13,630 research outputs found

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    Entropy-scaling search of massive biological data

    Get PDF
    Many datasets exhibit a well-defined structure that can be exploited to design faster search tools, but it is not always clear when such acceleration is possible. Here, we introduce a framework for similarity search based on characterizing a dataset's entropy and fractal dimension. We prove that searching scales in time with metric entropy (number of covering hyperspheres), if the fractal dimension of the dataset is low, and scales in space with the sum of metric entropy and information-theoretic entropy (randomness of the data). Using these ideas, we present accelerated versions of standard tools, with no loss in specificity and little loss in sensitivity, for use in three domains---high-throughput drug screening (Ammolite, 150x speedup), metagenomics (MICA, 3.5x speedup of DIAMOND [3,700x BLASTX]), and protein structure search (esFragBag, 10x speedup of FragBag). Our framework can be used to achieve "compressive omics," and the general theory can be readily applied to data science problems outside of biology.Comment: Including supplement: 41 pages, 6 figures, 4 tables, 1 bo

    Recent Trends in In-silico Drug Discovery

    Get PDF
    A Drug designing is a process in which new leads (potential drugs) are discovered which have therapeutic benefits in diseased condition. With development of various computational tools and availability of databases (having information about 3D structure of various molecules) discovery of drugs became comparatively, a faster process. The two major drug development methods are structure based drug designing and ligand based drug designing. Structure based methods try to make predictions based on three dimensional structure of the target molecules. The major approach of structure based drug designing is Molecular docking, a method based on several sampling algorithms and scoring functions. Docking can be performed in several ways depending upon whether ligand and receptors are rigid or flexible. Hotspot grafting, is another method of drug designing. It is preferred when the structure of a native binding protein and target protein complex is available and the hotspots on the interface are known. In absence of information of three Dimensional structure of target molecule, Ligand based methods are used. Two common methods used in ligand based drug designing are Pharmacophore modelling and QSAR. Pharmacophore modelling explains only essential features of an active ligand whereas QSAR model determines effect of certain property on activity of ligand. Fragment based drug designing is a de novo approach of building new lead compounds using fragments within the active site of the protein. All the candidate leads obtained by various drug designing method need to satisfy ADMET properties for its development as a drug. In-silico ADMET prediction tools have made ADMET profiling an easier and faster process. In this review, various softwares available for drug designing and ADMET property predictions have also been listed

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    The Phyre2 web portal for protein modeling, prediction and analysis

    Get PDF
    Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission

    ConSole: using modularity of contact maps to locate solenoid domains in protein structures.

    Get PDF
    BackgroundPeriodic proteins, characterized by the presence of multiple repeats of short motifs, form an interesting and seldom-studied group. Due to often extreme divergence in sequence, detection and analysis of such motifs is performed more reliably on the structural level. Yet, few algorithms have been developed for the detection and analysis of structures of periodic proteins.ResultsConSole recognizes modularity in protein contact maps, allowing for precise identification of repeats in solenoid protein structures, an important subgroup of periodic proteins. Tests on benchmarks show that ConSole has higher recognition accuracy as compared to Raphael, the only other publicly available solenoid structure detection tool. As a next step of ConSole analysis, we show how detection of solenoid repeats in structures can be used to improve sequence recognition of these motifs and to detect subtle irregularities of repeat lengths in three solenoid protein families.ConclusionsThe ConSole algorithm provides a fast and accurate tool to recognize solenoid protein structures as a whole and to identify individual solenoid repeat units from a structure. ConSole is available as a web-based, interactive server and is available for download at http://console.sanfordburnham.org
    corecore