2 research outputs found

    Planning the integration of the renewable energy sources on islands, under the National Electric System in Mexico

    Get PDF
    The electric generation systems on islands are based generally on fossil fuel. This fact and its supply make the electricity cost higher than in systems used in the continent. In this thesis, as a first part, a review of the renewable energy generation systems on islands is elaborated. To do it, 77 islands from 45 different countries were analized. This analysis will allow to know how the implementation of renewable energy sources could help these islands in developing a renewable and sustainable energy sector, including a reduction of electricity generation cost. The de-carbonising in the electricity generation is necessary to reduce fossil fuel consumption, the pollution emitted and to meet the Energy Technology Perspectives 2ºC Scenario (2DS) targets. Small islands are not exempt from this target, so this the emphasis of this thesis is placed on a 50-50 target: to reduce the fossil fuel consumption through electricity generation from Renewable Energy Sources (RES) to cover 50% of all electric demand by 2050 on small islands. This analysis will be based on three factors: economical, technical, and land-use possibilities of integrating Renewable Energy Technologies (RETs) into the existing electrical grid. As second part of the thesis, this work shows the results from a study case of the application of renewable energy technology in Cozumel Island, Mexico. This island is located in the Riviera Maya, in the Occidental Caribbean Sea. The analysis developed was made through long- term statistical models. A deterministic methodology was used to perform time-series simulations. As a first integration approaching, the simulations show that for the year 2050 a feasible integration of a system based on wind/PV can be achieved on the Island, reducing the electricity price from 0.37 US/kWhto0.24US/kWh to 0.24 US/kWh (2050 in the Base Scenario). This result had a renewable penetration of 22.3% and does not considered a battery system or changes in the existing electric grid. With this scenario, the government will achieve its targets in renewable energy and in the reduction of the emissions of CO2. This will allow reaching a sustainable electricity sector. In a second approach, and according to the results, all systems proposed are able to completely satisfy the renewable electricity needed by 2050 in all scenarios proposed. From the 12 system proposals that were compared, two systems, System 2 and System 7, were chosen as eligible systems to be installed. The Levelized Cost of Energy (LCOE) result for System 2 was 0.2401 US/kWhandforSystem7was0.2008US/kWh and for System 7 was 0.2008 US/kWh by 2050 in the Base Scenario. Meanwhile, the Internal Rate of Return (IRR) value fluctuated from 17.6% for System 2 to 31% for System 7, with a renewable fraction of penetration for System 2 of 56.1% and for System 7 of 56.9% by 2050 in the Base Scenario. The selection of the best system was made on the base of a Dimensional Statistical Variable (DSV) through primary and secondary category rankings. The presented proposal of three phases methodology determines the best systems for capturing the lower initial capital cost and the higher competitiveness of this new proposal compared with the current system of electricity generation on the Island, and can be applied on small islands as well. As third part of this thesis, the analysis presents an optimization of the energy planning, a grid assessment, and an economic analysis, considering three growing scenarios (Low, Base and High) in the electricity consumption, to supply the energy demand for a hybrid power system (Photovoltaics/Wind/Diesel/Battery) on a small island by 2050.Los sistemas de generación en islas generalmente están basados en combustible fósil. Éste hecho y su suministro ocasionan que el costo de la electricidad sea mayor que en los sistemas continentales. En esta tesis y como primera parte, se elaboró una revisión de los sistemas de generación de electricidad en las islas. Para lograr esto, se analizaron 77 islas de 45 diferentes países. Éste análisis permitirá conocer cómo la implementación de las fuentes de energía renovable puede ayudar a éstas islas a desarrollar un sector sostenible y renovable, incluyendo la reducción del costo en la generación de electricidad. La des-carbonización en la generación de electricidad es necesaria para reducir el consumo de combustible fósil, para reducir la contaminación y para lograr los objetivos propuestos en el escenario de los 2 grados en la perspectiva de las tecnologías de la energía (2DS, por sus siglas en inglés). Las pequeñas islas no están exentas de éstos objetivos, por esto, el énfasis en ésta tesis está localizado en el objetivo 50-50: reducir el consumo de combustible fósil usado en la generación de electricidad a través de las fuentes de energía renovable (RES, por sus siglas en inglés), y así cubrir el 50% de la electricidad demandada por las pequeñas islas para el año 2050. Éste análisis estará basado en tres factores: en el económico, en el técnico y en las posibilidades del uso de la tierra para integrar las tecnologías de energía renovable (RETs, por sus siglas en inglés) en la red eléctrica existente. Como segunda parte de la tesis, en ésta se muestran los resultados de un caso de estudio en la aplicación de la tecnología de energía renovable en la isla de Cozumel, en México. Esta isla está localizada en la Riviera Maya, en el Mar Occidental del Caribe. El análisis desarrollado fue desarrollado a través de modelos estadísticos a largo plazo. Se ha usado una metodología determinística para realizar las simulaciones en las series de tiempo. Cómo un primer acercamiento para la integración, las simulaciones mostraron que se puede lograr para el 2050 una integración de un sistema basado en fuentes eólicas/fotovoltáicas en la isla, reduciendo el precio de la electricidad de 0.37 US/kWha0.24US/kWh a 0.24 US/kWh (en el escenario base para el año 2050). El resultado tuvo una penetración de la energía renovable de 22.3% sin considerar un sistema de baterías o cambios en la red eléctrica existente. En este escenario, el gobierno logrará sus objetivos en energía renovable y en la disminución de la emisión de CO2. Esto permitirá lograr un sector sostenible en la electricidad. En un segundo acercamiento y de acuerdo a los resultados, todos los sistemas propuestos pueden completamente satisfacer la electricidad renovable necesaria para el año 2050 en todos los escenarios propuestos. De los 12 sistemas propuestos que se compararon, dos sistemas, el Sistema 2 y el Sistema 7fueron elegidos como los sistemas para ser instalados. El resultado del costo nivelado de energía (LCOE, por sus siglas en inglés) para el Sistema 2 fue de 0.2401 US/kWhyparaelSistema7fueˊde0.2008US/kWh y para el Sistema 7 fué de 0.2008 US/kWh para el año 2050 en el escenario base. Mientras tanto, el valor de la tasa interna de retorno (IRR, por sus siglas en inglés) fluctuó del 17.6% para el Sistema 2 al 31% para el Sistema 7, con un factor de penetración en renovable para el Sistema 2 del 56.1% y para el Sistema 7 del 56.9% para el año 2050 en el escenario base. La selección del mejor sistema fue realizada sobre la base de una variable estadística dimensional (DSV, por sus siglas en inglés) a través de una clasificación de categorías primaria y secundaria. La presente propuesta de metodología de tres fases determina el mejor sistema para obtener el menor costo inicial de capital y la mayor competitividad de esta nueva propuesta, comparada con el actual sistema de generación de electricidad en la isla y que también pueda ser aplicada a las pequeñas islas. Como tercera parte de la tesis, el análisis presenta una optimización de la planeación energética, una evaluación de la red y un análisis económico, considerando tres escenarios de crecimiento (bajo, base y alto) para el consumo de electricidad y para suministrar la energía demandada por una isla pequeña para el año 2050. El principal objetivo de este estudio es, presentar una metodología de cuatro fases para optimizar y reducir el tiempo de respaldo del banco de baterías incluidas en el sistema híbrido de generación de energía seleccionado. También comparará cuatro diferentes tecnologías de baterías de manera simultánea, sin cambios en los objetivos planteados en 50% para el año 2050, y sin cambios en la operación segura y continua de la red. La metodología incluye un análisis de la red para obtener una segura, fuerte y confiable respuesta de operación basada en los parámetros indicados en el código de red, incluso en caso de disturbios eléctricos. En esta metodología de cuatro pasos, el análisis está desarrollado en base al uso de dos herramientas de modelos de simulación. La primera herramienta de modelos de simulación determina los valores óptimos de las variables controladas por el diseñador del sistema, tales como la mezcla de los componentes (fotovoltaico, eólico/diésel/baterías) que conformen el sistema, o la cantidad o tamaño de cada variable. Este modelo usa el análisis multi-año basado en corridas de simulación de tiempo-dominio a niveles de flujo de energía en paso de tiempo discretos de 1 hora. La segunda herramienta de simulación asume todas las variable y parámetros en la red como constantes durante el periodo de tiempo analizado. El flujo de potencia es analizado a través de un comando de función de conteo en un lenguaje de programación y refleja la respuesta del sistema en un tiempo específico, con unos parámetros y variables específicas dadas. La propuesta final técnica y su análisis financiero son obtenidos aplicando y validando esta metodología en una isla pequeña, así como también, la selección del sistema a ser instalado para la generación de electricidad renovable. Aquí se incluyen las modificaciones y refuerzos a la red eléctrica a través de los años hasta el año 2050, realizados de acuerdo con el código de red y con los objetivos en energía renovable indicados para el sistema eléctrico de potencia de la isla. De acuerdo a los resultados de esta optimización, el más bajo LCOE obtenido fue el del sistema que incluye las baterías de flujo Zinc-Bromine, en el cual las sensitividades fueron aplicadas y que fue de 0.2036 US/kWhparaelan~o2050enelEscenarioBase.Mientrasqueelvalordelatasainternaderetornoparaestesistemafuedel30.37ParaelcasodelPREanaˊlisisdecuandolaenergıˊarenovablesupleel100/kWh para el año 2050 en el Escenario Base. Mientras que el valor de la tasa interna de retorno para este sistema fue del 30.37%, con una fracción de penetración de las renovables del 59%. Los resultados de los análisis fueron sin considerar la tecnología eólica fuera de costa (Off-shore). Para el caso del PRE-análisis de cuando la energía renovable suple el 100% de la demanda de potencia, el menor LCOE obtenido incluyendo 8-3 MW turbinas eólicas Off-shore fué de 0.3006 US/kWh para el año 2050 en el Escenario Base. Estos resultados son combinando el eólico Off-shore/eólico On-shore/fotovoltaico/baterías Zn-Br/diésel, con un factor de penetración de las renovables del 100%

    Contribuciones al modelado y diagnóstico de fallos en PEMFC para mejorar la fiabilidad en sistemas híbridos renovables

    Get PDF
    [ES] Las pilas de combustibles son dispositivos de un coste elevado y frágiles ante ambientes contaminados o condiciones inadecuadas de operación como: temperaturas extremas o mala gestión del agua producida como residuo de la pila. Para mejorar la fiabilidad de una pila de combustible es necesario diagnosticar de una manera oportuna los fallos y así evitar daños que reduzcan el desempeño del módulo o que lo inhabiliten. Este trabajo busca contribuir al mejoramiento de la fiabilidad de las pilas de combustible de baja temperatura y de esta forma favorecer el uso de hidrógeno en la transición a una energía descarbonizada. Para lograrlo, se realizaron tres actividades principales: modelado de una pila de hidrógeno, ajuste paramétrico del modelo desarrollado y, por último, aplicación de técnicas de diagnóstico de fallos basados en modelos. En el laboratorio de Recursos Energéticos Renovables Distribuidos LabDER de la Universitat Politècnica de València, se estudia el desempeño de sistemas híbridos renovables, incluyendo una línea de hidrógeno, desde la producción, almacenamiento y reconversión en electricidad en una pila de combustible, por tanto, se ha podido validar el modelo. En un primer momento se identificó la necesidad de un modelo que emplee la temperatura como señal de salida y que retroalimente el sistema, y que tuviese en cuenta señales propias del módulo comercial; sin embargo, el uso de la temperatura como señal y la no linealidad de las ecuaciones físicas, químicas, eléctricas y empleadas, generan un modelo altamente complejo. El ajuste paramétrico del modelo se realizó empleando algoritmos de optimización. Tomando como base al algoritmo de Enjambre de Partículas, se desarrolló una nueva propuesta llamada Scout GA, este algoritmo fue utilizado en otras aplicaciones y pruebas de convergencia para verificar su desempeño frente al fenómeno de estancamiento prematuro y logrando mejorar la precisión y velocidad de convergencia de otras propuestas. Como resultado de la validación de este modelo, en una primera simulación usando datos reales de funcionamiento correspondientes a 1500 segundos, el error de simulación fue del 2,21% en la señal de tensión y del 1,97% en la señal de temperatura, obteniendo un error medio del 2,09%. En un segundo conjunto de datos de algo más de 2.500 segundos de funcionamiento, el error de simulación fue del 2,40% y del 1,96% para las señales de tensión y temperatura, respectivamente. Se estima que el error medio de simulación para ambas señales y condiciones de funcionamiento similares es inferior al 2,5%. Buscando mejorar la fiabilidad de la pila, se realizó el trabajo de diagnóstico de fallos, este partió de la simulación de fallos, mediante la modificación de algunas señales de entrada del modelo, los fallos se caracterizaron mediante el tratamiento estadístico de 12 residuos, obteniendo firmas de fallos, que, en su conjunto, formaron una matriz de fallos. Luego, un algoritmo de diagnóstico propuesto permitió identificar y aislar 14 fallos. permitiendo concluir que, el modelo predice eficazmente los fallos de las pilas PEMFC y podría extrapolarse a otras pilas de combustible.[CA] Les piles de combustibles són dispositius d'un cost elevat i fràgils davant ambients contaminats o condicions inadequades d'operació com: temperatures extremes o dolenta gestió de l'aigua produïda com a residu de la pila. Per a millorar la fiabilitat d'una pila de combustible és necessari diagnosticar d'una manera oportuna les fallades i així evitar danys que reduïsquen l'acompliment del mòdul o que l'inhabiliten. Este treball busca contribuir al millorament de la fiabilitat de les piles de combustible de baixa temperatura i d'esta manera afavorir l'ús d'hidrogen en la transició a una energia *descarbonizada. Per a aconseguir-ho, es van realitzar tres activitats principals: modelatge d'una pila d'hidrogen, ajust paramètric del model desenvolupat i, finalment, aplicació de tècniques de diagnòstic de fallades basades en models. En el laboratori de Recursos Energètics Renovables Distribuïts *LabDER de la Universitat Politècnica de València, s'estudia l'acompliment de sistemes híbrids renovables, incloent-hi una línia d'hidrogen, des de la producció, emmagatzematge i reconversió en electricitat en una pila de combustible, per tant, s'ha pogut validar el model. En un primer moment es va identificar la necessitat d'un model que empre la temperatura com a senyal d'eixida i que retroalimente el sistema, i que tinguera en compte senyals propis del mòdul comercial, no obstant això, l'ús de la temperatura i la no linealitat de les equacions físiques, químiques, elèctriques i tèrmiques empleades, deriven en un model altament complex. L'ajust paramètric del model de pila de combustible es va realitzar emprant algorismes d'optimització. Prenent com a base a l'algorisme d'Eixam de Partícules, es va desenvolupar una nova proposta anomenada Scout GA, aquest algorisme va ser utilitzat en altres aplicacions i proves de convergència per a verificar el seu acompliment enfront del fenomen d'estancament prematur i aconseguint millorar la precisió i velocitat de convergència d'altres propostes. La simulació i identificació del model té un cost computacional entre 7 i 20 ms per iteració, on es van aconseguir errors de simulació menors al 2.5% Com a resultat de la validació d'aquest model, en una primera simulació usant dades reals de funcionament corresponents a 1500 segons, l'error de simulació va ser del 2,21% en el senyal de tensió, del 1,97% en el senyal de temperatura i un error mitjà del 2,09%. En un segon conjunt de dades d'una mica més de 2.500 segons de funcionament, l'error de simulació va ser del 2,40% i del 1,96% per als senyals de tensió i temperatura, respectivament. S'estima que l'error mitjà de simulació per a tots dos senyals i condicions de funcionament similars és inferior al 2,5%. Buscant millorar la fiabilitat de la pila, es va fer el treball de diagnòstic de fallades, aquest va partir de la simulació de fallades, mitjançant la modificació d'alguns senyals d'entrada del model, les fallades es van caracteritzar mitjançant el tractament estadístic de 12 residus, obtenint signatures de fallades, que en el seu conjunt, van formar una matriu de fallades. després un algorisme de diagnòstic proposat, va permetre identificar i aïllar 14 fallades. Permetent concloure que, el model prediu eficaçment les fallades de les piles PEMFC i podria extrapolar-se a altres piles de combustible.[EN] Fuel cells are high-cost devices that are fragile in contaminated environments or in inadequate operating conditions, such as extreme temperatures or poor water management, produced as battery waste. To improve the reliability of a fuel cell, it is necessary to diagnose failures promptly and thus avoid damage that reduces the module's performance or disables it. This work seeks to contribute to improving the reliability of low-temperature fuel cells and thus promote the use of hydrogen in the transition to decarbonized energy. To achieve this, three main activities were carried out: modeling a hydrogen fuel cell, parametric adjustment of the developed model, and application of model-based fault diagnosis techniques. In the LabDER Distributed Renewable Energy Resources laboratory of the Polytechnic University of Valencia, the performance of renewable hybrid systems is studied, including a hydrogen line, from production, storage, and reconversion into electricity in a fuel cell, therefore, has been able to validate the model. Initially, a fuel cell model that uses temperature as an in/output signal is required. Also, the model must be able to use the reals signals supplied for the commercial module. However, using temperature and an equation set that includes the non-linearity of the physical, chemical, electrical, and thermal equations resulted in a highly complex model. The parametric adjustment of the fuel cell model was performed using optimization algorithms. Based on the Particle Swarm algorithm, a new proposal called Scout GA was developed. This algorithm was used in other applications and convergence tests to verify its performance against the premature stagnation phenomenon and improved the accuracy and speed of convergence of other proposals. The simulation and identification of the model have a computational cost between 7 and 20 ms per iteration, where simulation errors of less than 2.5% were achieved. As a result of the validation of this model, in a first simulation using real operating data corresponding to 1,500 seconds, the simulation error was 2.21% for the voltage signal, 1.97% for the temperature signal, and an average error of 2.09%. In a second data set for slightly more than 2500 seconds of operation, the simulation error was 2.40% and 1.96% for the voltage and temperature signals, respectively. The average simulation error for both signals and similar operating conditions is estimated to be less than 2.5%. To improve the reliability of the stack, the fault diagnosis work was carried out, starting from the simulation of faults by modifying some input signals of the model; the faults were characterized by the statistical treatment of 12 residuals, obtaining fault signatures, which formed a fault matrix. Then, a proposed diagnostic algorithm allowed to identify and isolate 14 faults. Allowing to conclude that the model effectively predicts the PEMFC stack faults and could be extrapolated to other fuel cells.Ariza Chacón, HE. (2024). Contribuciones al modelado y diagnóstico de fallos en PEMFC para mejorar la fiabilidad en sistemas híbridos renovables [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/20361
    corecore