View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by UCL Discovery

xD-Track: Leveraging Multi-Dimensional Information
for Passive Wi-Fi Tracking

Yaxiong Xie*, Jie Xiong®, Mo Li+, Kyle Jamieson+$
Nanyang Technological University*, Singapore Management University™
University College London?, Princeton University$
{yxie005, limo}@ntu.edu.sg, jxiong@smu.edu.sg, kylej@cs.princeton.edu

ABSTRACT

We describe the design and implementation of xD-Track, the first
practical Wi-Fi based device-free localization system that employs
a simultaneous and joint estimation of time-of-flight, angle-of-ar-
rival, angle-of-departure, and Doppler shift to fully characterize the
wireless channel between a sender and receiver. Using this full
characterization, xD-Track introduces novel methods to measure
and isolate the signal path that reflects off a person of interest,
allowing it to localize a human with just a single pair of access
points, or a single client-access point pair. Searching the multiple
dimensions to accomplish the above is highly computationally bur-
densome, so xD-Track introduces novel methods to prune compu-
tational requirements, making our approach suitable for real-time
person tracking. We implement xD-Track on the WARP software-
defined radio platform and evaluate in a cluttered office environ-
ment. Experiments tracking people moving indoors demonstrate
a 230% angle-of-arrival accuracy improvement and a 98% end-to-
end tracking accuracy improvement over the state of the art local-
ization scheme SpotFi, adapted for device-free localization. The
general platform we propose can be easily extended for other ap-
plications including gesture recognition and Wi-Fi imaging to sig-
nificantly improve performance.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design

1. INTRODUCTION

Passive localization and tracking without any device carried by
or attached to a person has been an exciting area of recent inter-
est, with important applications in security, elderly care, and retail
business. While techniques based on visible light [8] and cam-
eras [9] have been proposed, Wi-Fi based solutions possess unique
advantages stemming from non-line-of-sight signal coverage and a
pervasive existing deployment of Wi-Fi access points. Such sys-
tems receive and process Wi-Fi transmissions reflected off objects
in the vicinity to extract essential information about nearby reflec-
tors’ locations and velocities. By its nature, passive tracking is
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Figure 1: (a) Joint estimation in both time-of-flight (ToF) and
angle-of-arrival (AoA) dimensions. (b) Joint estimation in ToF,
AoA and Doppler shift parameter dimensions.

more challenging than localization of the transmitter itself because
signal reflections are typically orders of magnitude weaker than the
directly-received transmissions and arrive at the receiver superim-
posed with other reflections.

Wi-Fi radio mapping-based methods for passive localization [12]
circumvent the difficulty in modeling the signal propagation in a
rich multipath environment with a labor-intensive site survey in-
volving CSI- or RSSI-based fingerprinting. But these methods re-
quire a high density of Wi-Fi access points and achieve only a
coarse localization accuracy that may degrade with changes in the
environment. An alternative approach is to directly estimate prop-
erties of the wireless channel such as angle-of-arrival (AoA) [2, 14]
or time-of-flight (ToF) [13] in order to infer a target’s location.
While promising, this approach faces fundamental resolution limi-
tations stemming from a limited number of antennas (in the case of
AoA) and a limited radio frequency bandwidth (in the case of ToF).
Recent attempts to overcome these limitations with client motion
[2] or channel combining [13, 15, 16] work, but apply in fewer
practical situations of interest.

In this paper, we propose x-Dimensional Track (xD-Track), a new
approach to improve localization and tracking accuracy based on
jointly estimating as many different properties of a wireless prop-
agation path as possible, each in its own separate dimension. As
we detail in §2, wireless signal propagation can be measured in fre-
quency, time, and space, leading to estimates of a number of prop-
agation parameters including AoA, ToF, angle of departure (AoD),
Doppler shift, and signal attenuation. To illustrate the intuition be-
hind our scheme, consider Figure 1, which depicts three signals
arriving at a receiver on time (ToF) and space (AoA) axes. If the
receiver were to estimate only the respective ToF values of the two
signals S1 and S2, resolution limits imposed by the channel fre-
quency bandwidth would result in the estimates merging into one,
since the two signals’ respective ToF values are too close to each
other. But when the receiver jointly estimates ToF and AoA as
shown in Figure 1(a), signals S1 and S2 become resolvable, since
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Figure 2: Passive localization by jointly making use of multiple
dimensions of information.

they arrive at sufficiently-separated angles. Conversely, signals S1
and S3 cannot be separated using AoA alone, but become resolv-
able when the receiver leverages a joint ToF-AoA estimate.

This concept extends to even higher dimensions, as shown in
Figure 1(b), where the receiver jointly and simultaneously esti-
mates ToF, AoA, and Doppler shift. The reflectors of signals S4
and S5 are located close to each other and so exhibit similar AoA
and ToF values, hence the receiver cannot separate them even with
atwo-dimensional estimate. However, S4’s reflector may be a mov-
ing human, hence S4 would exhibit a non-zero Doppler shift. On
the other hand, S5 may reflect off a static object, hence would ex-
hibit a Doppler shift close to zero. In this case, we can easily sepa-
rate these two signals with a three dimensional estimate, as shown
in the figure. In general, with a higher dimensional estimate, pairs
of signals become more easily separated, increasing the resolvabil-
ity of different signals without changing the resolution of any indi-
vidual dimension.

xD-Track is a general framework that incorporates the use of
multi-dimensional signal propagation parameters in passive object
tracking. Specifically, we develop a maximum-likelihood super-
resolution approach to jointly estimate multi-dimensional param-
eters. The estimation accuracy for each signal propagation path
is significantly improved without requiring a large-bandwidth ra-
dio front end for high resolution observations in the time domain,
and without requiring large numbers of antennas for high-resolu-
tion spatial signal profiling. We further reduce computational com-
plexity and make xD-Track practical on commodity wireless signal
processing systems (our prototype has been developed on the Rice
WARP platform). Our trace-driven experiments demonstrate that
the xD-Track prototype can localize a target with only one transmit-
ter-receiver pair, greatly reducing deployment requirements. These
preliminary results demonstrate a 230% improvement in AoA esti-
mation compared with state-of-the-art SpotFi system, and promis-
ing results in ToF and Doppler shift estimation, which together
translate into a 98% improvement of end-to-end object tracking
accuracy. xD-Track can be extended to off-the-shelf commodity
hardware, and our current work is moving towards such a proto-
type. Our multi-dimensional platform can easily be extended for
other applications such as gesture recognition and Wi-Fi imaging.

2. FUNDAMENTAL RESOLUTION LIMITS

In this section, we briefly introduce the resolution limits for each
path parameter and explain how each can help to localize the target.

Time of flight. The propagation time 7 the signal takes to travel
over a particular path from the transmitter to receiver is referred to
as the time of flight (ToF) of that path. ToF can be used to compute
the length of propagation path. In Figure 2, the length of “Path-
1" can be computed using its ToF 71 by 71 X ¢. Therefore, the
feasible locations of the targets (human) fall on the periphery of an
ellipse whose foci are collocated with the sender and receiver. The
resolution of ToF estimation At varies in inverse proportion with
the channel frequency bandwidth B, i.e. At = 1/B: the wider the

bandwidth, the finer the resolution [13].

Angle of arrival. Only the signals with specific incidence angles ¢
can reach the receiver along a specific path. The angle ¢ is called
the angle of arrival (AoA). In Figure 2, the target can be localized
as the intersection point of AoA ¢ and the ToF ellipse. The resolu-
tion of the AoA estimate is determined by the number of antennas
in the receiver’s array.

Angle of departure. Similar to AoA, only the signals moving in
one specific outgoing angle ¢ can reach the receiver along one par-
ticular propagation path. Such an angle ¢ is called the angle of
departure (AoD). The resolution of AoD estimation is determined
by the number of antennas in the transmitter’s array.

Doppler shift. When the reflector is mobile, it causes Doppler
shift y to its reflected signal. Doppler shift can not provide absolute
location information of the target, but can estimate radio velocity of
the target. For example, we can infer that “path-1" in Figure 2 must
arise from a moving target since it has Doppler shift y; # 0 and
“path-2" should be associated with a static reflector like a furniture
as its Doppler shift is zero. Doppler resolution Ay is related to the
observation interval 7. by Ay = 1/T.: the longer the interval, the
finer the resolution.

Complex attenuation. When the signal propagates over a dis-
tance in the environment, its amplitude is attenuated and its phase
is changed: the complex number « is used to quantify these two
phenomena. The power loss of such a path can be characterized as
the norm of @. The power loss of the signal can be used together
with a path loss model to roughly estimate path length and then
localize the target.

3. DESIGN

In this section, we present the system design of xD-Track. We
start with an overview of the system.

3.1 System overview

xD-Track incorporates three main components to achieve accu-
rate passive localization:
Channel sounder. The sender works together with the receiver as
a channel sounder. The transmitter emits a piece of wireless signal
to probe the propagation environment. The receiver measures the
signal propagation in multiple dimensions, including the time, fre-
quency and space. The observation interval 7, the instantaneous
signal bandwidth B, and the antenna number of the sender and re-
ceiver array determines the sensing capability in time, frequency
and space respectively and hence decides the overall sensing per-
formance of the channel sounder. Channel measurements are used
to estimate the multidimensional channel propagation parameters.
Channel parameter estimator. This component estimates prop-
agation parameters for all dominant signals. We assume there are
L dominant signals travel along L paths to reach the receiver and
0; = 11, ¢1, ¢1, 71, @] is a path parameter vector containing param-
eters that characterize the /th path. Specifically, 77 is the ToF due to
the path length, ¢; is the azimuthal AoA of the incident signal, ¢;
is the azimuthal AoD of the outgoing signal, y; is the Doppler shift
caused by the movement of the transmitter, receiver, or a reflect-
ing object and a; denotes the complex attenuation. The channel
parameter estimator takes the channel measurement as input and
estimates the ® = [0, 6, ...,0 ] for all L dominant signal paths.
Passive target locator. We jointly exploit the ToF, AoA, AoD,
Doppler shift and complex attenuation of one signal to localize the
passive target. The first step is to identify all signals that reflect off
the moving human target. We achieve this goal by leveraging the
Doppler shift value of the L signals. Any signal path with Doppler



shift y; # O must arise from the non-static reflectors. The path
parameter vector 6; for signal / will be kept for further processing
and may contain the location information of the target.

After we identify the propagation path that connects the trans-
mitter, the moving target and the receiver, we need to localize the
reflector using the multi-dimensional parameter 6; we estimated.
The idea is to find the location that can best fit the estimated values
for ToF, AoA, AoD and the complex attenuation. Mathematically,
we find the location (x;, y;) that minimizes the following objective
function:

Ai = wel(ti — )% + we (i — o)?
+we (i — 1) + wala? - a?) (0

where 1;, ¢;, ¢;, @;, are the ToF, AoA, AoD and complex attenua-
tion that we will observe if the target is located at location (x;, y;).
The weighting factors wr, wg, Wy, Wo are constants to unify the
different scales of the corresponding dimensions, for example ToF
values are measured in ns and AoAs are measured in radian.

3.2 Channel parameter estimator

In this section, we detail our design of the channel parameter es-
timator. We employ a joint maximum-likelihood based algorithm
to estimate the channel parameters. Before we introduce the algo-
rithm, we briefly justify the rationale behind our design choices.

Joint estimation. In order to localize the target with multi-dimen-
sional information, a naive approach is to first estimate each di-
mension separately by performing multiple one-dimensional esti-
mates and then combine the results for a final target location es-
timate. As illustrated in §1, one-dimensional estimates are often
not able to achieve the required fine-grained resolution. Further-
more, the problem of associating path parameters from different
dimensions is not easy. For example, we may obtain four estimated
Ao0AS ¢1, @7, ..., ¢4 and only three estimated ToFs 7y, 7y, ..., 73. If
two ToFs are too close to each other, they merge into one. Pairing
each AoA with its respective path’s ToF is non-trivial.

Instead of estimating path parameters separately and then com-
bining the information, we apply joint estimation to handle the
aforementioned problems. Naturally, joint estimation can estimate
multi-dimensional information for each path simultaneously so the
estimations from different dimensions are paired automatically for
each path. Furthermore, when multiple dimensions are jointly es-
timated, the effective resolution is significantly increased: two sig-
nals can be effectively separated for higher resolution if they can
be separated in any one dimension.

Maximum-likelihood based estimation. Subspace-based meth-
ods, like MUSIC, have been widely adopted to estimate channel
parameters. Such methods partition the eigenvectors of the array
covariance matrix into signal and noise subspaces and leverage ei-
ther of them to estimate the signal parameters. MUSIC is a one
dimensional estimation algorithm. Even though SpotFi [7] extends
MUSIC to two dimensions that can estimate ToF and AoA simulta-
neously, there is no general framework for such methods to incor-
porate many dimensions. Most importantly, subspace-based meth-
ods sacrifice accuracy for computational efficiency [4], resulting
in sub-optimal localization. At the same time, the computational
load of a two-dimensional extension of MUSIC is extremely high,
hindering real-time operation.

On the other hand, maximum-likelihood (ML) methods demon-
strate superior performance in estimation accuracy. ML-based al-
gorithms also have straightforward extensions to incorporate an ar-
bitrary number of dimensions, which is important for our applica-
tions. Furthermore, such methods can produce optimal estimation

performance, approaching the Cramer-Rao lower bound (CRLB)
on the estimation error variance [4]. Although the superiority of
the methodology has rarely been questioned, the concern for the
computation overhead arises if the applications require a solution
in real time, just as most indoor localization systems. Fortunately,
several computational optimizations can be applied to the ML ap-
proach to significantly reduce the computation overhead without
sacrificing optimality.

3.2.1 Estimation algorithm

In this section, we present xD-Track’s ML-based joint estimation
algorithm. We assume that the transmitting AP has a array of N
sending antennas and the listening AP has an array of M receiving
antennas. As mentioned earlier, 8; = [7y, @7, @1, v, @] is a path
parameter vector containing parameters that characterize the /th
path from the transmitter to receiver. If we denote the transmitted
signals as U(t) = [uy(t),up(t),...,un ()], then we can use the
above parameters to analyze the signal received over the /th path as
follows:

si(t;0) = [s1:0)), s28:0D), ..., sm(5;6D]7

= arexp {j2myit) ex(dpesten ult — ) (2)
where the cr(¢;) and cs(¢;) is the steering vector of the sender
and receiver array respectively. The overall received signal at the

antenna array is then the superposition of the signals received over
the L paths:

L

Y(0) = ) s:0) +N@), 3)
I=1

where N(#) is an M-dimensional complex white Gaussian noise
vector capturing the background noise.

With the superposed signal captured at the receiver, we need to

first determine the number of dominant paths L. Recent empiri-
cal evidence [6] has shown that the dominant path number of in-
door environment is limited. In our implementation, we first set L
to be a large number, e.g. 10, to ensure that we do not miss the
weak paths as for passive localization, the signal reflected from the
human target can be weak. On the other hand, if the real domi-
nant path number in the environment is less than the number L we
set, our algorithm can still accurately estimate parameters of those
dominant paths with large power, but will generate some paths with
extremely low power. We will adjust the path number by dropping
those paths with signal strength below the dynamic range of the
sensing devices.
Maximum likelihood estimation. Given y(¢), one observation of
Y(#) over the observation interval 7', the objective of ML estima-
tion is to estimate the parameters ® = {HI}IL: | for the L paths. The
ML function inputs parameters 61, 6, ..., 87, and considers them
jointly, measuring the power difference between guessed parame-
ters and the received data:

A(@;y) = —fT

For the given observation, to solve the ML problem, the objective is
to maximize A(6;Yy), i.e., make it as close to zero as possible with
respect to the path parameters:

OpmL = argglax{A(@;y)}. ®))

L 2

MOESIOICN

I=1

dt. (@]

Inspection of Equation 4 reveals that this is a non-linear least squares
problem, so no closed-form solution exists to achieve a global max-
imum. Since the complex attenuation that maximizes A(6;y) can
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Figure 3: The placement of the transmitting and receiving APs in
our indoor office environment testbed.
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be analytically expressed as a function of other parameters, the
computation of ®@’s ML estimate is essentially a 3 X L-dimensional
brute-force search with high computational load due to the high
dimensionality of ®@. Thus, to make it suitable for real-time appli-
cations such as location tracking indoors, we need to significantly
reduce the computational load involved to make it suitable for real-
time indoor motion tracking.

3.2.2  Reducing computational complexity

Expectation maximization. Expectation maximization (EM) [3]
is a conceptual framework for solving ML estimation problems,
which works in an iterative way to maximize local approximations
of the likelihood function and converge to the global maximum.
We apply the EM algorithm here to decompose the above 3 x L-
dimensional non-linear optimization procedure into L three-dimen-
sional optimization procedures that can be conducted in parallel,
greatly reducing the time required to compute an estimate.

However, for each three-dimensional individual search, the com-
putational load is still high for real-time applications. For instance,
if the search space for a single 6; path parameter is 7; € [0,300] ns
with a 0.5 ns step, ¢; € [0,360°] with a half-degree step, and
v; € [-20,20] Hz with a 0.1 Hz search step, then we would need
to search a prohibitive 1.75 x 107 possible combinations in each
iteration to obtain the global optimum with EM.

SAGE. We apply the Space-Alternating Generalized Expectation-
Maximization (SAGE) algorithm [5] to further reduce each three-
dimensional search into three one-dimensional searches. SAGE is
actually an extension of EM, which updates the ML estimate of pa-
rameters sequentially. For example, to search the exactly the same
space we mentioned for EM, we can reduce the candidate number
of combinations from 1.75 x 107 to 1,420 after applying the SAGE
algorithm, which makes it possible to obtain a solution in real-time.

4. IMPLEMENTATION

We implement xD-Track on the Rice WARP platform. Each
WARP kit is attached with an FMC-RF-2X245 module, to enable
four radios on each board. All data recorded is retrieved through
Ethernet connections between the WARPs and a desktop server.
We implement our multidimensional estimation algorithm on the
server side using Matlab. Our xD-Track implementation currently
supports four-dimensional estimation, jointly estimating the ToF,
AoA, Doppler shift and complex attenuation of incoming signals.
Accordingly, the transmitter in our system is equipped with one
antenna and the receiver is equipped with four antennas.

5. EVALUATION

We conduct our experiments in two different types of environ-
ments: an indoor office spanning more than 1,500 sq. ft, just as
Figure 3 shows, which is a multipath rich environment, and an in-
door meeting room where direct path signal dominates. The trans-
mitter and receiver are WARPs placed at fixed locations; a hu-
man target moves around in the environment whose trajectory is
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Figure 4: (a): ToF and AoA estimates with no reflector present.
(b): Histogram of AoA estimates with no reflector. (¢): Histogram
of ToF estimates with no reflector. (d): ToF and AoA estimates
with a metal reflector. (e): Histogram of AoA with a metal reflector.
(f): Histogram of ToA with a metal reflector.

recorded using 3 cameras as ground truth. The transmitter is con-
figured to transmit packets every 20 ms using one 20 MHz channel
in the 2.4 GHz frequency band. The receiver listens to channel that
the transmitter is working on, records 40 sequential packets as one
channel measurement which corresponds to an observation interval
of 800 ms and uploads the channel measurements to server.

Resolving a reflection signal. We first test whether we can suc-
cessfully resolve signals reflecting off objects in the environment.
We send a signal to sense the environment. Then, we put a reflector
(a metal board) in the environment, choosing its position to guaran-
tee a signal reflection from the transmitter to the reflector and back
to the receiver and sense the channel again. With the channel mea-
surement, we estimate the AoA and ToF for all resolvable paths.
Figure 4(a) plots the estimation results when there is no reflector—
the dashed line represents the ground truth AoA of the direct path.
Clearly, we can observe four dominant paths including one direct
path and three reflection paths. As a comparison, Figure 4(d) plots
the AoA and ToF estimates after we place the metal reflector. We
are now able to resolve five dominant paths—the one circled arises
from the newly placed reflector and the dashed line gives us the
ground truth AoA of the reflection path. Figures 4 (b) and (e) plot
the histogram for AoA estimation and Figures 4 (c) and (f) plots the
histogram for ToF estimation. We can see that xD-Track clearly re-
solves the signal reflected off an object in the environment.

Finding the mobile path. In this section, we want to verify the
efficacy of using Doppler shift to identify a path that is associated
with a moving target. In our experiment, we first measure the chan-
nel without the moving target. Then, we let a human walk in the
environment and measure the channel again. Figures 5 (a) and (d)
plot the Doppler shift and AoA estimation results for all resolvable
paths, (b) and (e) plot the histogram of AoA estimation, and (c) and
(f) plot the histogram of Doppler shift estimation. Comparing (a)
and (d) we can easily identify the paths associated with the moving
target. And in Figure 5 (c) we can also observe that only the mobile
path has non-zero Doppler shift values, which makes Doppler shift
a good indicator of a reflector’s mobility.

Estimating the AoA of a reflection path. In this experiment,
we evalate xD-Track’s parameter estimation accuracy. We put a
reflector in the propagation environment and manually measure
its ground-truth AoA. We compare the estimation result with the
widely used MUSIC algorithm and the estimation scheme proposed
in SpotFi [7]. Even though SpotFi is a active localization system,
its parameter estimation algorithm can be directly used to estimate
the reflection paths. To provide a fair comparison, we implement a
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Figure 5: (a): Doppler and AoA estimations in static environment.
(b): Histogram of AoA estimations. (c): Histogram of Doppler
estimations. (d): Doppler and AoA estimations with human mo-
tion. (e): Histogram of AoA with human motion. (f): Histogram of
Doppler estimations with human motion.
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Figure 6: CDFs of the AoA estimation errors for reflection paths.

two-dimensional xD-Track so that we have the same number of di-
mensions as SpotFi. Figure 6 plots the CDF of the AoA estimation
error. We can see that xD-Track’s median error is about five degrees
with only four antennas, outperforming the state-of-the-art SpotFi
and MUSIC by 230% and 360% respectively. We can exploit the
AoA and ToF estimation errors to project end-to-end localization
performance in object tracking, which gives us a 98% and 213%
improvement of end-to-end accuracy over SpotFi and MUSIC, re-
spectively. The reason we can achieve this improvement is because
of the optimality of our ML-based estimation algorithm. On the
other hand, both MUSIC and SpotFi are subspace-based estimation
algorithms, which are sub-optimal in terms of estimation accuracy.

6. RELATED WORK

Passive localization using diverse dimensions. Wi-Vi [2] uses
one antenna to emulate a large antenna array and estimate AoA to
track the direction of human motion. WiTrack [1] uses customized,
dedicated hardware to transmit an ultra-wideband wireless signal
to conduct channel sounding and estimate ToF for human track-
ing. Doppler shifts cannot provide absolute location information
of a passive target, but instead gives us motion-related information.
Hence, Wi-See [10] exploits it to classify different type of human
gestures. While some recent systems [6, 7] consider the use of both
AoA and ToF for object tracking, their algorithms are designed to
estimate two-dimensional parameters, and cannot generalize in a
straightforward way to estimate signals in higher dimensions.

Channel parameter estimation algorithms. Subspace-based al-
gorithm has been widely used for channel parameter estimation,

such as one dimensional MUSIC [11] and two dimensional SpotFi [7].
Such algorithms are appealing for their computation efficiency, which,

however, sacrifice the optimality of accuracy. Besides, subspace-
based algorithms have no elegant extensions to higher dimensional

estimations. On the other hand, ML-based algorithms [3, 4] are
theoretically optimal in terms of estimation accuracy and can be
easily extended to higher dimensions. Furthermore, the ML-based
EM [3] and SAGE [5] algorithms can localize efficiently without
sacrificing optimality.

7. CONCLUSION

xD-Track is able to incorporate information from many possible
signal dimensions to improve resolution. We believe this platform
will open a new window to significantly improve the performance
for applications besides localization including gesture recognition
and Wi-Fi imaging.
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