2,395 research outputs found

    Cramer-Rao bounds in the estimation of time of arrival in fading channels

    Get PDF
    This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of delays. Furthermore, channel estimation is a constitutive block in receivers, so we can take advantage of this information to improve timing estimation by using time and space diversity. The received signal is modeled as coming from a scattering environment that disperses the signal both in space and time. Spatial scattering is modeled with a Gaussian distribution and temporal dispersion as an exponential random variable. The impact of the sampling rate, the roll-off factor, the spatial and temporal correlation among channel estimates, the number of channel estimates, and the use of multiple sensors in the antenna at the receiver is studied and related to the mobile subscriber positioning issue. To our knowledge, this model is the only one of its kind as a result of the relationship between the space-time diversity and the accuracy of the timing estimation.Peer ReviewedPostprint (published version

    Space-Time diversity for NLOS mitigation in TDOA-based positioning systems

    Get PDF
    This paper studies the potential impact of using space-Time information in the mitigation of the Non-LineOf-Sight condition in mobile subscriber's positioning systems. First of all, this work discusses the positioning problem based on measures of Time Differences Of Arrival departing from a more exact characterization of the signal statistics and including some geometrical restrictions to achieve an improved accurate. Furthermore, a novel approach that integrates signal propagation characteristics to information provided by a suitable timing estimation model based on Cramer Rao Bound for a Rayleigh-fading channel, when antenna arrays are used at the receiver and when a set ofchannel vector estimates are available, has been introduced to study the positive benefits of space-Time diversity. These approaches are evaluated within a realistic simulation scenario.Peer ReviewedPostprint (published version

    Cooperative Radar and Communications Signaling: The Estimation and Information Theory Odd Couple

    Full text link
    We investigate cooperative radar and communications signaling. While each system typically considers the other system a source of interference, by considering the radar and communications operations to be a single joint system, the performance of both systems can, under certain conditions, be improved by the existence of the other. As an initial demonstration, we focus on the radar as relay scenario and present an approach denoted multiuser detection radar (MUDR). A novel joint estimation and information theoretic bound formulation is constructed for a receiver that observes communications and radar return in the same frequency allocation. The joint performance bound is presented in terms of the communication rate and the estimation rate of the system.Comment: 6 pages, 2 figures, to be presented at 2014 IEEE Radar Conferenc

    Investigation of Non-coherent Discrete Target Range Estimation Techniques for High-precision Location

    Get PDF
    Ranging is an essential and crucial task for radar systems. How to solve the range-detection problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution are the points of interest as well. Coherent and non-coherent techniques can be applied to achieve range estimation, and both of them have advantages and disadvantages. Coherent estimates offer higher precision but are more vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, while the non-coherent approaches are simpler but provide lower precision. With the purpose of mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-coherent estimate are now introduced into the coherent realm, and vice versa. This thesis describes two non-coherent ranging estimate techniques with novel algorithms to mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier transform is implemented to attain a coarse estimation; an accurate process around the point of interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately implements the periodogram where only a narrow band spectrum is processed. Furthermore, the concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of these two techniques from the perspective of statistical signal processing. Mathematical derivation, simulation modelling, theoretical analysis and experimental validation are conducted to assess technique performance. Further research will be pushed forward to algorithm optimisation and system development of a location system using non-coherent techniques and make a comparison to a coherent approach

    Analysis of V2X Sidelink Positioning in sub-6 GHz

    Full text link
    Radio positioning is an important part of joint communication and sensing in beyond 5G communication systems. Existing works mainly focus on the mmWave bands and under-utilize the sub-6 GHz bands, even though it is promising for accurate positioning, especially when the multipath is uncomplicated, and meaningful in several important use cases. In this paper, we analyze V2X sidelink positioning and propose a new performance bound that can predict the positioning performance in the presence of severe multipath. Simulation results using ray-tracing data demonstrate the possibility of sidelink positioning, and the efficacy of the new performance bound and its relation with the complexity of the multipath

    xD-Track: Leveraging Multi-Dimensional Information for Passive Wi-Fi Tracking

    Get PDF
    We describe the design and implementation of xD-Track, the first practical Wi-Fi based device-free localization system that employs a simultaneous and joint estimation of time-of-flight, angle-of-arrival, angle-of-departure, and Doppler shift to fully characterize the wireless channel between a sender and receiver. Using this full characterization, xD-Track introduces novel methods to measure and isolate the signal path that reflects off a person of interest, allowing it to localize a human with just a single pair of access points, or a single client-access point pair. Searching the multiple dimensions to accomplish the above is highly computationally burdensome, so xD-Track introduces novel methods to prune computational requirements, making our approach suitable for real-time person tracking. We implement xD-Track on the WARP software-defined radio platform and evaluate in a cluttered office environment. Experiments tracking people moving indoors demonstrate a 230% angle-of-arrival accuracy improvement and a 98% end-to-end tracking accuracy improvement over the state of the art localization scheme SpotFi, adapted for device-free localization. The general platform we propose can be easily extended for other applications including gesture recognition and Wi-Fi imaging to significantly improve performance
    • …
    corecore