35,420 research outputs found

    Unifying Sparsest Cut, Cluster Deletion, and Modularity Clustering Objectives with Correlation Clustering

    Get PDF
    Graph clustering, or community detection, is the task of identifying groups of closely related objects in a large network. In this paper we introduce a new community-detection framework called LambdaCC that is based on a specially weighted version of correlation clustering. A key component in our methodology is a clustering resolution parameter, λ\lambda, which implicitly controls the size and structure of clusters formed by our framework. We show that, by increasing this parameter, our objective effectively interpolates between two different strategies in graph clustering: finding a sparse cut and forming dense subgraphs. Our methodology unifies and generalizes a number of other important clustering quality functions including modularity, sparsest cut, and cluster deletion, and places them all within the context of an optimization problem that has been well studied from the perspective of approximation algorithms. Our approach is particularly relevant in the regime of finding dense clusters, as it leads to a 2-approximation for the cluster deletion problem. We use our approach to cluster several graphs, including large collaboration networks and social networks

    Identification of network modules by optimization of ratio association

    Get PDF
    We introduce a novel method for identifying the modular structures of a network based on the maximization of an objective function: the ratio association. This cost function arises when the communities detection problem is described in the probabilistic autoencoder frame. An analogy with kernel k-means methods allows to develop an efficient optimization algorithm, based on the deterministic annealing scheme. The performance of the proposed method is shown on a real data set and on simulated networks

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore