for the convolutional

neural network.

Random Byte FGSM: This method is an adaptation of the FGSM approach origi-

nally proposed by Goodfellow et al. for image based deep learning classifiers [GSS15].

FGSM creates adversarial malware samples by using the gradients of neural network.

The gradient of the cost function used to train the model, J(θ, x, y), with respect to

an input malware binary, is used to generate a new binary that maximizes loss. This

can be represented using the following equation:

x′ = x+ ε ∗ sign(∇xJ(θ, x, y)). (4.2)
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Here, x is the original malware binary, y is the binary’s original label, ε is a

constant multiplier used to control the size of the perturbations, θ are the model’s

parameters and J is the loss function with respect to original malware binary. The

main goal here is to create a new malware binary x′ that maximizes the loss function.

This is achieved by appending a certain number of bytes, namely numBytes in the

form of random bytes to a malware binary and updating their values (as dictated

by Equation 4.2) in an iterative fashion with the binary moving further away from

its original label with each iteration. In this case, The number of bytes appended

with each iteration was set to 100, while the number of iterations was similary set to

100. With MalConv, the model is not differentiable end-to-end as the input bytes are

mapped to an 8-dimensional vector in the embedding layer, and therefore computing

the gradient is not possible. To overcome this issue, as proposed in [KDB+18] and

[SCJ19], the gradient-based updates of the appended bytes are performed in the

embedding space and then the updated byte value is mapped to the nearest byte

value along the direction of the embedding gradient.

Benign Byte FGSM: This attack is very similar to the aforementioned FGSM

attack except that instead of adding numBytes in the form of random bytes, it adds

benign byte portions from a randomly selected file from the set of benign files. The

byte values are then updated iteratively over numIterations using Equation 2.

4.3.5 Threat Model

The adversary, in the context of this study, can be classified as an individual that

attempts to add minimal perturbations (bytes) to the end of malware samples, in such

a way that they are able to bypass byte-based malware classification models. They are

able to do so as these added perturbations result in the sample being misclassified as

benign. The adversary can either have complete (white-box) or partial access (black-
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box) to the classification model and its internal parameters/hyperparameters. In each

of these two scenarios, the crafting of adversarial samples is governed according to

the following set of adversarial goals:

• The perturbations are appended to the end of the malware, past the executable

code portion of the samples.

• The crafted adversarial malware sample is able to retain its malicious function-

ality after the addition of adversarial perturbations.

• The added perturbations or bytes result in the target model misclassifying le-

gitimate malware samples as benign.

Taking these goals into consideration, the adversary applies the two black-box and

two white-box attacks outlined in the previous section.

4.4 Performance Evaluation

In this section, the methodology used to carry out our evaluation is presented, followed

by the results of the evaluation and the overhead analysis.

4.4.1 Methodology

To evaluate the performance of the image-based malware classifier, adversarial sam-

ples were generated utilizing each of the four attack methods outlined in Section 4.4

and tested against the classifier to see what percentage of the samples were success-

fully able to evade it (evasion rate) and cause a misclassification. These results were

compared to the evasion rate of the attacks when tested against MalConv.

For the purpose of the evaluation, MalConv was trained with the same validation

split as the image-based classifier i.e., it was trained and tested on the same samples
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as the image-based classifier. In addition, the methods used to create adversarial

samples were applied to the validation set so as to ensure that adversarial samples

were created from malware binaries that the model has not been trained on.

4.4.2 Dataset

The dataset used in our study is the 2015 Microsoft Malware Classification Chal-

lenge dataset [RRF+18]. It contains 10869 labelled malware samples from 9 different

families of malware that including: Ramnit, Lollipop, Kelihos ver3, Vundo, Simda,

Tracur, Kelihosver1, Obfuscator.ACY, and Gatak. The files consist of hexadecimal

representations of the binary content of malicious PE files with the exception of the

PE header. The PE headers are removed from each binary, pertaining to the rules

of the classification challenge, so that classification of the malware is made a more

difficult task. This set of labelled malware was divided into training and validation

sets using an 80/20 split, respectively. For the benign samples, 10642 executables

are taken from pure installations of Windows 10 (64 bit) and Windows 7 (64 bit)

operating systems.

Although there are various other popular resources from which malware samples

can be collected including VirusShare and VirusTotal, the reason this particular data

set is chosen is due to the difficulty in finding labelled malware samples that indicate

which unique malware family they belong to. The aforementioned resources provide

unlabelled malware samples in this regard and labelling must be done manually. Even

still, most malware samples from these resources are classified under various different

malware families making it difficult to correctly classify them into a single family of

malware.
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4.4.3 Results

Both classifiers were tested considering numerous accuracy metrics including accuracy,

precision, recall, and F1-score. Table I illustrates the result of calculating each of these

metrics for the classifiers. Our image-based classifier exceeds MalConv’s performance

in every category. Both accuracy and F1-scores are both approximately 10% higher

while precision and recall are 11% and 10.3% higher respectively. The prime reason

for this is that our classifier is able to be make accurate predictions even in the absence

of the PE header information. In the original MalConv study, it is indicated that the

PE-header is the most important feature in the model’s classification of malware,

accounting for its weaker performance.

Table 4.1: Accuracy Metrics for both Classifiers
Accuracy (%) Precision (%) Recall (%) F1-score (%)

MalConv 87 89.2 87.2 87
Image-Based Classifer 98 98.3 97.5 98.2

In Figure 5, the evasion rates of each of the four attacks are shown when tested

against MalConv and the image-based classifier. The brute-force random and benign

byte-append attack methods completely failed to cause a misclassification, resulting

in a 0% evasion rate for the image-based classifier. In the case of MalConv however,

these attacks were able to achieve a 100% evasion rate as the brute-force strategy

used to craft the adversarial malware, by design, guarantees misclassification for each

crafted adversarial malware sample. The adversarial examples generated using the

FGSM random byte-append and FGSM benign byte-append techniques performed

slightly better against the image-based classifier but were still only able to obtain an

evasion rate of 2% and 3% respectively. Against MalConv, the evasion rates of both

FGSM attacks were 43% and 51% respectively, indicating that, similar to the other

attacks, the image-based classifier outperformed MalConv. Given these results, it is

evident that the image-based classifier performed substantially better than MalConv
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and remained robust to adversarially generated perturbations across all adversarial

malware generation methods.
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Figure 4.3: A side-by-side comparison of the evasion rates of the attacks used in this
study when applied to MalConv and our Image-Based Classifier. It is evident that the
vast majority of adversarial examples generated using the 4 attacks methods failed
to misclassify the image-based classifier.
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Figure 4.4: The classification accuracy of the image-based classifier with respect to
the amount of bytes appended to the samples as a percentage of the original sample
size.

In the case of our image-based classifier, after a certain amount of bytes are ap-

pended, relative to the original file size, the classification accuracy begins to decrease.

We performed an analysis of this phenomenon on the brute force random and brute

force benign byte append attacks as they achieve the highest evasion rate of all the

attack methods. Figure 6 shows a near linear relationship between the percentage of

bytes appended and the classification accuracy for both attacks. Every 5% increment
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in the number of bytes appended past 10% results in a steady decline in classification

accuracy. This is due to the fact that the pre-processing stage involves scaling the

image down to 100 ∗ 100 and as more bytes are appended to the end of the binary, the

portion of the binary containing the original malware sample is squeezed, resulting

in a loss of features.

4.4.4 Overhead Analysis

Here, the overhead incurred in the implementation of our image-based malware clas-

sifier is described and compared to the overhead of MalConv. The majority of the

overhead was incurred during the training and pre-processing stages of the CNN. The

pre-processing stage, where the malware binaries were converted to vectors of 8 bit

unsigned integers took a total of 3 minutes and 24 seconds. This preprocessed dataset

was stored in virtual memory as a array of arrays, taking up a total of 87 Kb of space.

The total time taken to train the model on our system was 16 minutes and 40 seconds

with the average RAM usage during training being 2.8% or 1.7 GB.

With MalConv, the total time to train the model on the same dataset was 27

minutes and 52 seconds with the average RAM usage during training being 9% or

5.58 GB. This is approximately a 70% increase in training time and a 300% increase

in RAM usage as compared to our image-based classifier.

4.5 Summary & Benefits

Here, some key points are discussed including the underlying reason for the perfor-

mance of the image based classifier, the reasoning behind the crafting of the adver-

sarial samples and choice of attacks, and finally, the benefits of our study.
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Underlying Concept: According to the results obtained, it is apparent that the

image-based malware classifier remained robust to adversarial malware samples. The

underlying reason for this is that the perturbations are added to the end of a malware

binary. As a result of this, when the binary is converted into a gray-scale image, the

majority of the image remains identical to the original unperturbed sample. This

allows the classifier to correctly predict the class of malware the adversarial sample

belongs to. However, as seen in our performance evaluation, after a certain amount

of appended bytes relative to the original file size, the classification accuracy begins

to decrease.

Preserving Malware Functionality: Another interesting point to note is the rea-

soning behind the methods utilized to generate the adversarial samples used in this

study. Adversarial samples are created against MalConv as this method ensures that

the actual malware binary is modified and that malware functionality remains intact.

In the case of the image-based classifier, if adversarial samples are created for the

image-based classifier, they would be adversarial image samples and not adversarial

malware samples. Even if these adversarial images were converted back to binaries,

there is no guarantee that the original functionality of the malware is preserved. This

is because adversarial attacks on images are not localized to specific regions of the

image, i.e perturbations can be added in any region of the image and this may break

malware functionality as these perturbations could correspond to adding bytes to

executable portions of malware code.

Choice of Attacks and Novelty: Although there are a variety of attacks in

the literature that claim to generate adversarial malware, the attack methods cho-

sen for this study are the only ones that undoubtedly retain malware functional-

ity. In addition to retaining malicious functionality, the two black-box attacks used

in this study are novel techniques not seen in previous literature. Methods aside
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from the byte-append attacks described in Section 4.4, such as feature modification

attacks [AKF+18, FRZ+, CSD19, CSR19, LCBDR19] and malicious code append at-

tacks [FRZ+,PNX] do not guarantee the preservation of malware functionality. More-

over, the testing of functionality for adversarial malware samples crafted from these

methods would be difficult as it would require dynamic analysis in a sandbox envi-

ronment and a significant portion of malware samples do not run in such virtualized

environments [XQE16, RSRE18]. This is done in order to hinder dynamic analysis

and prevent malware testers from extracting run-time features of malware samples.

Benefits: Our image-based malware classifier outperformed MalConv, a widely

used raw-byte based malware classifier substantially in all recorded accuracy met-

rics. It remained robust to adversarially crafted malware samples across all 4 attack

scenarios while entailing significantly lower overhead as compared to MalConv. In

addition, since all adversarial malware samples retained their malicious functionality,

our image-based classifier was tested under realistic circumstances. This means that

this method’s potential applicability in the real-world is promising.

4.6 Conclusion

As the number of malware samples in the wild continue to increase at an alarming

rate, adversaries continue to discover means to mask malware with perturbations so

as to evade malware classifiers. To remedy this, we proposed a novel application/use

of image-based classifiers to the malware domain in order to develop a model that

remains robust to adversarial perturbations. For our evaluations, we used real adver-

sarial malware samples from nine different families of malware in the wild. The results

of our study indicate that our image-based classifier outperformed the state-of-the-art

ML-based malware classifier, MalConv, in all regards including detection accuracy,
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evasion rate of crafted adversarial samples, and computational overhead. Therefore,

our proposed technique is resilient to adversarial malware samples and can pave the

way for the development of other malware detection mechanisms that are resilient

to adversarial perturbations. In addition, it does not require adversarial training;

hence, it remains immune to model poisoning. Further, to our knowledge, this is the

first work in the adversarial malware literature that demonstrates and analyzes the

robustness of image-based classifiers against adversarial attacks.

41



CHAPTER 5

A NOVEL AND LIGHTWEIGHT REAL-TIME CRYPTOJACKING

DETECTION SYSTEM

5.1 Introduction

In this chapter, we propose MINOS as an ultimate defense solution against crypto-

jacking malware. MINOS is a novel lightweight cryptojacking detection system that

employs the use of gray-scale image representations of Wasm-binaries in web browsers.

Specifically, MINOS converts a suspected wasm binary to a gray-scale image, and

utilizes a Convolutional Neural Network (CNN)-based Wasm classifier to classify the

image as either malicious (i.e., cryptojacking) or benign. Unlike dynamic analysis-

based techniques, MINOS does not require continuous monitoring of CPU, memory

and network events or counting running instructions. Hence, its runtime overhead is

significantly lower and it does not affect the quality of the web surfing experience of

end-users. In addition, evasion attempts of cryptojacking malware authors based on

CPU throttling, dynamic domain names usage and encrypted communications would

be unsuccessful against MINOS.

We designed and implemented the MINOS lightweight cryptojacking detection

system as an end-to-end framework. We trained and evaluated the underlying CNN

using one of the most comprehensive collected datasets on cryptojacking malware

samples in the wild. The results of this evaluation conclude that the classifier achieves

extremely high accuracy with no false positives or negatives. Our analysis of the MI-

NOS framework shows that MINOS is able to accurately and almost instantaneously

identify the presence of mining activity/cryptojacking malware while consuming min-

imal computational resources.
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Summary of Contributions: The main contributions of this chapter are noted

as follows:

• A novel cryptojacking detection mechanism that implements a Wasm binary clas-

sifier in a lightweight, computationally inexpensive, and incredibly fast end-to-end

framework - MINOS

• A novel Wasm binary classification technique that utilizes gray-scale image repre-

sentations of the binaries to train a convolutional neural network.

• Our extensive evaluation demonstrates that MINOS is capable of detecting Wasm-

based cryptojacking with 100% accuracy and very low overhead. Specifically, the

proposed detection mechanism successfully detected all cryptojacking malware in our

dataset within 25.9 milliseconds on average with only 6.5% and 4% maximum uti-

lization of RAM and CPU, respectively.

5.2 Difference from Prior Works

Our work differs from the existing work in several ways: (1) It does not rely on

dynamic analysis features, hence it does not require the mining samples to run for a

specified period of time for feature collection and detection purposes. Also, (2) the

performance of MINOS is not affected by third-party applications running on the host

or on the browser do not affect the performance of MINOS. In addition, (3) common

evasion techniques used by adversaries (e.g., CPU throttling, dynamically generated

domain names, proxies, encrypted communication, etc.) are not effective to bypass

MINOS’s detection. Unlike existing detection systems, (4) the proposed detection

technique does not have high runtime overhead, thus promises a better quality of web

surfing experience for end-users compared to other schemes. Further, (5) MINOS

does make use of browser or operating system specific features/tools, which makes
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it platform independent. Moreover, unlike earlier work, (6) it is not necessary for

MINOS to work to have administrative privileges to run on any specific platform.

Finally, (7) MINOS represents the first work in the literature that classifies malicious

and benign Wasm binaries using gray-scale image representations of the cryptojacking

malware.

5.3 Threat Model

In this study, we consider an attacker model that injects cryptojacking script in a

number of ways:

• The attacker can inject a cryptojacking script to their website and activate it

without taking consent of visitors,

• The attacker can embed a cryptojacking script to their services that are used by

various websites as a third-party service and they may not inform the website

owners,

• The attacker can compromise access points, routers and any other intermediate

devices, and configure the device to inject their cryptojacking scripts to all web

traffic.

In addition to the methods used to inject cryptojacking scripts, the attacker

can use dynamically generated domain names, proxies, alternative communication

protocols (e.g., XMLHttpRequest) and encrypted communications to obfuscate the

network-level behavior of his/her script. Moreover, the attacker can configure his/her

script to throttle the CPU usage of cryptojacking. In addition, the attacker can obfus-

cate the strings in his/her cryptojacking scripts and change the function names. How-

ever, we do not assume that the attacker applies any further obfuscation attempts,

since it may negatively affect the mining performance of cryptojacking malware. In
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fact, this assumption was validated in SEISMIC [WFX+18], where Wang et al. noted

that the only obfuscation techniques they encountered were name obfuscations.

The attacker is assumed to have the major implementation of the cryptojack-

ing malware in WebAssembly due to the performance superiority of WebAssembly

over JavaScript. We find this assumption reasonable since many studies [KVM+18,

MWJR19,KMM+19] pointed out the fact that almost all of the cryptojacking scripts

that were detected in the wild were based on WebAssembly. For this reason, although

it is possible, we do not consider the attacker employing pure JavaScript-based cryp-

tojacking implementation. In addition, we do not target legitimate cryptocurrency

mining operations (e.g., UNICEF [uni]) in the browsers that take informs the end-

users and asks for their consent.

5.4 MINOS Framework

5.4.1 Inherent Similarity of Cryptojacking Malware

Cryptojacking malware implementations have several inherent similarities as high-

lighted by Wang et al. [WFX+18] and Musch et al. [MWJR19]. They are con-

strained by optimized implementations of specific proof-of-work (PoW) schemes based

on memory or CPU-bound hash puzzles. Although cryptojacking malware authors

can employ various tactics to prevent their malware from being detected, they still

have to implement the same PoW schemes with the same hashing algorithms. This

is in fact, one of the unique characteristics of cryptojacking that distinguishes it from

other malware families. Hence, we hypothesized that their implementations should

share similar characteristics and maybe even look syntactically and semantically sim-

ilar to each other. In fact, the semantic similarity of cryptojacking malware strains

was confirmed by Wang et al. [WFX+18]. In order to verify the validity of our hy-

45



Figure 5.1: Gray-scale background image of Wasm binaries that belong to crypto-
jacking samples.

pothesis, we collected Wasm binaries of both benign and cryptojacking samples and

converted them to gray-scale background image, as depicted in Fig. 5.1. As shown

in figure 5.1, gray-scale background image of Wasm-binaries belonging to cryptojack-

ing samples (i.e., the gray-scale background image in the first row) are visually very

similar to each other. Based on this observation, and motivated by the drawbacks of

existing detection mechanisms, we propose MINOS, a novel, lightweight cryptojacking

detection system, in this study.

5.4.2 System Model

The architecture of MINOS framework, as shown in Figure 5.2, consists of four pri-

mary components: Wasm module auto-collector, preprocessor, Wasm classifier, and

notifier.

The first component of MINOS is the Wasm Module Auto-Collector. As the user

is browsing the Internet, this component checks if the website being visited currently

produce any Wasm binaries, and if so, downloads them to a specified folder ( 1 ).

The second part is the preprocessor, which reads the specified folder where the Auto-

collector downloads the Wasm binaries, and converts each binary in the folder to a

gray-scale image ( 2 ). It further preprocesses this image into a format that can be

read by the next component. In the third part, the transformed binaries are input to
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Figure 5.2: Overview of the MINOS’s framework detailing its four components. The
Wasm binary auto-collector downloads Wasm binaries to a designated folder. The
preprocessor then converts the binaries to gray-scale background image and

the Wasm Classifier, a pre-trained CNN that classifies each preprocessed binary as

either malicious or benign ( 3 ). Finally, the notifier receives the classification results

from the CNN and, based on those results, will either alert the user of malicious

mining activity or do nothing ( 4 ).

Wasm Module Auto-Collector: As the user is browsing the Internet, this auto-

collector is continuously and simultaneously running in the background and checking

whether each webpage visited is utilizing Wasm. If a certain website is indeed us-

ing Wasm and a Wasm module has been instantiated, the collector automatically

downloads and extracts the associated Wasm binary to a specified folder. It should

be noted that this script will only download Wasm binaries and no other web page

components. In addition, if a webpage loads more than one Wasm module, the auto-

collector will download all instantiated Wasm binaries simultaneously to the specified

folder.

Preprocessor: Before the Wasm classifier can perform its task, the extracted Wasm

binary needs to be preprocessed to convert the data into a format that the neural

network is able to use as input. This involves converting each Wasm binary to a
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gray-scale image and resizing it to a common size. The preprocessor converts the

binary into an array of integers with each integer representing a pixel of a gray-scale

image and then normalizes and reshapes the resulting array. The final reshaped array

is then passed on to the Wasm classifier.

Wasm Classifier: The Wasm classifier is a convolutional neural network (CNN)

that is pre-trained on a dataset that consists of 150 malicious and 150 benign Wasm

binaries. The structure of the CNN consists of 3 sets of convolution layers followed

by max-pool layers with an increasing number of filters in each successive convolution

layer (16, 32, and 64). The kernel size used in each convolution layer is set to (3,3),

while the pool size of each max-pool layer is set to (2,2). These layers are followed by

a final dense layer, with the output being an integer representing whether the sample

is benign (0) or malicious (1). The trained neural network is fed the transformed

data from the preprocessor as input in order to classify the collected Wasm binary as

benign or malicious.

Notifier: If the Wasm classifier classifies the binary in question as malicious, the user

is informed that the webpage they are currently visiting is using their computational

resources to mine cryptocurrency and that it is recommended that they close it and

therefore terminate any mining processes running in the background. However, if the

binary is classified as benign, the notifier does nothing, and the user continues to

browse uninterrupted with the Wasm Module Auto-Collector continuing to check for

the instantiation of Wasm modules.

5.5 Implementation of MINOS

This section provides details regarding the dataset used in the study, as well as the

technical implementation of the MINOS framework. The framework is implemented
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as an application written in Python 3 in only 90 lines of code, with a supplemen-

tal script written in node.js. The implementation is performed and evaluated on a

system running Ubuntu 18.04 with an Intel Core i7-9700K processor and 32 GB of

available RAM. The system has a total of 8 cores, with each processor running a base

frequency of 3.6 GHz. The current implementation is designed to work specifically

with Google Chrome, as it is the world’s most used web browser. The following sub-

sections provide an in-depth look into each component and outline details, including

algorithms involved and libraries/APIs utilized.

5.5.1 Dataset Collection & Breakdown

The dataset used to train the Wasm Classifier consists of 150 malicious and 150 benign

Wasm binaries that were obtained from numerous studies and resources. A large

portion of the dataset consists of binaries that were collected and used in the following

other studies in the literature: SEISMIC [WFX+18], MineSweeper [KVM+18] and

Musch Et al. [MWJR19]. The remainder of the binaries were collected manually

using resources such as VirusTotal [virb] and VirusShare [vira], NoCoin [noc] and

MadeWithWasm [mad]. A breakdown of the number of binaries collected from each

resource, including how many of them were benign and malicious, can be found in

table 5.1 below. This is followed by a brief description of the other resources and how

the binaries were collected from each of them.

VirusTotal and VirusShare: VirusTotal and VirusShare are two popular websites

that are used for malware research and practice purposes (e.g., scanning, sharing).

Both websites provide various malware samples along with their detection results with

respect to several antivirus engines. In order to obtain the newest samples that were

detected by antivirus engines, both VirusTotal and VirusShare were used in a way that

complemented each other. In this respect, the VirusTotal API enables researchers to
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Table 5.1: DATASET BREAKDOWN
Benign Malicious

SEISMIC [WFX+18] 6 4
MineSweeper [KVM+18] 4 34
Musch et al. [MWJR19] 105 45

VirusTotal and VirusShare 0 53
NoCoin [noc] 0 4

MadeWithWasm [mad] 35 0
Total 150 150

automatically check the detection results for a specific sample (up to 4 queries per

minute) but does not allow downloading of such samples. VirusShare, on the other

hand, enables researchers to download large packages of malware, but does not have

an API. To obtain the newest malware samples, a 73.15 GB malware package shared

with the community on the 21st of April, 2020 was downloaded from VirusShare,

and hash values of the samples that have the file type of HTML were extracted.

Since HTML samples may have various malware (e.g., redirector, downloaded, ramnit,

trojans, etc.) inside, the VirusTotal Premium API was used to determine the ones

labeled as malicious cryptocurrency mining script. Using a bash script the hash values

obtained from VirusShare samples were checked using the VirusTotal specific API in

every 15 seconds. If the VirusTotal API indicates that the sample was identified as

cryptojacking malware, then the sample was automatically extracted from the local

VirusShare package and using the Puppeteer API [pup], opened in Google Chrome

in incognito mode with developer options to examine if it compiles and runs Wasm

for cryptojacking.

Using the developed script, we were able to determine 34 unique websites (adult,

streaming, forum, etc.) that still perform cryptojacking operation using Wasm. We

would like to note that the same web pages and also different pages of the same

websites were detected cryptojacking positive by antivirus engines at different time

intervals. For instance, antivirus engines detected piratebay ’s individual torrent search
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result pages to be employing cryptojacking. However, that website was injecting the

same cryptojacking script to every page of it. Therefore, we omitted multiple occur-

rences of same websites and also multiple webpage occurrences of the same websites

and counted them as 1. We analyzed the samples and found out the addresses of

8 unique mining services still operating. Table 5.2 outlines the list of active mining

services that use Wasm. When we checked the domain names, we found out that

except for bimeq.com.vn and monero.cit.net, rest of the domains already reside in the

list of NoCoin [noc]. In addition, we realized that the VirusShare malware package

that was shared with the community in April 2020 has several cryptojacking samples

that try to reach the already down Coinhive mining services. Since it is not available

anymore, that samples do not perform any mining operations. Nevertheless, antivirus

engines seem to detect them as cryptojacking malware since they have specific key-

words (i.e., Coinhive, miner, mine, etc.). We also found out that some samples which

do not perform any mining operation and which do not have any mining-related script

declarations were falsely detected as cryptojacking samples merely probably due to

having specific keywords in the actual HTML text.

Table 5.2: Cryptojacking Services Extracted from VirusTotal and VirusShare Samples
https://statdynamic.com/lib/crypta.js

https://www.hostingcloud.racing/ATxh.js

https://www.hostingcloud.racing/5Dgk.js

https://www.hostingcloud.racing/LGIy.js

https://www.hostingcloud.racing/winX.js

https://www.hostingcloud.racing/l6nc.js

http://biomeq.com.vn/forum/script.min.js

http://monero.cit.net/monero/p.js

NoCoin: NoCoin [noc] is a browser extension available on Chrome, Firefox, and

Opera, that aims to block websites that mine cryptocurrency, using a blacklist. Each

website on the blacklist was visited using Google Chrome, one-by-one, to check for
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the presence of mining activity. This was achieved by opening Chrome DevTools and

manually checking for the instantiation of Wasm modules in the ”Sources” tab. Since

the blacklist is relatively old, most of the websites no longer exist or are not mined

in cryptocurrency. Four of the websites still functioned, and as such, the Wasm

modules were downloaded. These modules are downloaded in the Web Assembly

textual format rather than in binary form, and therefore must be converted to a

binary. The conversion is performed using the WebAssembly Binary Toolkit (WABT),

specifically, the wat2Wasm tool.

MadeWithWasm: Made with WebAssembly is a website that showcases appli-

cations, projects, and websites that use WebAssembly. Each of these were visited,

and in a similar fashion to No Coin, using Chrome DevTools, the Wasm modules

were downloaded in textual format and converted to binaries using the WABT. It

should be noted that not all of the use cases and websites listed on MadeWithWasm

instantiated any Wasm modules when checked with Chrome DevTools. A subset of

the collected text modules could not be converted to binaries due to errors associated

with WABT. The remaining 17 modules were successfully converted to binaries and

added to the dataset of benign samples.

5.5.2 Wasm Module Auto-Collector

A script written in node.js provided by the authors of [MWJR19] automatically col-

lects and downloads Wasm binaries to a specified folder as the user is browsing the

web. It utilizes Puppeteer, a Node library that is able to communicate with and

manipulate/control Google Chrome over the DevTools Protocol, through a high-level

API. The code wraps JavaScript functions such as WebAssembly.instantiateStreaming,

that instantiate a WebAssembly module, and logs the module’s binary file to the

NodeJS backend.
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Figure 5.3: The first row of gray-scale images belong to Wasm binaries of cryptocur-
rency mining webpages. The images in the second row represent Wasm binaries of
benign webpages, primarily games that employ Wasm.

5.5.3 Preprocessor

A Wasm module binary consists of a sequence of hexadecimal numbers. This vector

of hexadecimal values can be modified and transformed into a gray-scale image. To

facilitate such a conversion, the Wasm binary is first converted into a vector of 8-

bit unsigned integers (uint8) and then reshaped into a two-dimensional array. This

reshaped array is then divided by 255 to represent each integer as a pixel that takes

a value ranging from 0 to 255 (with 0 being black, and 255 being white). These

pixels together form a gray-scale image representation of the Wasm module binary.

depicts an example of a gray-scale image of a Wasm binary that utilizes the CoinHive

cryptocurrency mining service. As shown in the figure, visually distinct regions in

the gray-scale image correspond to specific sections in the Wasm binary structure.

Examples of binary to image transformations of malicious and benign webpages were

shown in Figure 5.3. As it can be observed from Figure 5.3, binaries that mine

cryptocurrency are visually extremely similar when converted to gray-scale images.

This observation also holds true for benign binaries. Another observation is that the

images of malicious Wasm binaries are distinct from those belonging benign webpages.

The visualization procedure is implemented using a recursive function written in

Python 3, the details of which are depicted in Algorithm 3. In Lines 2-3, a while loop
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Algorithm 2: Preprocessor

1 def preprocess():
2 while len(Wasm directory) == 0 do
3 time.sleep(1)
4 if len(Wasm directory)! = 0 then

5 Wasm images → []
6 for file in Wasm directory do
7 f → open(file)
8 ln → getSize(file)
9 width → math.pow(ln, 0.5)

10 rem → ln%width
11 a → array(′B′)
12 a.fromfile(f, ln− rem)
13 f.close()
14 os.remove(file)
15 g → reshape(a, (len(a)/width), width)
16 g → uint8(g)
17 h → resize(g, size, size)
18 h → h/255
19 h → h.reshape(−1, 100, 100, 1)
20 Wasm images(h)

21 classify(Wasm images)

22 return preprocess()

is constantly checking whether the destination folder for extracted Wasm binaries is

empty at 1 second intervals (i.e., it is checking every second). In Lines 4-7, once

a binary is collected and added to the folder, it is opened and ready for further

preprocessing. In line 5, the variable Wasmimages is declared, which will store the

converted images. Line 6 ensures that if a website loads multiple Wasm modules, each

downloaded module is visited in each iteration of the for loop and is preprocessed.

Lines 8-10 calculate length and width parameters, ensuring that the final resized array

will have a relatively similar length and width. In Line 11, the file is converted to an

array of unsigned integers. In Lines 13-14, after the array is reshaped and the file is

closed, the file is deleted from the directory so that once the function has executed,

it does not preprocess the same module repeatedly. Lines 15-16 reshapes the created

54



array and converts it into an array of 8-bit unsigned integers (uint8) that range in

values from 0 to 255. The value of each integer in the array represents the brightness

of a pixel ranging from black to white (0 to 255). In Lines 17-18, the image array

is resized to a common size of 100 by 100, and the pixel values are normalized to

a range of 0 to 1 by dividing the array by 255. This normalization is done as it is

easier for the model to process input arrays with a smaller range of values. Line 19

reshapes the array to a 4-dimensional array that the CNN can accept as input, and

Line 20 appends the array to the Wasmimages list. Once the binary or binaries are

converted to images and added to this list, the classify() function is called, which

takes the images as an argument. This function will be referenced to and discussed in

the following subsections. The preprocess function ends with a recursive call ensuring

that it continues to check the directory at 1 second intervals for new input.

5.5.4 Convolutional Neural Network & Notifier

Algorithm 3: Classification Retriever

1 def classify(images):
2 results → []
3 for ima in images do
4 results.append(model.predict classes(ima))
5 if 1 in results then
6 notify user()

7 return

The Wasm classifier is built using the TensorFlow software library, specifically

using TensorFlow’s high-level API, Keras. The CNN is written in Python 3 using

TensorFlow version 1.13.1. The model is trained across 100 epochs using the RMSprop

optimizer, with the learning rate manually set to 0.0001.

In Lines 24-27 in the classify() function of Algorithm 3, the classification result

of each binary collected and converted to images by the preprocess function, is re-
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trieved. In Line 2, the variable results is declared, which will store the results of the

classification of each binary. In line 3, the model.predict classes() Keras function

is used to classify each image in Wasm images. The function returns an integer

representing whether the sample is benign (0) or malicious (1). Each classification

result is appended to the results list that the notifier will use to perform its task.

The notifier receives a classification result from the CNN as a list of integers

taking values of either 0 (benign) or 1 (malicious). In Line 5, If the list contains any

instances of malicious classification (i.e., any 1’s), the user is informed via a pop-up

dialog created by the notify user() function in Line 6, that the webpage they are

currently visiting is attempting to mine cryptocurrency and that they should close it

immediately to prevent continued unauthorized use of their computer’s resources.

5.6 Performance Evaluation

In this section, details of the dataset used in the study are outlined including sources

and number of samples collected. This is followed by an evaluation of the performance

of the Wasm classifier and an overhead analysis of both the classifier and the MINOS

framework.

5.6.1 Performance of Wasm Classifier

The performance of the Wasm classifier was evaluated based on a number of metrics,

including accuracy, optimization loss, and true positive and false positive rate. The

dataset was divided into training and testing sets using an 80/20 split. In figure 5.4(a),

it can be seen that the model converges to 100% accuracy on both the training and

test sets after 30 epochs. The optimization learning curve in figure 5.4(b) shows that

both the training and testing loss decrease to a point of stability after approximately
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Figure 5.4: Performance metrics of MINOS framework. Accuracy, learning curve,
and ROC curve of MINOS are depicted respectively.

30 epochs. This indicates that the model is neither overfitting nor underfitting and

therefore is able to generalize effectively. Figure 5.4(c) displays the receiver operating

characteristic (ROC) curve for the classifier. The area under the ROC curve is 1,

indicating that the model’s ability to distinguish between the two classes (benign

and mining) is perfect. In addition, this also signifies that the test set’s classification

results contained no false positives or false negatives.

5.6.2 Overhead Analysis of MINOS Framework

Training Wasm Classifier: In order to train the classifier, each Wasm binary in

the dataset was converted into a gray-scale image. During this preprocessing stage,

when the Wasm binaries are converted to images, 4.3% of RAM is utilized with the

conversion of all binaries, taking 0.497 seconds. The entire dataset is stored in virtual

memory as an array of arrays taking up a mere 1.448 Kb of space. The total time
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taken to build, compile, and train the model in 50 epochs was 24.8 seconds. During

the training process, a maximum of 4.1% of RAM was used, and no more than 52%

of the CPU’s processing power was in use.

MINOS Implementation: Since the implementation relies on a pre-trained model,

the overhead incurred during training, the model is not considered here. As the

preprocessor script runs recursively and continues to check for newly collected Wasm

binaries, it is utilizing a constant 6.3% of RAM and 0% of the system’s CPU. Once

the preprocessor detects a newly collected instance or instances of Wasm binaries,

the RAM usage varies between 6.3% and 6.5% while the CPU usage increases to 4%.

After preprocessing, the CPU usage drops back down to 0% and RAM usage remains

at 6.3%. Obtaining the prediction or predictions from the model and notifying the

user caused no fluctuations in RAM or CPU usage, indicating that the processing

power used during these processes was negligible. The total time is taken to execute

MINOS, from the collection of the Wasm binary or binaries to notifying the user

was, on average, 0.0259 seconds. Considering this, and the fact that the maximum

RAM and CPU usage was 6.5% and 4% respectively, it is evident that the MINOS

framework is lightweight, extremely fast and computationally inexpensive.

5.7 Discussion and Benefits

Lightweight Runtime Overhead: As is evident by the results of our performance

evaluation, the overhead incurred during the implementation and actual runtime of

the Minos framework is extremely minimal. While other detection systems in the

literature report similar accuracy, their detection methods are based on the analysis

of dynamic features. This means that in both the data collection stage, as well during

the implementation of these detection methods, the webpages that use cryptojacking

58



malware were allowed to run and effectively mine cryptocurrency until the required

features are extracted or until the respective detection method is able to detect the

presence of mining activity. Further, the actual collection of features in such dynamic-

analysis based systems requires additional resources or supplemental applications and

programs. Since MINOS does not use dynamic features, it does not require the

webpages that instrument cryptojacking malware to run for a certain amount of time

to extract relevant features.

Near Real-time Detection Capability: MINOS is capable of detecting cryp-

tojacking scripts in near real-time. As soon as the instantiation and compilation

process of Wasm modules is completed in the browser, MINOS immediately converts

the resulting Wasm binary to a gray-scale image and classifies it as either benign or

malicious. Since MINOS does not rely on dynamic analysis features, the cryptojack-

ing malware is not required to commence its mining process.

Freedom from Administrative Privileges: Cryptojacking detection systems

that rely on monitoring of CPU, memory and cache events require administrative

privileges. However, such a necessity introduces additional drawbacks for end-users

who do not have administrative rights. In addition, such detection systems which run

with administrative privileges may result in other security and privacy issues since

they can monitor almost every application running on the host system. MINOS does

not force end-users to have administrative rights, and thus ordinary users can benefit

from MINOS.

Platform Independence: MINOS does not utilize browser-specific or operating

system-specific features/tools. Although the majority of existing detection systems

are similar to MINOS in this respect, not every detection system fulfills this condition.

For instance, OUTGUARD [KMM+19] relies on browser-specific features which limits

its application in other widely used browsers.
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Robustness Against Common Evasion Attempts: Prior work in the literature

shows that adversaries are utilizing a number of techniques to bypass the detection

systems. To evade antivirus engines they pay attention not to use well-known strings

(e.g., Coinhive, miner). To bypass blacklists, they frequently change domain names.

To eliminate any other detection systems, they throttle the CPU usage of their scripts,

set up proxies to hide mining service providers, and use encryption in communication.

Although these techniques can be effective against existing detection systems, MINOS

stands resilient against all of these attempts since it utilizes only the gray-scale image

representation of compiled Wasm binaries. As all of the cryptojacking malware have

to implement the same PoW schemes to mine cryptocurrencies, they cannot escape

from MINOS.

Quality of Web Surfing Experience: MINOS has extremely low runtime over-

head and successfully detects the cryptojacking scripts even before they start the

mining process. However, existing detection systems either instrument and watch the

Wasm modules of every web application, or continously monitor CPU, memory and

network events which may affect the quality of web surfing experience of end-users.

We believe that quality of web surfing experience is a crucial metric for the success

of any cryptojacking detection system. Cryptojacking detection systems should not

sacrifice from the quality of web surfing experience of end users. In addition, since

more and more benign applications (e.g., Autocad [aut]) are moving to web thanks to

WebAssembly and other technologies (e.g., WebWorkers, WebSockets), performance

of such benign web applications needs to be ensured.
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5.8 Conclusion

Considering the prevalence of Wasm-based cryptojacking malware in the wild, and

the high overhead inherent to current dynamic-analysis based detection methods, a

detection technique that is able to accurately and rapidly identify instances of such

malware with low computational cost is necessary. In this chapter, we proposed

MINOS, a novel cryptojacking malware detection technique that utilized an image-

based classification technique to distinguish between benign and malicious Wasm

binaries. Specifically, the classifier implements a convolutional neural network (CNN)

model trained with a comprehensive dataset of current malicious and benign Wasm

binaries. MINOS achieved exceptional accuracy with a low TNR and FPR. Moreover,

our extensive performance analysis showed that the proposed detection technique can

detect mining activity in an average of 25.9 milliseconds while using a maximum of

4% of the CPU and 6.5% of RAM, proving that MINOS is highly effective while

lightweight, fast, and computationally inexpensive. As future work, we aim to develop

a Chrome extension that utilizes the MINOS framework so that webpages that are

mining cryptocurrency without permission are automatically closed.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORK

In this thesis, we introduced novel deep-learning based frameworks that are robust

against adversarially crafted P.E. malware as well as cryptojacking malware. First,

we provided detailed preliminary information regarding the current ecosystem of ad-

versarial attacks and different classifiers in the current literature. This also included

cryptojacking detection systems and the shortcomings that those systems have. Based

on this, we developed two novel frameworks that are able to accurately and efficiently

detect P.E. and cryptojacking malware that are resilient to adversarial perturbations,

and result in minimal computational overhead.

To build a system that is robust to adversarial perturbations applied to P.E mal-

ware, we propose the use of image-based malware detection. We show that converting

the malware detection problem into image-based malware classification problem pro-

vides robustness against adversarial perturbations. The underlying robustness stems

from the fact that adversarial attacks, which are relatively easy to apply to images in

the computer vision domain, are extremely difficult to apply to transformed images of

malware samples. This is because such an operation that adds adversarial noise to a

malware image has a very high possibility of breaking the functionality of the actual

malware when the image is converted back to a malware binary. To evaluate our

proposed solution, we trained a convolutional neural network (CNN)-based classifier

using the gray-scale images of the malware in the dataset. We then applied adver-

sarial attacks including our two novel attacks to our image-based malware classifier.

The results of our evaluation show that the image-based malware detection approach

is robust against adversarial attacks that can easily fool a state-of-the-art ML-based

malware detector.
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Moreover, in order to overcome the problems associated with current cryptojack-

ing detection systems in the literature, we developed MINOS, a novel lightweight

cryptojacking detection system that employs the use of gray-scale image representa-

tions of Wasm-binaries in web browsers. We trained and evaluated the underlying

CNN using one of the most comprehensive collected datasets on cryptojacking mal-

ware samples in the wild. The results of this evaluation conclude that the classifier

achieves extremely high accuracy with no false positives or negatives.

We present several key directions for future research:

• In this thesis, we presented a novel framework that remains robust to adversarial

P.E. malware. Although we implemented the framework on a system in real-time

using real P.E. samples, adversarially crafted inputs are still an ongoing issue in other

types of malware. We believe that further lresearch should be done in implementing

this framework to be used with other malware such as Android and PDF malware.

• A novel cryptojacking detection framework, Minos, is introduced in this thesis that

is capable of detecting the presence of cryptojacking malware nearly instantly and

with negligible overhead. The entire framework in its current form, consists of a

Python application that runs in the background of the user’s computer. However,

we must consider that there will be users that do not have Python installed on their

systems and/or are unable to run the application on their system. To remedy this, for

future considerations, the Minos framework should be incorporated as a browser plug-

in, thereby removing the need for any prerequisites that could hinder the operation of

the framework and will allow for automatic interruption of webpages that are mining

cryptocurrency.

• Finally, this thesis presents a novel cryptojacking detection technique that uses

image representations of Wasm binaries of webpages that incorporate cryptojacking

malware. This image classification technique works with the underlying assumption
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that the majority of cryptojacking malware execute the same intructions on a binary

level in order to compute hashes and therefore mine cryptocurrency. However, this

study primarily deals with a single form of cryptocurrency, Monero. There is a

strong likelihood that other cryptocurrencies may also be mined in a similar fashion

in the future. Therefore, in the future, with the advent of other cryptocurrencies, the

proposed detection should be used to classify malicious Wasm binaries according to

the specific cryptocurrency being mined.
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