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Abstract
Machine learning currently represents the corner stone of modern artificial intelligence. 
The algorithms involved have rapidly permeated into medical sciences and have 
demonstrated the capacity to revolutionize data analysis through optimized variable 
exploration and integration as well as improved image processing and recognition. As 
such, cardiovascular hybrid imaging constitutes an open pathway for implementation in 
the form of view identification, structure segmentation, disease identification, functional 
parameter estimation and prognostic evaluation in is traditional forms in SPECT/CT, PET/
CT and PET/MR. Further, an elastic view on the concept of hybridization in cardiovascular 
imaging offers the possibility to concatenate applications based on the combination of 
machine learning models, data types and imaging modalities. Current aims for these 
implementations include process automation and generation of clinical decision support 
systems tailored to the needs of daily clinical practice in the evaluation of cardiovascular 
disease at the individual level. The present chapter summarizes core concepts in 
modern machine learning-based AI, provides an overview of the recent advances in data 
processing, image analysis, result interpretation and emerging clinical implementations, 
and suggests the potential and future perspectives of machine learning analytics within 
the context of hybrid cardiovascular imaging.

DummyThesis.indb   42DummyThesis.indb   42 25-11-2023   16:29:2425-11-2023   16:29:24



43

Hybrid Cardiac Imaging: The Role of Machine Learning and Artificial Intelligence

3

Introduction
The concept of hybrid imaging has long lingered in the minds of cardiovascular and 
imaging physicians. The benefit of combining imaging modalities has been increasingly 
demonstrated as it enhances the diagnostic and prognostic value of individual 
techniques. This synergistic effect could be due to various anatomical features being 
detected between modalities, but more often complementary anatomical information 
helps in the evaluation of the imaging results at the functional and molecular levels. 
Hybrid imaging has become an increasingly popular concept in cardiac imaging in the 
last decades. Predominantly, hybrid imaging has been evaluated in the combination of 
myocardial perfusion data from single photon (SPECT) and positron-emission computed 
tomography (PET) with coronary artery anatomy from computed tomography (CT), and 
myocardial metabolism imaging with PET with tissue characterization through cardiac 
magnetic resonance (CMR). On the other hand, invasive imaging has evolved to deliver 
complex anatomical-functional mapping for arrhythmia detection and modern analysis 
in angiographic images is on its way to deliver functional parameters with increasing 
ease. Ultimately, it is expected that the expanding hybrid imaging gamut will provide 
high-quality information to improve clinical decision-making. 

While the technical feasibility is established, the time and labor consumed in processing 
and interpretation of the vast and increasing volume of data remains the major challenge 
of this era. It is within this landscape that the implementation of modern machine learning 
(ML)-based artificial intelligence (AI) has gravitated towards medical image analysis. ML 
offers the possibility to explore, integrate, and analyze massive amounts of data through 
its complex nonlinear dependencies, which notably are generally not fully exploited 
by traditional statistical modeling. In this sense, (cardiovascular) imaging represents a 
logical target for such analytics, given the gauge of its information stream. Figure 1 shows 
the number of publications indexed with the topics “Hybrid Cardiac Imaging” or “Machine 
Learning in Hybrid Imaging” in the last three decades in the literature database PubMed.  

In the present chapter, we present core concepts in modern machine learning-based AI. 
Further, we discuss recent advances with respect to data processing, image analysis, result 
interpretation, and clinical decision support within the context of (hybrid) cardiovascular 
imaging through a selected body of scientific work. Finally, we summarize the applicability 
and the envisioned potential of machine learning-based AI in daily clinical practice.

Machine learning-based AI
Machine learning (ML) is a field in computer science which involves the generation of 
computer systems (algorithms) that are capable of iteratively learning by exploring and 
utilizing patterns within data to act specifically, without being explicitly programmed.  This 
process of system adaptation in order to optimize the task at hand (e.g., classification or 
prediction) mimics biological learning. In contrast, AI refers to the application of such 
systems for with a practically orientated-tasks that commonly would require at least 
human-level intelligence (e.g., driving, playing Go or making a medical diagnosis).
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Notably, neither of these terms are particularity new. In fact, the previous surfacing of AI 
into the common interest during the 80s and 90s became dampened by the limitations 
of its underlying algorithms, which depended on explicit programming (i.e., rule-based 
instead of learning-based). The original roots of ML and AI, as well as the concept of 
programmable learning, date to half a century ago and have only recently resurfaced 
their current new era is due to the convergence of three crucial forces, namely: large 
amounts of available data for robust-scale learning iterations, increasing computational 
power with parallel processors making the necessary operations time-feasible (i.e., 
Current graphic processing units or GPUs),  and the innovation in the architecture and 
complexity of dedicated ML algorithms, thus the substrate, the engine and the fuel.

ML can be divided into three main types based on how the system “experience” is 
acquired: supervised learning, unsupervised learning and reinforcement learning. 
Supervised learning algorithms take a set of examples (training set) and asks the model 
to learn pick up the features that associated with specific labels in these examples. For 
instance, a classification model learns to predict skin cancer with images labelled by 
dermatologists1. In comparison, unsupervised learning algorithms do not restrict the 
learning trajectory with labels but instead ask the model to organize the data based on 
features crafted by the model itself, allowing it to identify patterns within the dataset. 
This approach may be particularly useful in exploring high dimensional data for complex 
patterns such as nonlinear relationships that may translate novel structures previously 
unknown and relevant to the task at hand without the constrains of a strictly defined 
output. This has demonstrated value in the clustering of genomic or radiomic features 
in cancer samples to reveal subtype characteristics2,3. Finally, reinforcement learning 
takes emphasis on learning through interaction within an environment. In the case of 
reinforcement, the model, often termed an agent, navigates in a specific environment and 

Figure 1. Number of publications per year found in Medline. Mesh Terms and 
Keywords “Hybrid Cardiac Imaging” (yellow) and “Machine Learning in Hybrid Imaging” 
(blue). Both topics have witnessed an increase in publications, but a more rapid growth 
has been seen in hybrid cardiac imaging.    
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performs self-initiated actions for which it is subsequently rewarded or penalized; with 
the aim to maximize the cumulative rewards the agent learns to solve the target task in 
the respective context (the predefined environment). Reinforcement learning is typically 
applied to tackle evolving problems, updated through interaction with environment, 
such as playing video or board games. In medical field reinforcement learning has been 
proposed to optimize therapeutic regimes which may be modified based on patient 
response4,5.

There is a myriad of ML algorithms that can be employed depending on task complexity 
and intrinsic data characteristics such as dimensionality, operationalization nature and 
composition. Figure 2 summarizes the discussed types of learning, exemplar algorithm 
(see description below) and their potential application sphere in (hybrid) cardiovascular 
imaging.

A distinctive commonality between ML algorithms is that they seek to minimize the error 
of the model expressed by some type of cost (or loss) function. Alternatively, this means 
that learning progresses through the optimization of a specified driving function (or set 
of them). 

Figure 2. Overview of types of ML and their usages in Medical Imaging. A wide range 
of ML techniques are available, each serving a narrower or broader range of purposes 
in medical imaging and contingent upon type of input data. DL has a growing relevance 
in medical imaging processing. Segmentation represents a central task in this spectrum 
of DL applications, providing directly extractable automated measurements, but also 
functions as a first block to provide inputs for other DL-models in (hybrid) chains of 
models for disease classification, staging, characterization and detection of structural 
abnormalities.
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Traditional modelling techniques seen in medical imaging analysis include linear and 
logistic regression (which notably also represent ML approaches by definition), decision 
trees and its ensemble version known as random forests, support vector machines 
(SVM), k-means clustering (Figure 3), and several types of deep neural networks (vide infra) 
(Figure 4).

The reason behind the popularity of linear and logistic regression in medical research 
is their arguable interpretability and ease-of-use and implementation. In the context 
of imaging analysis, regressions can be applied directly on raw data at the pixel/voxel 
level or performed on imaging-derived variables obtained from pre-processed data, 
with or without features from other data source (e.g., clinical or biochemical profile of 
the patient). However, a known drawback is that as the number of features surpasses a 
certain threshold (which approximates one per ten cases in a binary output distribution) 

Figure 3. Types of ML found in medical imaging explained. a) k-means clustering: 
each data point will be assigned to a cluster with the closest center in a pre-specified 
feature space such as anatomical characteristics of cardiovascular structures; b) random 
forest: features can be submitted for construction of decision trees to arrive at an 
ensembled model; c) SVM: an optimal hyperplane (black) that separate two classes is 
estimated,  non-optimal hyperplanes shown in red; d) Ensembling: multiple so called 
‘weak learners’, trained to solve the same problem, are combined into a weighed result 
combining the prediction of each learner to improve performance over individual 
ones. Different strategies can be chosen, e.g., in boosting, multiple learners are trained 
sequentially dependent on the previously built learner, while in bagging and stacking, 
multiple learners are trained in parallel and independently from each other. One strategy 
to combine the predictions can be averaging or voting. 
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with respect to the sample size and balance (i.e., number of positive and negative cases 
to the outcome variable of interest), most features are expected to be non-informative. 
To exemplify such situation, consider that given the number of background pixels that 
take up much of a given image poses an unsurmountable difficulty when trying to find 
the best fitting linear model that allows for flexible interpretation and later generalization 
to a new input set (image). In such situation, one could consider opting for a regularized 
form of linear model, namely Ridge, Lasso and Elastic net regression. Both Ridge and 
Lasso regression shrink the coefficients of features by applying either an L1 or L2 norm 
(the cost function) while Elastic-net regression takes a combination of both penalty terms, 
finetuned based on the data at hand. Another ML technique known as boosting can be 
applied on classical statistical models to obtain an improved final model from multiple 
weaker models or classifiers (ensembling).

Decision trees as well as the ensemble of decision trees, termed random forest, are 
supervised learning methods used to build classifiers for typically discrete outcomes. 
As suggested in the name, decision trees resemble a flowchart with set of splits that 
can be used to determine the class label for each new incoming data point, step by 
step through the tree. The set of decision rules and respective position in the tree are 
selected and optimized using a labelled training set. The main advantage of decision 
tree is its interpretability as it mirrors the natural human decision-making process as in 
a differential diagnosis or clinical work-up. A random forest is an aggregate of multiple 
decision trees each built on random re-sampling of the training set. Alternatively boosting 
can also be applied to build an ensemble for greater performance.

Support vector machine (SVM) is another popular supervised learning method in which 
individual data points are first projected in a feature space based on their respective 
values for the selected features6; a hyperplane is then estimated to best separate 
members of different classes (typically two classes). In the context of medical imaging 
analysis, SVM may be used in disease diagnosis, staging and prognosis. It should be 
noted that performance of an SVM classifier depends substantially on the feature space, 
thus processing and pre-selection of radiomic features may be necessary.   

K-means clustering belongs to the unsupervised learning paradigm. With a pre-selected 
number of clusters (k), every data point will be assigned a membership to one closest 
randomly initiated cluster center (mean of cluster) in k-means clustering; as the 
cluster centers get updated with new members, the computations are repeated until 
convergence (i.e., no change in membership for all data points). K-means clustering 
exemplifies a phenomenon we should not witness in individual development dependent-
processes such as political affiliation. This algorithm can be used to organize pixels into 
groups (image segmentation) as well as organizing samples into groups such as disease 
subtypes. There are several features to note when applying this technique: as the choice 
of “k” – number of clusters will lead to a different result, an assumption on the structure of 
the dataset has to be made and sensitivity analyses of the resulting clusters’ robustness, 
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such as computing cluster silhouette, may be warranted.

Deep (convolutional and other types of) artificial neural networks, for which the term 
Deep Learning (DL) has recently been coined, are a subclass of ML which models that can 
be trained under every learning paradigm. A typical neural network is composed of layers 
of processing units (i.e., perceptrons, and consequently traditionally called multi-layer 
perceptrons) which mimic biological neurons. In these structures, each unit receives an 
input from units at a previous layer and react to cumulative signals by activation or lack 
thereof and emission of a signal towards neurons at the next layer (in a feedforward 
network). This emission was originally controlled by a nonlinear activation function such as 
a sigmoid function. Due to the limited range in the gradient of the sigmoid function which 
result in difficulty in optimization, it is in practice replaced by alternatives such as rectified 
linear units (ReLU), which output the positive cumulative input and zero otherwise, or a 
leaky version ReLU where a negative input would be assigned a small output. The units 
between two neighboring layers are connected and the strength of these connections 
(often called weights) is adjusted during training. With sufficient data to tune the weights, 
typically in the magnitude of millions, a DL model learns how to transform the data and 
automatically extract features to solve a specific (e.g., classification) task. Unlike typical 
linear/logistic regression models where solution of a single global minimum error (point 
of convergence) is possible (with mean square error as the cost function), DL models 
requires iterative optimization by gradient based methods towards one of many local 
error minima, which is deemed sufficient as set out by the trainer of the model7. In this 
regard, the learning scheme will also influence the learning outcome, whether a local 

Figure 4. Schematic overview of a deep convolutional neural network. Images from 
various modalities submitted to the network in which spatial features on ascending levels 
of complexity will be learned by the network; the network then combines those features 
to achieve a defined task (e.g., classification of myocardial ischemia).
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minimum (which minimum) can be reached, time required to reach the minima, etc. 
Parameters in this learning scheme are called hyperparameters and these also require 
tuning (often with a validation set) in the optimization process (Figure 5).

Optimization of a DL model is hence expensive in terms of both computational resources 
and time, which further scales with network complexity. As mentioned previously, 
technological advance in the form of GPUs has enabled relatively fast training of highly 
complex neural networks, and consequently DL has shown tremendous revolutionizing 
success in the field of computer vision since last decade. DL was shown to outperform 
other ML methods in image recognition. DL is now widely adapted in solving tasks in 
many different fields such as natural language processing, speech recognition and 
bioinformatics. As medical imaging analysis shares many tasks with computer vision 
including object detection, classification, image segmentation and enhancement, this 
field has seen an explosion in the use of DL. A selection of the body of reports available 
will be further discussed here.

Figure 5. Optimization in DL with convergent to a better or worse local minimum. 
Learning process of DL involves iterative reduction of the loss function until a local 
minimum is arrived using gradient based algorithms. The hyperparameters in the 
learning scheme may have great impact on the learning trajectory, and consequently, on 
which local minimum is arrived to.
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ML in cardiovascular imaging analysis
ML classification models have already been developed to automatically detect or 
differentiate between imaging views (axis). For example, Khamis et al. applied label 
consistent K- singular value decomposition, a discriminative learning dictionary 
technique8. This linear algebra method decomposes a complex matrix (such as a digital 
image) in multiple unitary matrices and a diagonal matrix that is uniquely determined by 
the complex matrix. 

A typical example of modern ML techniques is the application of (convolutional) 
DL to improve time efficiency during image interpretation by humans. Zhang et al. 
demonstrated this approach for multiple tasks in automated processing of ultrasound 
images, including view detection, chamber segmentation and detection of hypertrophic 
cardiomyopathy (HCM), cardiac amyloid, and pulmonary arterial hypertension9. 

Another use for ML implemented in numerical data (I.e., echocardiography-derived 
structured data) is exemplified by Cikes et al. They proposed an unsupervised ML 
algorithm that integrates both clinical and complex echocardiographic data acquired in 
heart failure patients, which could be used for identification of patients that are likely to 
respond well to cardiac resynchronization therapy10. Inputs for the model are combined 
volumetric, strain and tissue-deformation sequences extracted from 2D echo imaging and 
a range of variables, extracted from patient demographics, clinical variables, laboratory 
measurement, use of medications and functional variables derived from ECG and echo. 
The algorithm uses a sequence of multiple kernel learning for dimensional reduction 
and k-means clustering for the eventual “phenogrouping” of patients. Cox proportional 
hazard analysis of the differences between left ventricular end-diastolic volume index 
before therapy and one year after treatment showed significantly differences between 
the groups.

A wide range of variation of in DL network architectures, such as ResNet11,12, AlexNet13 
and DenseNet14,15 have been implemented for medical imaging. However, a comparison 
of different architectures by Blaivas et al. has demonstrated that newer architectures 
that improve on different ML-model tasks in other fields, may not always show improved 
performance when applied in medical imaging16. In their research, different types of 
models were compared, when trained for classification of views in cardiac imaging. 
Even though hyperparameter-optimization details were not specified in this publication, 
(implying limitations in terms of reproducibility and verifiability common to most of the 
studies of the kind published in medical journals) this paper touches upon an important 
aspect of applying emerging novel algorithms within the space of medical imaging. With 
most of all medical images being constructed from tomographic image capturing and 
carrying a single grayscale brightness channel, medical images differ fundamentally 
from photorealistic images for which most network architectures have been developed. 
Medical images also display structures by local variations in brightness, thereby containing 
edges and surfaces, utilized by DL architectures. Contrarily, while image details may be 
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limited in channel count, 3D medical imaging techniques such as CT can substantially 
add to the tomographic nature of more basic imaging modalities. Data contained in 3D 
images exceed the information flow provided by the flattened 2D photographs produced 
by regular cameras and smartphones. It is therefore important to select an adequate 
architecture with correct characteristics for capturing the target region(s) of interest (for 
instance, specific cardiovascular sub-structures) and to thoughtfully adapt architectures 
to accommodate the tomographic nature of medical images. The greatest lesson drawn 
from this research is that eager advance in DL implementations should always be 
balanced with sensitive deliberation of their actual adequateness and related.

DL have also been used to classify image orientations17, by dividing those into four classes 
according to 0-, 90-, 180- and 270-degree rotations. Albeit this application may only be 
useful in the extraordinary absence of image metadata, as produced by imaging modality 
instances, this research demonstrates that DL can distinguish between differently 
oriented examples of the same cardiac view, a complex task in traditional computer 
vision that may link to improvements in hybrid image fusion.

Another approach to time-efficiency improvement in data analysis is focusing on 
delineation of cardiac images, which may be quite labor-intensive as suggested by the 
fact that most cardiac images are ultimately never annotated if only manual delineation 
tools are available. Whether there is potential diagnostic gain to be sought is still an open 
matter.

Segmentation models have been developed for fully automatic delineation of cardiac 
chambers on CMR18,19 and to derive secondary measurements during post-processing, 
such as cavity volume, tissue masse, wall- thickness and ejection fraction20,21. Most 
of these implementations are based on the U-NET architecture that was developed 
especially for segmentation of medical images22. Further variations on this architecture 
have been developed, such as V-NET23 which improves on U-NET through implementation 
of residual functions, inspired by ResNet24, or Ω-NET, which offers specific advantages in 
terms of improved segmentation and predictive power on multiple cardiac views within 
a single model, without prior knowledge about the presented view19. Segmentation 
optimization through ML has also been applied in coronary arteries and myocardium 
in CT angiography25,26 and in measurement automation for intima-media thicknesses on 
carotid ultrasound images27.

Liu et al. developed a 3D DL model for the detection of malignant tumors in pulmonary 
CT, using multiple slices to construct a spatial representation of a nodule, to be then 
classified for malignancy by the network. DL-based models like these have found their 
way to software applications with FDA clearance for use in the clinical setting. 

Similar DL designs have been proposed for prediction of calcium scores. Wolterink et al. 
have reported on DL-predicted calcium scores from cardiac CT images, with a 0.944 (95 
%CI [0.918, 0.962]) intra class correlation coefficient in comparison to traditional calcium 
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scoring28. A paired DL architecture was used, where one convolutional network accounted 
for extraction of voxels of interest (VOI) from the source CT-image and a second one was 
trained to predict the calcium score on the extracted VOI. Two different architectures 
consisting of 2.5D and 3D architectures were compared to assess volumetric cardiac 
structures, using triplane (axial, sagittal and coronal) inputs for the 2.5D CNN and 3D 
volumetric data as input for the 3D CNN architectures, showing a slightly better sensitivity 
of 0.72 over 0.71 for the 2.5D architecture. Further, improvement on either architecture 
was demonstrated by implementation of ensembles of CNNs with different input-sizes 
and dimensionalities.

Lessmann et al. proposed another combined CNN-architecture for calcium scoring, in 
this case on low-dose chest CT’s that were initially acquired for cancer research29. In their 
proposal, the first of two CNN-models was not used for extraction of VOIs, but to perform 
preselection of smaller sub-regions that potentially contain calcified areas. A second CNN 
was then used to perform the calcium scoring on those preselected areas.

Notably, these advances in ML implementation on cardiovascular imaging have exclusively 
dealt in terms of single data sources/types for specific established tasks in daily imaging 
practice. And much in the same way that individual cardiac imaging techniques have been 
optimized and then introduced into the conceptual realm of hybrid imaging (vide infra), 
the ML horizon has arguably expanded into both the combination of algorithms applied 
in a single workflow and the combination of data sources (e.g., clinical and imaging) for 
task optimization to exploit the value of individual types of models. Expanding from basic 
segmentation for instance, Zreik et al. developed a “hybrid” solution for the prediction of 
myocardial ischemic lesions in CT angiographic imaging by subsequently implementing a 
convolutional neural network, an autoencoder and an SVM model30. 

While FFR is currently measured in an invasive procedure with the use of pressure wire 
and hyperemic stimulus, there has been research in estimating FFR from CTA image 
bypassing the invasive procedure. With coronary arteries and left ventricular mass 
segmented, a computational fluid dynamics (CFD) modeling-based estimation is possible. 
This process is however computationally expensive31. Consequently, with the aim to 
expedite assessment of CT-derived FFR, Itu et al. synthesized 12,000 artificial coronary 
trees and their corresponding FFR by combining the computational blood flow model 
with anatomical assumptions of the cardiovascular structure32 reflected in 28 features 
and variations thereof used to train a DL model to predict FFR in independent new CT 
data. Result from a small set of data from real patients (n = 87) showed almost perfect 
correlation of DL estimated FFR and the reference FFR estimated using computational 
fluid dynamics, indicating successful knowledge transfer to the DL model. With the 
knowledge structured and stored in the network, estimation of CT-FFR resulted much 
faster than traditional CFD approaches computing FFR de novo. Nonetheless, while 
there was an 80-times compression in the estimation of FFR by DL model (2.4 ± 0.44 
vs 196.3 ± 78.5 seconds) data preparation, i.e., generation of the coronary anatomical 
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model for features to be input to DL modelling, required 10-60 minutes and became 
a bottleneck that diminished the gained efficiency of that workflow. In this regard, 
Kumamaru et al. independently proposed a fully automated workflow in which the data 
preparation step would be replaced also by ML model. More specifically, they proposed 
a hybrid of 2D convolutional generative adversarial (cGAN), a 3D convolutional ladder 
and a fully connected neural network for automated estimation of minimum FFR33. Both 
(convolutional) autoencoders (CAE) and cGANs can be used to generate a desired image 
but they differ in the learning strategy: an autoencoder learns to convert the input to 
desired output with a set of mathematical operations fixed and stored in the trained 
network;  while GAN learns to generate output that would appear to be as close as a 
real output that the competing discriminator network would not be able to differentiate 
it. One key philosophy in GANs is that the generator network must learn the underlying 
distribution of the data in order to perform well enough to “fool” the discriminator. The 
generative nature might allow GANs to potentially outperform autoencoder architectures 
which would be restricted by the provided training set. The authors argue their results 
improve on prior because their method utilizes input from coronary CT imaging, which 
seems to be more informational than the accumulated data from different myocardial 
views. 

Notably the performance of the automatic workflow may not yet be comparable to 
simpler DL models which utilized radiomic features pre-engineered by experts10,32,34.  
summarizes the oriented tasks for which DL has the capacity to optimize workflows and 
performance.

ML in the current context hybrid imaging

Data pre-processing in hybrid imaging 
Combining information from two different imaging sources, often not directly overlapping 
in space, time or dimensions is challenging. The ability to identify complex, nonlinear 
relations between data is bound to make ML a valuable tool to provide better image 
preparation, processing and data fusion in hybrid imaging.

Attenuation map generation 

PET imaging requires attenuation correction (AC) for a reliable quantification of tracer 
activity. A photon attenuation map for this purpose can be generated by co-registered 
data from CT or CMR. In simultaneous PET/MR imaging, the MR imaging–based AC 
(MRAC) is currently generated through a segmentation-based method – with the use of 
ultrashort echo.

time (UTE) sequences the image is segmented into soft tissues groups or air for which 
specific coefficients are then assigned to construct the attenuation map. While some 
performance gain can be obtained through addition of bone information (atlas-based) 
to this method, ML has been recently implemented to this end. Liu et al. explored the 
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utilization of DL for the construction of magnetic resonance-based AC maps35. With 
concurrent PET/CT data in addition to PET/MR data, they trained a fully convolutional 
autoencoder (CAE) network to generate a pseudo-CT image from MR image with the 
true CT image as reference. Thereon, PET images were comparatively reconstructed 
based on the true CT-based AC, the segmentation-based AC with MR, the atlas-based 
AC with MR and the AC based on pseudo-CT produced by DL. The DL model was trained 
on scans from 30 subjects and all methods were tested on a hold-out set of 10 subjects 
with the co-registered CT assigned as the reference. DL based AC resulted in the least 
construction error among all MR AC methods, while the segmentation-based method 
was outperformed by all the other methods. 

Further, it has been suggested that DL may also be useful in scenarios where other 
methods are expected to have a suboptimal performance. For instance, in the absence of 
suitable references for the atlas-based method. This was explored in a study by Ladefoged 
et al. on a group of paediatric patients with cerebral tumours36 since atlas-based AC was 
expected to perform poorly as it is based on adult subjects with normal anatomy for 
which sufficient age-matched paediatric references may not be available. Once again, 
a DL model was trained to generate a pseudo-CT image for AC which demonstrated 
better performance than the vendor-provided segmentation-based one, not only on the 
agreement with the reference AC (by co-registered CT) but also in the clinical metrics 
characterizing the brain tumours. These results hint the potential clinical benefit of 
optimizing a basic processing step in advanced imaging (AC) by means of powerful ML 
analytics such as DL. 

Notably, the aforementioned studies were conducted on neurological imaging, while 
the same approach can be adapted for cardiovascular purposes. The transferability and 
relevance DL-based AC requires validation in the context of cardiac imaging. And a recent 
study by Shi et al. has explored the notion of directly generating attenuation maps for 
SPECT by encapsulating the complementary information across modalities gathered 
in cardiac SPECT/CT37. Taking the CT-based attenuation map as labels and SPECT 
scans (from photopeak window and scatter window), the authors trained two types of 
DL architectures, a fully CAE as well as GAN by addition of a competing discriminator 
network. In the current study by Shi et al., no significant difference was found between 
the autoencoder and GAN in generation of attenuation, i.e., SPECT reconstructed using AC 
from both architectures using both primary and scatter window inputs were consistent 
with the CT-based AC; but there was a substantial bias for the autoencoder architecture 
if only primary window input was supplied which might be related to a limited mapping 
capacity resulted from the reduced input space.  Albeit the promising results in the 
study, it is important to note that these DL models are sensitive to training set such that 
biases created/existing in the training set could propagate to the model which was also 
evident in the current study – the slightly worse performance in female subjects might 
be attributed to a difference in sex ratio between the training set and test set and there 
exists indeed anatomical difference between sex. This suggested extensive finetuning 
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with local data to adapt to the target distribution will be required for such DL models to 
be useful in clinical practice. 

Full-dose image estimation from low dose image

Generation of CT image with DL is not limited to AC for emission data. As image denoising 
using autoencoder is an extensively researched task in the field of computer vision, 
there is also an interest to transform low dose CT scan to high resolution image that 
would be equivalent to a high dose CT, as dose reduction generally lead to a higher 
signal-to-noise ratio. There is a clear benefit to patients if the high-resolution CT image 
could be constructed with lower exposure to radiation. In this regard, it is worthy to 
point out the potential incremental value of hybrid imaging for image reconstruction 
with the additional information collected.  This was supported by a study by Xiang et 
al. who estimated normal dose PET image using low dose PET/MRI data38. In this study, 
the authors trained a relatively simple CNN composed of a stack of three blocks, each 
containing four convolutional layers (total depth = 12), on scans from 16 patients. 
Compared with training on low dose PET scan alone, training on both low dose PET and 
T1 image from MRI resulted in better estimation in all subjects, as assessed in leave-one-
out cross validation. Often, DL based methods could be easily modified to accept images 
of different modalities offering an easy way to process data; additionally, the processing 
time of feedforward networks, the type of network commonly used in computer vision, 
is often very short. Notably, in the aforementioned study the DL model performed 
comparably with the state-of-art method for standard dose PET estimation but took 
only close to 2 seconds to process each sample and output the estimated PET image as 
opposed to the state-of-art method which took 1,008 seconds in average.  In another 
study by Chen et al., multiple co-registered MR images were combined with a pseudo 
ultra-low-dose PET image to reconstruct the full dose image of the brain for amyloid 
plaque detection (ground truth); the ultra-low-dose images in this study were artificially 
created through sub-setting the events (100 fold) of the original full-dose image39. Again, 
a fully CAE architecture was used, and the model was trained on a dataset consisting of 
32 patients under a 5-fold cross validation setup. Consistent with the previous study, 
image reconstructed using both MRI and ultra-low-dose PET scan showed the highest 
similarity to the original PET scan as measured by three typically used metrics (peak 
signal-to-noise ratio, root mean square error and structural similarity index measure) 
among submitting the ultra-low-dose PET scan alone for training and the scan without 
reconstruction. But perhaps more importantly, the reconstructed image using both MRI 
and ultra-low-dose PET scan offered higher agreement in clinical assessment with the 
original full-dose image by the same clinician; in particular almost all positive case (22/23 
subjects) could be recovered from the reconstructed images using combined input as 
compared with 20/23 subjects from the reconstructions from PET scan alone. The results 
from this study showed improvement of the hybrid imaging protocol, in this case lower 
radiation exposure, may be optimized with the aid of ML. 
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ML in data integration and analysis in hybrid imaging 
Medical images often require postprocessing and review by experts to ensure their 
diagnostic and prognostic role in clinical practice. At the same time, this need also convey 
a workload that scales with the number of incoming patients and the complexity of the 
modality. While expert revision is an important gatekeeper for the quality of the result, 
parts of the clinical workflow are very much suitable for automation. This allows on the 
one hand for more efficient use of time and human resources, while on the other it 
increases reproducibility due to potential interobserver differences. 

Within current mainstream hybrid imaging, manual contour adjustment is often required 
for an accurate estimation of the perfusion values in SPECT/CT. Betancur et al. reported 
an ML model built with the aim to automate, for example, the localization of mitral valve 
plane (VP) during left ventricle segmentation40. In their study, a total of 22 plausible 
features, some derived from the scan while some describe clinical characteristics of the 
subject (sex), were considered and finally selected based on the ranking in information 
gain for the construction of an SVM model. Learning form the manual contours by two 
experts the model in general achieved higher correlations with the experts’ VP localization 
in stress images (AC/non-AC) than rest image (AC/non-AC) (Person correlation 0.79-
0.90 vs 0.66-0.80); Notably there was no significant difference regarding the diagnostic 
values- the SVM model achieved comparable performance in classification of obstructive 
stenosis with the two experts with a value of 0.8 in AUC by a 10-fold cross validation. 
This showed the potential of ML methods in condensing knowledge and experience from 
multiple experts, and they could be used to aid the clinical practice.

In PET/CT, the acquisition protocol for the CT component is often not optimized for 
estimation of calcium score. This implementation could avoid extra radiation if the calcium 
scoring is estimated directly from the CT images. Išgum et al. investigated such possibility 
in a cohort of 133 patients who underwent both myocardial perfusion PET/CT and 
calcium scoring dedicated CT41. After standard imaging processing steps to remove noise, 
features characterizing candidate calcified lesion describing shape, intensity and location 
of the lesion, were computed using the processed CT scans originally for attenuation 
correction (CT-AC) during PET/CT; an extremely randomized trees model (a decision tree 
based ensembling method) was then trained on these features to classify each lesion. To 
examine the model performance in a clinical context, patients were assigned in CVD risk 
category using the resulting Agatston scores. They reported a high correlation between 
calcium score manually estimated from CT-AC by expert and those from the automatic 
ML-based method (two-way mixed intraclass correlation coefficient :0.77 at rest and 0.83 
at stress, by 10-fold cross validation) with larger disagreements in high calcium scores. 
Comparing with the reference manual scoring with CSCT, both manual and automatic 
scoring methods using CTAC underestimated and were statistically different from 
the reference, indicating the acquisition as the limiting difference. The differences in 
agreement between the manual and automatic methods were smaller in assignment of 
five CVD risk categories – both with over 80% of patients assigned to the correct category. 
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However, the random forest model struggled in patients with high Agatston score and 
tended to misclassify in the two highest risk groups. The higher variability might account 
the weaker performance of the extreme randomized trees model.      

Cardiac MR is steadily becoming more present in cardiovascular imaging. It offers 
comprehensive imaging of the heart over the full cardiac cycle. More importantly, it 
allows for tissue and blood flow characterization. The latter makes hybrid imaging an 
appealing prospect in the cardiovascular realm. In hybrid PET/MR, anatomical information 
and myocardial tissue characteristics are used in to provide better assessment of PET 
imaging. Similar to PET/CT, ML techniques can significantly improve image acquisition 
and analysis in PET/MR. DL algorithms have mostly been applied to provide attenuation 
maps, in a way similar to the previously described methods for PET/CT. A smaller but 
interesting branch has focused on joint PET and CMR image reconstruction in order to 
reduce radiation dosages. Chen et al.39 used a U-net architecture to synthesize a full 
dose PET image from its low dose priors. By considering the anatomical information 
of simultaneously acquired MR images, they showed net U-net was able to reconstruct 
images of similar quality to full dose PET acquisitions. 

Another field of hybrid CMR is the combination of cardiac MR and invasive angiography 
(XMR). XMR allows for scar-guided atrial ablations42, and radiation free assessment of 
complex hemodynamics in congenital heart diseases43,44. A main challenge of XMR is fast 
and reliable registration of catheter position or fluoroscopy imaging to the CMR images. 
Similar to the other image analysis problems, ML techniques can provide significant 
improvement of current workflows of image registration.  Deep learning registration 
algorithms have been proposed to learn new similarity metrics for image registration45,46 
that can be used in conventional registration algorithms, or even perform full registration 
process through a DL architecture47,48.  Implementation of such techniques for registration 
in XMR is likely to follow soon. 

Emerging visualization techniques such as augmented-, merged- and virtual-reality that 
can arguably relate to an updated concept of hybrid imaging, offer the possibility to render 
information for clinical operators on a screen, a pair of glasses or a headset. Depending 
on the exact implementation, information may be presented in combination, or as an 
overlay of the environment the image information is viewed within. These advancements 
in visualization techniques may enhance the workflow and tools available in a clinical 
setting, e.g., in the catheterization lab, providing a 3D representation of the heart while 
performing an invasive procedure. The use of ML may be crucial to optimally use the data 
made available synchronously by multiple modalities, by rendering a mapped projection 
of the perfusion of the coronary arteries or a projection of the exact position of catheters 
on a real time, patient specific 3D rendering of the heart49.

Notably, electroanatomic mapping (EAM) represents an area where developments 
in hybrid imaging, in its traditional sense, have continued parallelly to those in the 
cardiovascular imaging areas more logistically related to radiology. Three-dimensional 
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EAM systems have become the cornerstone for safe and efficient ablation of complex 
tachyarrhythmias. Briefly, parting from a reference electric signal (i.e., QRS), electrograms 
obtained at a specific site are stored and the activation time is defined, then the activation 
time is then compared point by point with a reference signal on the 3D geometry of 
the chamber of interest allowing a projection of its activation mode. Further, voltage 
maps can also be projected to display scar regions which in some cases correlates with 
arrhythmogenic substrate43. State-of-the-art software with increasing ML groundwork 
allows for integration of various imaging modalities such as CMR or CT in 3D reconstruction 
of ablation targets (Figure 6a). This technology can reduce the exposure of both patients 
and operators to ionizing radiation and improve clinical outcomes50,51. In the same regard, 
intracardiac echocardiography (ICE) can be applied and integrated for 3D reconstructions 
of complex structures such as a coronary cusps or papillary muscles, that often prove 
difficult ablation targets (Figure 6b). Based on corporate interests it remains relatively 
unknown to the scientific community how ML implementation has been incorporated 
or is to fuel consumer-grade EAM. Nevertheless, individual novel applications continue 
to develop rapidly. Undoubtedly, the mayor limitation for cardiac arrhythmia ablation is 
determining the location of its substrate. Proposed sites from rotors to drivers failed to 
provide a 100% efficacy in treatment even when all the potential sites are ablated. This 
opens the possibility for ML algorithm to accurately identify ablation target and maybe 
model mechanistic paths for recurrence.  Mahnood et al, used spatiotemporal features 
extracted from electrograms to train a Kera’s based DL for organized spatial sites 
identification, which displayed an accuracy of 95.2% to detect relevant ablation targets 
for atrial fibrillation with a sensitivity and specificity of 97.7% and 93.0% respectively52. For 
local abnormal ventricular activities (LAVA), Cabrera-Lozoya et al. used image features 
from delayed-enhanced CMR to describe local tissue heterogeneities then fed into a 
random forest classification framework with a five-fold nested cross-validation scheme 
in order to identify potential ablation targets. Based model feature augmentation was 
then carried out by applying a cell-specific cardiac electrophysiologic model as well as a 
tissue and electrogram recording models. This resulted in an algorithm with an overall 
accuracy of 98.9% across five patients with a LAVA-specificity of 99.4% and a LAVA-
positive predictive value of 96.4%. Whether these models can generalize adequately to 
the larger population of patients in need for and that may benefit from ablation, is yet to 
be demonstrated53. 

Although ML has clearly taken decisive steps into the essential components of 
cardiovascular hybrid imaging through the optimization of data-preprocessing, image 
orientation, structural delineation, and functional quantification, the landscape of clinical 
implementation remains underdeveloped. ML optimization of hybrid image fusion or 
data integration are currently being explored. Integration of other data, such as clinical 
characteristics with advanced imaging (a novel look into what hybrid imaging can entail), 
may compensate for information loss such as lower image resolution resulted from 
reduced dosage of radioactive tracer or lower image resolution due to less optimal 
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acquisition protocol. For example, radiomic features extracted from the CT scans in 
CT/PET scan may be submitted to the ML model along with demographics such as age, 
sex and cardiovascular risk factors like type 2 diabetes, hypertension and presence of 
dyslipidaemia to determine if patient would be likely to suffer from myocardial ischemia. 
In a retrospective study by Juarez-Orozco et al. aiming to refine prognostic value of 
hybrid PET/CT, CTA outputs were combined with clinical variables in a LogitBoost model 
(a boosting algorithm which combines weaker logistic regression predicters into a 
final model) to determine if a patient had suffered ischemia and would undergo early 
revascularization respectively54. In a cohort of around a thousand patients with low and 
intermediate risk of CAD, they observed models taking expert curated CTA variables 
outperformed models which directly took in raw CTA outputs in identifying patients who 
suffered from ischemia and eventually underwent early revascularization respectively; 
notably integration of clinical variables consistently improved the performance of all 

Figure 6. 3D Electroanatomical mapping system integration options. a) Left ventricle 
3D CT/EAM reconstruction for endocardial/epicardial ablation of a ventricular tachycardia 
in a patient with Chagas disease. b) ICE reconstruction of coronary cusps for targeted 
radiofrequency ablation of persistent premature ventricular contractions. Performed 
with CARTOSOUND ® Module. Images provided by Dr. Santiago Nava, Electrophysiology 
Department, National Institute of Cardiology, Mexico City.
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models. The results demonstrated feasibility of ML in data integration which could 
expand to various sources, such as radiomics features from different modalities, clinical 
information and biochemical profiles.  

It is likely that observational and retrospective evidence (based on big-data sets) will 
continue to gather while the necessary structures and trust in the performance of ML’s 
novel analytics becomes increasingly present in the minds of cardiovascular scientists 
and physicians. Ultimately, it is expected that further prospective research will put the 
real-world performance of ML-derived to the test. In the next section, the envisioned 
paths of clinical implementation and the potential role of ML-based AI in the clinical 
reality of hybrid imaging will be discussed.

ML in decision-making and clinical-evaluation support
ML implementations in wearable biosensors has taken the spotlight in clinical 
implementation of AI as they offer the potential of large-scale screening for a vast range 
of both chronic and acute diseases. Recently, the Apple Heart Study provided evidence of 
an algorithm capable of detection of previously undiagnosed atrial fibrillation from pulse 
irregularity and variability55. However, the rate of detection triggers the question of cost-
effectiveness viability. The potential of ML based algorithms to identify patterns from a 
constant string of data gathered by easily accessible portable technologies sparked an 
interest for advanced continuous monitoring. For example, Green et al. demonstrated 
that a multi-instance classifier could be used to identify patients with obstructive HCM 
from photoplethysmography tracings obtained by a wearable biosensor with an AUC of 
0.9956.

Within imaging, more explicit feature selection is expected to enhance the decision-
support applicability of ML implementations. This is a clear need among clinicians even 
if especially scientifically oriented. Ease-of-use and interpretability, therefore, constitute 
paramount characteristics in every successfully ML-based AI implementation and should 
be further promoter in due time within hybrid cardiovascular imaging of any kind. 
Decision-support on diagnoses and treatment paths, and direct extraction/presentation 
of the most relevant related data could greatly enhance the way clinicians use the 
individual patient data to treat their patients.

Furthermore, with the potential to improve on diagnostic and prognostic probability 
estimation at the individual level, a clear niche for ML lies within the integral space of 
electronic health records and medical imaging systems. Decision support systems, 
patient-status alarm systems and workflow enhancements in the form of relevant content 
selection, speech recognition and on-the-go word predictions in text editors based on ML 
models are some examples already sparsely implemented. These tools may optimally 
use integrated data sources where available to the broadest extent and to extract the 
largest added value for patients. 

Considering an inclusive take on the “hybrid” term, ML models have been developed 
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aggregating imaging and structured data as well as structured data integrated from 
different data sources including imaging-derived parameters. Whether the current 
concept of hybrid integration allows for such inclusions is yes to be argued. As an 
example, Juarez-Orozco et al. developed a model for the classification of myocardial 
ischemia and an increased risk of adverse cardiovascular events based on clinical and 
functional (imaging derived) variables using a boosting ensemble algorithm57. These 
hybridized modeling attempts have shown clear improvements over models based on 
single data sources, implying that aggregation of multi-source data into hybrid model 
adds diagnostic value to other single-source trained models. Therefore, the development 
of models that employ hybrid imaging data is viable and may be considered in a flexible 
understanding of hybrid imaging and modeling. This holds the potential to uncover yet 
untapped insights from high-dimensional cardiovascular hybrid imaging data, which are 
essentially not yet fully exploited. 

Whether aiming to improve clinical workflow efficiency or patient outcomes with respect 
to diagnosis and allocation of treatment strategies, a rich source of information lies in the 
aggregation of data originating from multiple imaging modalities. This designates hybrid 
imaging as the ultimate area to harvest from these investments as portrayed over the 
recent years in ML in different individual imaging modalities.

The present chapter was written in the midst of the SARS-CoV-2 (COVID-19) pandemic, 
which has proven to pose a challenge for medical and populational sciences. These times 
have brought forward the systemic weaknesses that require attention to front expectable 
circumstances. For instance, delays in the development of PCR-based diagnostic tools 
have resulted counterproductive for the adequate detection of infected individuals at 
the individual level. In this regard, creation and deployment of ML-based AI systems 
that facilitate clinical- and image-based diagnostics tools can prove crucial to optimize 
detection and estimate prognosis. For example, Singh et al. developed a multi-objective 
differential evolution (MODE)-based DL model that applies chest CT images and provided 
good performance for classification of COVID-19 infected patients55. Further research into 
whether hybridization of these models and potential integration with other imagining 
modalities such as echocardiography can improve cardiac involvement in the disease 
and its relevance for the patient-based prognosis is warranted.

Future perspectives and challenges in ML-based AI for cardiovascular 
hybrid imaging
While studies discussed here suggest a promising path for the incorporation of ML into 
the common handlings of cardiovascular hybrid imaging, many have been performed 
on small datasets and hence should be viewed with a cautious optimism. There are 
still tasks in medical imaging analysis, such as motion correction, where ML is yet to 
achieve performance on par with the status quo. Moreover, there are and will continue 
to be cases in which ML may not provide a better solution than alternative, even more 
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traditional, analytics32,33. Rather, it is important to explore and identify the scenarios in 
which such implementations are bound to translate into clear benefits at the subject-, 
patient-, health professional- and population-level. 

As presented in this chapter, DL can provide powerful tools for image acquisition, 
reconstruction and analysis in hybrid imaging. However, with the complexity of modelling 
correlations, the interpretability and accuracy of the models is suffering. Criteria on 
which decisions are made cannot readily be extracted from the models, and small nearly 
imperceptible perturbations in data can lead to significant errors in predictions58. Especially 
in medical imaging, such unreliability can be dangerous. To allow integration of DL in 
medicine two main issues need to be addressed: 1) there needs to be a degree of model 
interpretability, and 2) models need to be quality-controlled by independent algorithms 
that do not rely on the input of the original task, but use indirect data (for example; 
model outputs or priors based on existing medical knowledge).  Models interpretability 
is challenging, and still a largely unsolved problem. Clough et al. used a ‘concept 
activation vector’ technique to associate known medical concepts (such as low ejection 
fraction) to certain vectors in the latent space of a VAE based classifier59. This approach 
provides some degree of explanation to the models’ decisions but does not allow to fully 
interpret decisions made in the model. Another approach is to raise awareness about 
potential mistakes of a DL model using prediction uncertainty metrics60,61 or attention 
maps62. Apart from efforts to prevent errors in one network, providing a comprehensive 
pipeline for DL analysis that includes quality control measures independent of the main 
DL algorithm can provide a robust solution for application of DL in clinical practice. In 
recent work, Ruijsink et al. proposed a comprehensive cluster of algorithms for quality 
controlled CMR image analysis. Similar to conventional medical practice, this pipeline 
consisted of a pre-analysis image-quality check (a CNN based image classification and 
several hard-coded conventional clinical rules), a segmentation network and a quality 
check of the output (using SVM classification and hardcoded rules based on basic cardiac 
physiology). As shown by their work, using such a multilayer approach to medical analysis 
problems assures the levels of error detection/prevention needed for implementation of 
DL models in daily clinical practice. With growing initiatives for open-access and medical 
image repositories such as the Cancer Imaging Archive and UK biobank cohort, it will 
become increasingly possible to extensively test, validate and perhaps certify novel ML 
models with reference datasets that required before clinical deployment. It should be 
noted that data heterogeneity as well as veracity (incompleteness and inconsistency in 
record) may have huge impact on final performance of ML models in practice. While 
this issue may be mitigated by careful curation of a representative training dataset for 
calibration of the model, it should still be taken account when assessing the utility of ML 
for certain tasks in the actual clinical context. This is especially important in advanced 
hybrid imaging given the known nuances and disparities in deployment across medical 
centers and countries.
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Conclusion
Machine learning constitutes the modern underpinning of AI. Its implementation is 
beginning to play a substantial role in accelerating solutions to technical and practical 
limitations currently constraining the full-blown use of hybrid cardiovascular imaging. 

Process automation in crucial and often time-intensive data processing steps, such 
as quality control, image registration, segmentation and analysis for diagnostic and 
prognostic purposes are some of the areas in which ML has gained popularity based on 
results optimization. The evolving concept of hybrid imaging may prove adequate elasticity 
to contemplate not of complementarity and synergy between imaging modalities but also 
between data sources and even ML-based image analysis models. At this moment, full 
operational ML implementation in traditional cardiovascular hybrid imaging (SPECT/CT, 
PET/CT and PET/MR) are still lacking, but we find ourselves in the brink of an accelerated 
development of clinical applications that is contingent upon acceptance and comfort with 
these novel analytics.  The development of interpretable, quality-controlled, robust and 
trustworthy ML-based models is essential to further optimize data processing, insight 
generation, clinical decision support in cardiovascular hybrid imaging. Thereon, the 
future is open.
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