860 research outputs found

    Potentials and caveats of AI in Hybrid Imaging

    Get PDF
    State-of-the-art patient management frequently mandates the investigation of both anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, PET/CT and SPECT/CT have the ability to provide both structural and functional information of the investigated tissues in a single examination. With the introduction of such advanced hardware fusion, new problems arise such as the exceedingly large amount of multi-modality data that requires novel approaches of how to extract a maximum of clinical information from large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of the leading technologies that has shown promise in facilitating highly integrative analysis of multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-processing and (3) data mining and modelling. Here, we aim to provide an overview of the challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in the context of hybrid imaging and provide suggestions for building robust AI solutions that enable reproducible and transparent research

    Research Status and Prospect for CT Imaging

    Get PDF
    Computed tomography (CT) is a very valuable imaging method and plays an important role in clinical diagnosis. As people pay more and more attention to radiation doses these years, decreasing CT radiation dose without affecting image quality is a hot direction for research of medical imaging in recent years. This chapter introduces the research status of low-dose technology from following aspects: low-dose scan implementation, reconstruction methods and image processing methods. Furthermore, other technologies related to the development tendency of CT, such as automatic tube current modulation technology, rapid peak kilovoltage (kVp) switching technology, dual-source CT technology and Nano-CT, are also summarized. Finally, the future research prospect are discussed and analyzed

    Exploring the applicability of machine learning based artificial intelligence in the analysis of cardiovascular imaging

    Get PDF
    Worldwide, the prevalence of cardiovascular diseases has doubled, demanding new diagnostic tools. Artificial intelligence, especially machine learning and deep learning, offers innovative possibilities for medical research. Despite historical challenges, such as a lack of data, these techniques have potential for cardiovascular research. This thesis explores the application of machine learning and deep learning in cardiology, focusing on automation and decision support in cardiovascular imaging.Part I of this thesis focuses on automating cardiovascular MRI analysis. A deep learning model was developed to analyze the ascending aorta in cardiovascular MRI images. The model's results were used to investigate connections between genetic material and aortic properties, and between aortic properties and cardiovascular diseases and mortality. A second model was developed to select MRI images suitable for analyzing the pulmonary artery.Part II focuses on decision support in nuclear cardiovascular imaging. A first machine learning model was developed to predict myocardial ischemia based on CTA variables. In addition, a deep neural network was used to identify reduced oxygen supply through the arteries supplying oxygen-rich blood to the heart and cardiovascular risk features using PET images.This thesis successfully explores the possibilities of machine learning and deep learning in cardiovascular research, with a focus on automated analysis and decision support

    Exploring the applicability of machine learning based artificial intelligence in the analysis of cardiovascular imaging

    Get PDF
    Worldwide, the prevalence of cardiovascular diseases has doubled, demanding new diagnostic tools. Artificial intelligence, especially machine learning and deep learning, offers innovative possibilities for medical research. Despite historical challenges, such as a lack of data, these techniques have potential for cardiovascular research. This thesis explores the application of machine learning and deep learning in cardiology, focusing on automation and decision support in cardiovascular imaging.Part I of this thesis focuses on automating cardiovascular MRI analysis. A deep learning model was developed to analyze the ascending aorta in cardiovascular MRI images. The model's results were used to investigate connections between genetic material and aortic properties, and between aortic properties and cardiovascular diseases and mortality. A second model was developed to select MRI images suitable for analyzing the pulmonary artery.Part II focuses on decision support in nuclear cardiovascular imaging. A first machine learning model was developed to predict myocardial ischemia based on CTA variables. In addition, a deep neural network was used to identify reduced oxygen supply through the arteries supplying oxygen-rich blood to the heart and cardiovascular risk features using PET images.This thesis successfully explores the possibilities of machine learning and deep learning in cardiovascular research, with a focus on automated analysis and decision support

    Residual Back Projection With Untrained Neural Networks

    Full text link
    Background and Objective: The success of neural networks in a number of image processing tasks has motivated their application in image reconstruction problems in computed tomography (CT). While progress has been made in this area, the lack of stability and theoretical guarantees for accuracy, together with the scarcity of high-quality training data for specific imaging domains pose challenges for many CT applications. In this paper, we present a framework for iterative reconstruction (IR) in CT that leverages the hierarchical structure of neural networks, without the need for training. Our framework incorporates this structural information as a deep image prior (DIP), and uses a novel residual back projection (RBP) connection that forms the basis for our iterations. Methods: We propose using an untrained U-net in conjunction with a novel residual back projection to minimize an objective function and achieve high-accuracy reconstruction. In each iteration, the weights of the untrained U-net are optimized, and the output of the U-net in the current iteration is used to update the input of the U-net in the next iteration through the aforementioned RBP connection. Results: Experimental results demonstrate that the RBP-DIP framework offers improvements over other state-of-the-art conventional IR methods, as well as pre-trained and untrained models with similar network structures under multiple conditions. These improvements are particularly significant in the few-view, limited-angle, and low-dose imaging configurations. Conclusions: Applying to both parallel and fan beam X-ray imaging, our framework shows significant improvement under multiple conditions. Furthermore, the proposed framework requires no training data and can be adjusted on-demand to adapt to different conditions (e.g. noise level, geometry, and imaged object)

    Stochastic Optimisation Methods Applied to PET Image Reconstruction

    Get PDF
    Positron Emission Tomography (PET) is a medical imaging technique that is used to pro- vide functional information regarding physiological processes. Statistical PET reconstruc- tion attempts to estimate the distribution of radiotracer in the body but this methodology is generally computationally demanding because of the use of iterative algorithms. These algorithms are often accelerated by the utilisation of data subsets, which may result in con- vergence to a limit set rather than the unique solution. Methods exist to relax the update step sizes of subset algorithms but they introduce additional heuristic parameters that may result in extended reconstruction times. This work investigates novel methods to modify subset algorithms to converge to the unique solution while maintaining the acceleration benefits of subset methods. This work begins with a study of an automatic method for increasing subset sizes, called AutoSubsets. This algorithm measures the divergence between two distinct data subset update directions and, if significant, the subset size is increased for future updates. The algorithm is evaluated using both projection and list mode data. The algorithm’s use of small initial subsets benefits early reconstruction but unfortunately, at later updates, the subsets size increases too early, which impedes convergence rates. The main part of this work investigates the application of stochastic variance reduction optimisation algorithms to PET image reconstruction. These algorithms reduce variance due to the use of subsets by incorporating previously computed subset gradients into the update direction. The algorithms are adapted for the application to PET reconstruction. This study evaluates the reconstruction performance of these algorithms when applied to various 3D non-TOF PET simulated, phantom and patient data sets. The impact of a number of algorithm parameters are explored, which includes: subset selection methodologies, the number of subsets, step size methodologies and preconditioners. The results indicate that these stochastic variance reduction algorithms demonstrate superior performance after only a few epochs when compared to a standard PET reconstruction algorithm
    • …
    corecore