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ABSTRACT 

Asare-Manu, Vincent O. A., Image Segmentation with Human-in-the-loop in Automated 

De-caking Process for Powder Bed Additive Manufacturing. Master of Science in Engineering 

(MSE), July, 2023, 64 pp., 6 tables, 32 figures, references, 69 titles. 

Additive manufacturing (AM) becomes a critical technology that increases the speed and 

flexibility of production and reduces the lead time for high-mix, low-volume manufacturing. One 

of the major bottlenecks in further increasing its productivity lies around its post-processing 

procedures. This work focuses on tackling a critical and inevitable step in powder-bed additive 

manufacturing processes, i.e., powder cleaning or de-caking. Pressing concerns can be raised 

with human involvement when performing this task manually. Therefore, a robot-driven 

automatic powder cleaning system could be an alternative to reducing time consumption and 

increasing safety for AM operators. However, since the color and surface texture of the powder 

residuals and the sintered parts are similar from a computer vision perspective, it can be 

challenging for robots to plan their cleaning path. This study proposes a machine learning 

framework incorporating image segmentation and eye tracking to de-cake the parts printed by a 

powder bed additive manufacturing process. The proposed framework intends to partially 

incorporate human biological behaviors to increase the performance of an image segmentation 

algorithm to assist the path planning for the robot de-caking system. The proposed framework is 

verified and evaluated by comparing it with the state-of-the-art image segmentation algorithms. 

Case studies were utilized to validate and 
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verify the proposed human-in-the-loop algorithms. With a mean accuracy, f1-score, precision, and 

IoU score of 81.2%, 82.3%, 85.8%, and 66.9%, respectively, the suggested HITL eye tracking plus 

segmentation framework produced the best performance out of all the algorithms evaluated and 

compared. Regarding computational time, the suggested HITL framework matches the running 

times of the other test existing models, with a mean time of 0.510655 seconds and a standard 

deviation of 0.008387. Finally, future works and directions are presented and discussed. A 

significant portion of this work can be found in (Asare-Manu et al., 2023).  
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CHAPTER I 

INTRODUCTION 

The emergence of additive manufacturing (AM) technology creates more opportunities 

to produce flexible parts with complex features or intricate structures in critical applications, 

such as aerospace (Tahmina et al., 2023) or biomedicine (Geng & Bidanda, 2020). Unlike the 

conventional machining processes that remove excess materials to generate geometric features, 

AM prints a part by adding materials layer-by-layer. In this way, complex features or intricate 

structures can be formed by the stack of profiles on each layer, providing more design flexibility 

opportunities. AM allows complex geometries can be created, customizations can be made, 

quick prototyping can be done, and on-demand production can be done. 

There are many types of AM methods, such as Fused Deposition Modeling (FDM) 

(Mohamed et al., 2015), Stereolithography (SLA) (Huang et al., 2020), and Digital Light 

Projection (DLP) (Geng & Bidanda, 2022), which are widely used in industries. However, 

Powder-bed-based AM processes, such as selective laser melting/sintering (SLM/SLS) (Kruth et 

al., 2005; Yap et al., 2015), binder jetting (Ziaee & Crane, 2019), Direct Metal Laser Sintering 

(DMLS) (Bertol et al., 2010), Electron Beam Melting (EBM), and multi-jet fusion (Cai et al., 

2021), are among the most representative technologies in the AM family. To bind the particles 

together in a binder jetting process, a coating of powdered material is spread out, and a liquid 

binding agent is applied only where it is needed. 
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DMLS AM method is similar to the SLS method, as it can produce metal mold inserts. It 

uses liquid phase sintering; the procedure uses a laser that is held close to the metal powder. The 

SLS AM method can process any powdered material, including polymers, hard metals, ceramics, 

and sand (Kruth et al., 2003). Heat sources, including laser or electron beam and binder, are 

utilized to bond the selective regions on each layer of the metal or polymer powders on a powder 

bed based on the original design. The part is printed in layers, and a new layer of powder is 

spread on top of the preceding layer until the whole print is complete. Once the object is fully 

printed, it must be cooled until hardened before proceeding to the powder extraction. The powder 

extraction process should not be done until the part is solidified, as the powder around the object 

acts as support during printing. Powder bed fusion has benefits, including the capacity to make 

objects with complicated geometries and high resolution and utilizing various materials. Figures 

1-6 show images of all the types of AM processes discussed (Geng & Bidanda, 2022).

Figure 1: Binder jetting process 
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Figure 2: 3D Digital light projection process 

Figure 3: Stereolithography 3D printing process 
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Figure 4: Mechanism of inkjet printing process 

Figure 5: Fused Deposition Modeling 3D printing mechanism 
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Figure 6: Selective laser sintering process. 

On the other hand, necessary post-processing procedures are required in these processes 

to get the final product. Post-processing methods can generally be grouped into four steps: 

powder cleaning, removal of supporting structures, removal of part, and surface finishing for a 

metallic part or polymerization for a product printed by polymer powders (Akbay et al., 2022; 

Cuellar et al., 2018). This study primarily focuses on powder cleaning - the de-caking process. 

Its primary objective is to clean and remove the excess powder from the powder bed after 

printing. The de-caking process is quite straightforward, but it is also inevitable and influences 

the subsequent post-processing steps and further affects the print quality, surface finishing, and 

support detaching (Kumbhar & Mulay, 2018; Vayre et al., 2012). Insufficient de-caking of the 

printed parts could result in undesirable and unacceptable surface quality, un-sintered dust, sags, 

and unstable junction points, rendering parts porous and low built quality (Akbay et al., 2022). 
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Several techniques are involved in the de-caking process, such as applying mechanical 

agitation to break and separating the powder from the printed part. However, the de-caking 

process is conventionally manual, in which an operator manually utilizes a vacuum cleaner and a 

brush to clean the powder bed. Since then, it can call for a significant amount of time and effort 

in this post-processing step and become a bottleneck in increasing the productivity of AM and 

fostering its wider adoption by the industry. A typical manual de-caking operation is presented in 

Figure 7, while the powder-bed condition after cleaning for about 45 minutes can be seen in 

Figure 8. Besides, the time consumption and the quality of the de-caking process also heavily 

depend on the proficiency of the operators. Thus, the time, effort, and cost involved in manual 

post-processing can be highly variable. This becomes a major concern in additive manufacturing, 

especially considering the increasing need for AM in medium-to-large scale production (Cuellar 

et al., 2018).  

Figure 7: Manual de-caking of powder for the SLM process. 
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Figure 8: Build chamber after powder cleaning for 45 minutes. 

Furthermore, when exposed to metallic or nonmetallic powders, powder cleaning can 

raise critical occupational and safety concerns for the operators (Arrizubieta et al., 2020). Also, 

powdered feedstocks, especially active ones such as aluminum or magnesium powders, could 

cause fire hazards with careless operations or inappropriate training (Roth et al., 2019). Fine 

powders for powder-bed-based AM could potentially create inhalation or dermal exposure, 

raising allergic or toxic issues (Ohsawa, 2009). Generally, operators must wear masks or 

protective suits depending on the specific lab policies or operational procedures. 

Notwithstanding that, the time-consuming de-caking process still raises concerns about 

occupational safety and human factors. 

As an alternative solution, a robotic arm is proposed to replace a human operator to 

perform the de-caking task. This way, the process is expected to be faster and reduce health 

concerns because of the reduced exposure between human operators and metallic or plastic 

powder. Specifically, the solution is that a robot arm carries the vacuum cleaner and the brush to 

clean the excess powder in the build plate. Utilizing a robot for this application aims to reduce 

total operational cost, fatigue, and repeatability of the cleaning process. This idea seeks to tackle 
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a significant drawback of the manual post-cleaning process related to the direct human 

involvement and contact with the metallic powders used for the printing. Irrespective of the 

standards and safety regulations that guide AM and 3D printing, human health is still being 

compromised as operators may develop respiratory-related diseases over time due to a long time 

and accumulated exposure to metallic powders. The proposed system could not only resolve the 

hazards of human operations but also, with optimized path planning, reduce the time for the de-

caking process. To set up this system, many components need to be considered. For example, the 

build chamber size for the commercialized powder bed AM systems is small, while the door for 

the robot to enter the chamber can be even smaller. Thus, the collision avoidance algorithm 

needs to be developed so that the robot arm can work more efficiently in this confined space 

while interacting with the sintered parts. 

Moreover, the path planning for the robot arm is always the holy grail in robotics. Since 

the “environment” of the build plate, i.e., the volume of the excess powder, changes along the 

robot operation, the path planning needs to be adaptive to such change for more efficient and 

effective de-caking. Some other considerations and tasks of a robot-driven de-caking system can 

be found in (Nguyen et al., 2020). However, the previous work does not consider a practical 

printing environment, as no powder residuals were located around the part to be cleaned. Also, 

the authors utilized a 3D camera in a fixed position, which may not be applicable for chambers in 

powder-bed AM systems with limited spaces. Most importantly, the image processing and 

cleaning time were not reported, which can be an issue when considering the efficiency in AM. 

This study focuses on developing a computer vision (CV) algorithm that enables the 

abovementioned concerns for the robot de-caking system. CV, as a section of artificial 

intelligence (AI), trains the system to interpret and understand the visual world for decision-
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making purposes (Voulodimos et al., 2018). Specifically, in this work, the primary objective of 

the CV system is to differentiate the powder from the sintered parts and the concrete build 

chamber. An efficient HITL algorithm could guide the robot arm to where the powder residuals 

are and assist in efficient path planning. However, this task can be challenging for the de-caking 

process. First, it can be challenging for a CV algorithm to differentiate the powder and non-

powder (printed part and surrounding) regions. For powder bed additive manufacturing 

processes, the surface texture and color of the printed part are similar from the computer’s visual 

perspective. Second, even though the location of the parts on the build plate can be extracted 

from the printing plan, it can be hard and time-consuming to model the powder flow during the 

de-caking process. Thus, the current state of the cleaning task can be seen as unknown. Lastly, 

the parts created by some powder bed AM processes are fragile, such as the green part in the 

binder jetting process. Prolonged vacuum cleaning time could degrade the quality or even 

destroy it. Therefore, a more efficient and accurate CV algorithm to segment the powder using 

the image or video data. 

In this study, we adopt a human-in-the-loop (HITL) strategy to enhance the performance 

of the segmentation algorithm. Human knowledge, represented by captured biological 

information, is incorporated into the segmentation algorithm to increase its intelligence, 

reliability, and accuracy to make the CV system more intelligent and efficient (X. Wu et al., 

2022). The major framework can be separated into two main steps: 1) a conventional image 

segmentation algorithm roughly differentiates the powder from the part and the background, i.e., 

the build chamber; 2) an eye-tracking device captures the location of an operator’s eyeballs on 

the image/video during the powder cleaning process, which can be utilized to differentiate the 

powder residuals versus all non-powder regions distinctively. The proposed framework is more 
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computationally efficient and fast when compared to previous studies, which is more suitable for 

robot operations and fast path planning. 

Figure 9: A summary of the Human-in-the-Loop (HITL) process in image segmentation. 

The rest of this work is organized as follows. Chapter 2 reviews the classic image segmentation 

algorithms. In Chapter 3, we present our proposed segmentation framework in detail. Chapter 4 

presents the results, discussions, and comparisons between our framework and the other existing 

segmentation algorithms. Concluding remarks and directions for future work that are motivated 

by our new framework are presented in Chapter 5. 

Research Questions 

The research aims to develop a machine learning model incorporating eye tracking for de-

caking powder bed additive manufacturing processes. The following two (2) research questions 

have been presented to set the basis for this research: 

1. Can classic existing segmentation algorithms be utilized for powder/part separation?

2. How can human input (eye movement) be automatically incorporated into machine

learning algorithms to enhance segmentation performance?

original image segmented image 

human – computer 

interaction 
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CHAPTER II 

LITERATURE REVIEW 

Image Segmentation (IS) 

As a subset of computer vision (CV), image segmentation partitions images into different 

regions for further analysis based on some image features (Daniel et al., 2012; Sevak et al., 

2018). It is widely used in many applications, such as autonomous driving, manufacturing, and 

biomedicine (Raut et al., 2009). In the biomedical field, image segmentation algorithms are 

widely adopted to detect tumors in the human brain and identify cancer cells from the images 

captured by computed tomography (CT) or magnetic resonance imaging (MRI). 

The performance of a segmentation algorithm is significantly dependent on the type, quality 

(pixel density between the background and foreground), properties or settings (brightness level), 

image format (color or grayscale) of the image, the effectiveness of the segmentation algorithm, 

and, more importantly, the training depth or robustness of the model for segmentation (W. Khan, 

2014). The image’s quality could heavily influence a segmentation algorithm’s performance. For 

example, an image with a distinct pixel density between different clusters and the background 

could be easier segmented with clear boundaries among different entities. Similarly, properties 

such as the percentage of brightness, contrast, and shadows, which may not be a challenge for 

any human operators, could also affect the performance of a segmentation algorithm (Mary 

Synthuja Jain Preetha et al., 2012).  
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Many image segmentation algorithms have been developed over the past few decades based 

on thresholding, edge detection, region-based, and fuzzy theory-based segmentation (W. Khan, 

2014), summarized in Figure 4. 

Figure 10: Summary of the discussed Computer Vision (CV) algorithms with a focus on image 

segmentation 

Image Segmentation by Thresholding 

There are several ways of thresholding, such as Otsu thresholding (X. Xu et al., 2011), 

binary thresholding (Bovik, 2009), to-zero thresholding (Bali & Singh, 2015), etc. All 

thresholding utilizes a grey-scale image and an optimal threshold value (𝑡∗) is either assigned or

calculated. Generally, all thresholding methods perform image segmentation by comparing the 

pixel value at each point in the image (𝑣𝑖), to the calculated or assigned threshold value (𝑡∗).All

the gray level values in the image are set to black (i.e., the intensity, 𝜇0 = 0) if the pixel value,

𝑣𝑖 ≤ 𝑡∗or white (i.e., the intensity, 𝜇1 =255) if 𝑣𝑖 > 𝑡∗. For binary thresholding where 𝑡∗ is

assigned, a trackbar can be generated to manually obtain the desired point with the target 

segmented regions (Sahoo et al., 1988). The fast-marching method (A. Xu et al., 2010), Otsu 

method (X. Xu et al., 2011), entropy criterion and genetic algorithm or Li method (Li & Lee, 

1993; K. Wu & Ban, 2011), and particle swarm optimization (Jiang et al., 2012). The calculation 
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of 𝑡∗ is based on the nature of the objective function of the image segmentation used in the study.

According to (Cao et al., 2021), if 𝐼 is a grayscale image of size 𝑚 × 𝑛, with pixel intensity 𝑣𝑖

(0 ≤ 𝑣𝑖 ≤ 255). If we aim to have two classes 𝐶0 and 𝐶1 ,the objective function for Otsu

thresholding is given by: 

𝜎(𝑡) = ∑ 𝑝𝑖

𝑡

𝑖=0

. (𝜇0(𝑡) − 𝜇)2 + ∑ 𝑝𝑖

255

𝑖=𝑡+1

. (𝜇1(𝑡) − 𝜇)2

Where 𝜇0 and 𝜇1= mean intensities of the two classes

𝑡 = threshold value 

𝑝𝑖 = probability of a pixel of intensity i, which is described as

𝑝𝑖 =
𝑓(𝑖)

𝑚 × 𝑛

and f (i) represents the number of pixels with intensity i 

The optimal threshold t* is then calculated by the argmax operation, which yields an argument that 

gives the maximum threshold value from the objective function 𝜎(𝑡). Mathematically, it is then 

computed by: 

𝑡∗ = arg  𝑚𝑎𝑥𝜎(𝑡)

and 0 ≤ 𝑡∗ ≤ 255

Given that the mean intensity of the image for the binary classes is then selected following the 

below: 

𝜇(𝑡) = {
𝜇0 = 0, 𝑣𝑖 ≤ 𝑡∗

𝜇1 = 255,          𝑣𝑖 > 𝑡∗ 
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Edge-based Image Segmentation 

Edge-based image segmentation, also called active contouring, is designed to explore the 

outline or boundaries within an image (W. Khan, 2014). It traces the outline of the objects by 

detecting discontinuities in brightness. Points of discontinuities are then arranged into line 

segments or edges (Chakraborty et al., 2017). (Lakshmi et al., 2010) separated the edge detection 

methods into two major categories, i.e., gray histogram and gradient methods. Interested readers 

will find relevant research contributions in the reference list (Lakshmi et al., 2010; Wahab et al., 

2013; Wesolkowski et al., 2002; Yu et al., 1991; Zaim, 2008). In the edge-based image 

segmentation method, the objective is to detect edge pixels and then connect them to form the 

borders between the areas or directly locate the boundaries between the regions. 

 All edge-based operators are mainly grouped into two – gradient-based and Gaussian 

based. For any digital image, the gradient-based operators compute the first-order derivative, 

whiles the Gaussian-based operators compute a second derivative(Narendra & Hareesh, 2011). 

Examples of edge-based image segmentation methods include active contours and edge linking 

(Q. Wu & Castleman, 2023), the Canny edge detector, the Prewitt operator, the Marr-Hildreth 

operator, and the Sobel’s method(Kang & Wang, 2007). Like the Prewitt and Robert methods, 

the Sobel method is classified as a gradient-based operator. On the other hand, the Canny and 

Marr-Hildreth operator (Laplacian of Gaussian) are Gaussian-based (R. Zhang et al., 2005). 

Active contours, often known as snakes, can be applied to a picture to match the borders or 

boundaries of the objects we wish to discover within the image (Hsiao et al., 2005). The contours 

automatically change their shape to match the selected boundaries. Edge linking connects 

adjacent edge pixels to form continuous contours and assemble distinct edge segments to form 

meaningful areas or objects.  
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For an image pixel of dimensions x and y, and a standard deviation 𝜎, which determines 

the degree of smoothing and mask size, a Gaussian function is chosen as the low-pass filter, 

which first smoothens the image with a low-pass filter (Russo & Lazzari, 2005). The above 

statement is mathematically represented as follows: 

𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒

−(
𝑥2+𝑦2

2𝜎2 )

From the equation above, the Laplacian of Gaussian (LoG) or Marr-Hildreth operator is then 

computed as: 

𝐿𝑜𝐺 =
𝜕2

𝜕𝑥2
𝐺(𝑥, 𝑦) +

𝜕2

𝜕𝑦2
𝐺(𝑥, 𝑦) 

𝐿𝑜𝐺 =
𝑥2 + 𝑦2 − 2𝜎2

𝜎4
𝑒

−(
𝑥2+𝑦2

2𝜎2 )

Region-based Image Segmentation 

Region-based segmentation techniques are used to explore the segmented regions directly 

from an image. Image pixels are grouped into various clusters based on their similarities in 

intensity, texture, and color. Similar to clustering algorithms in unsupervised learning, a 

homogeneous region is established within the image based on the location of the values of the 

pixels in the feature space. For example, as a popular clustering algorithm, mean-shift clustering 

is widely used for segmentation, where the features, such as location, texture, and color, are 

extracted for every pixel in the image and then classified based on their similar traits (Zhou et al., 

2008). (Karoui et al., 2007) utilized texture and level set methods to propose a new way of 

segmenting an image, which includes a feature selection stage that fits each feature’s weight.  
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Other segmentation algorithms, such as the ones based on neural networks and deep 

learning techniques, are also proposed, which are omitted in this paper. Interested readers could 

refer to the reference list (Kazemi et al., 2008; Terry & Vu, 1993; X. Zhang & Tay, 2007). This 

class of methods calls for much more computational resources and larger training set for near-

human or even superhuman performance.  

K-means Clustering

K-means is one of the most straightforward unsupervised learning techniques to handle

well-known clustering problems. K-means clustering divides n data points into k clusters to 

group together comparable data points. K-means clustering can assist in locating these segments 

by assembling pixels with similar colors or other feature values. In K-means clustering, each 

pixel is assigned to the cluster with the closest centroid using an iterative process (Shukla, 2014). 

The objective function J for the K-means algorithm, which minimizes the sum of squared 

distances between all points and the center of the cluster, is given by: 

𝐽 = ∑ ∑ ||𝑥𝑖 − 𝑐𝑗||2

𝑘

𝑗=1

𝑛

𝑖=1

Where: 

k is the number of clusters 

n is the number of data points (pixels) 

𝑥𝑖 is the set of each pixel; {𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛}

𝑐𝑗 is the set of the centroid of each cluster; {𝑐1, 𝑐2, 𝑐3, … . . , 𝑐𝑘}

||𝑥𝑖 − 𝑐𝑗||2 is the Euclidean distance between each data point and its center
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According to (Salihah Abdul-Nasir et al., 2013), the algorithm for K-means clustering for 

image segmentation consists of the following steps: 

1) Initialize the center and the number of k clusters.

2) Find the Euclidean distance for each pixel in a picture.

3) Assign each pixel to the closest center based on the distance.

4) Calculate the new position of the centroid once all the pixels have been assigned.

5) Repeat the procedure until the tolerance or error value is met.

6) Resize the pixels in the image cluster.

Artificial Neural Network Based Image Segmentation 

This type of segmentation utilizes a machine learning approach, specifically Artificial 

Neural Networks (ANN), in determining an image segment. Each pixel in an image is matched 

to a neuron; therefore, the whole image forms a neural network. Next, this neural network, 

considered as the data, is programmed or trained using any suitable software programming 

language (Terry & Vu, 1993). The neurons with similar traits are then classified as segments 

after the training. Specifically for image segmentation, MLP, FFNN, BPNN, and PCNN are 

popular and most-used algorithms (Van Der Zwaag et al., 2002). In terms of literature and past 

research work, (Kazemi et al., 2008) and (X. Zhang & Tay, 2007) have proposed fast new image 

segmentation methods, including the training of a Fuzzy Hopfield Neural Network (HNN) and 

Fast learning Artificial Neural Network (FLANN). 

Like a human brain, the neural network has several layers of neurons that receive inputs 

processed to produce an output (Abiodun et al., 2018). In image segmentation, the input layer 
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receives the image or the image features. The middle layers perform the computations and 

transformation of information to predict a meaningful output (Saravanan et al., 2014). The 

network performs backpropagation to understand the data set further and improve the output 

with reduced errors.  
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CHAPTER III 

METHODOLOGY 

In this study, we aim to develop an image segmentation algorithm for the de-caking 

process for powder-bed AM, with major concerns regarding image processing speed and 

performance.  Human-in-the-loop (HITL) is defined as a subsection of artificial intelligence (AI) 

that combines human and machine intelligence to develop or create machine learning algorithms 

(Chai & Li, 2020; X. Wu et al., 2022). Including prior knowledge from humans in the learning 

framework makes the model more effective and flexible as the learner does not rely solely on 

information from limited data (Mosqueira-Rey et al., 2022). 

Many researchers describe data pre-processing as part of the human-in-the-loop pipeline 

as one of the most critical steps. (Chai & Li, 2020) reported that about 80% of the time spent on 

model development is consumed during pre-processing data stage. It comprises four main 

subsections: data extraction, cleaning, integration, and dimensional reduction. Through this 

crucial stage, noisy data or outliers are removed to increase the model performance, and the 

training set is refined, leading to more representative results that increase the prediction 

performance (Sevak et al., 2018). Figure 5 simplifies the subgroups of data pre-processing in the 

HITL pipeline. 
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When adopting the typical classification algorithm for image segmentation in the de-

caking process, the contour of the powder and the printed parts need to be manually drawn using 

a mouse or a writing pad. This process involves the mechanical movement of hands and human-

computer interaction, which can take a long time to get an extensive training set. During this 

process, the human-computer interaction starts from the human eyeball movement on the screen, 

which guides the movement of the muscles in the arm. The eyeball would stare at a specific 

region triggered by the operator’s intention, whose movement is much faster than the mechanical 

movement of the arm. Therefore, if the position of the eyeball can be captured, this locational 

information could enhance the performance of the segmentation algorithm. 

Data Collection and Pre-processing 

Initially, the images of the printed parts from an EOS machine Located at the CAMICS 

laboratory at the University of Texas Rio Grande Valley were taken as sample photos for the 

experiment. The sample comprised 40 images of 3 random printed parts captured in multiple 

angles. Out of 40 images, six (6) images were selected based on how different they looked from 

each other in different angles to proceed with the experiment. Moreover, images from the 

internet were also included in selected 30 images to test the versatility of the performance of the 

HITL eye-tracking plus segmentation algorithm proposed in the study.  

Prior to data processing, the images were pre-processed by numbering, resizing (500x500 

pixels), and formatting (i.e., jpg, jpeg, and png), which was performed by Python programming. 

For identification, each image was given a number between 1 and 30 and saved in a specified 

folder.  
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Figure 11: A summary of general data pre-processing procedure in machine learning. 

Eye Tracking Software 

All 30 images were pooled into six groups of different studies within a single experiment 

to be presented to the participant to mitigate fatigue. The experimental procedure involved 

displaying images in two experiments for a specific display period per image for each of the six 

studies created in the iMotions software. This also implies that six images were fed as the 

stimulus per study. For example, each experiment comprises study 1 with six images (images 1 

to 5) to be tracked by the observer’s eye within 10s or 30s per image based on which one of the 

two experiments described above. In summary, a complete study per experiment for the 30 

seconds gaze per image lasts 2 minutes and 30 seconds, whiles that of the 10 seconds gaze per 

image lasts 50 seconds. The presentation period for each image was prolonged to 30 seconds in 

the second experiment, compared to just 10 seconds in the first. The purpose of having two 

separate experiments is to have an idea of the optimal time for the eye-tracker to produce the best 

results from the heatmaps generated. During the given time, the participant gazes at the 

powdered areas. After the study, the pool of images was extracted from the software and 

analyzed. The analysis from the results of the eye-tracking leads to the generation of the 
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heatmaps around the powdered region. All the extracted heatmap images were resized again to 

500x500 pixels to facilitate efficient programming, testing, and development of each algorithm 

to be examined.  

iMotions eye-tracking software has been utilized in conjunction with the eye tracker. A 

vertical alignment with the participant’s head was maintained throughout the process by 

positioning the eye tracker precisely in the middle of the lower bezel of the screen. Following 

calibration, the eye tracker was tested to ensure its accuracy and stability and eliminate any 

potential obstructions that could interfere with its operation. The software interface requires the 

experimenter to input specific display features, such as the screen resolution, to enable the eye 

tracker to capture the designated screen area accurately. 

Thus, the proposed framework incorporates the extra information provided by the 

location of the operator’s eye in the image segmentation. A summary of the proposed algorithm 

is shown in Figure 14 below. Specifically, we utilize an eye-tracker (Figure 12) to capture the 

position and time of the eyeball when the operator gets the signal of gazing only at the powder 

region. The eye-tracker would create a focus region and generate a heatmap around that area of 

interest, as shown in Figure 7. With the aid of the iMotions software, the human eye is utilized 

through an eye tracker to generate a segment by forming a heatmap exactly on the focus areas of 

the eye. 
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Figure 12: A Smart Eye Aurora peripheral for the iMotions software 

 

Figure 13: Experimenter focusing on the powder. 

Proposed HITL Eye Tracking plus Segmentation Algorithm 

The procedure for developing the HITL eye-tracking plus segmentation algorithm, presented in 

Figure 8, is listed below as follows: 

1. An operator focuses on the powder region, and the eye tracker captures the location and time 

of the operator’s gaze on the screen. 

2. The location of the operator’s gaze is presented on a heatmap, whose area and color represent 

the location, respectively. 
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3. A K-means thresholding algorithm with 3 clusters (k = 3) roughly segments the heatmap 

images generated by human supervision from the eye tracker. This is where the human-in-

the-loop is combined with the machine learning algorithm, in this case, a k-means clustering 

algorithm. 

4. The segmented images from Step 3 are subjected to a masking technique that further groups 

the clusters from k=3 to a binary gray image showing black and white colors only. This is 

achieved through Python programming by converting all images into the HSV format and 

masking out a specific range of values of pixels that fall with the HSV scale to white. 

5. This further generates a properly segmented binary segmented image where the focus region 

characterized by powder is set to a pixel value of 255 (white), while pixel values falling out 

of the HSV range (non-powder regions) are set to 0 (black). 

The heatmap from the eye-tracking data provides a partially segmented image for the 

powdered area in the pre-segmented image while including the k-means clustering algorithm to 

finetune the already segmented image from eye-tracking. The heatmaps from only the eye-

tracking experiment cannot be utilized for segmentation over the HITL segmentation plus eye-

tracking framework because controlling eyeball movement is relatively difficult and may be 

unreliable. Instead, the biological information is incorporated into the segmentation algorithm in 

a weakly informative fashion, which assists in image segmentation. 

Based on the proposed model, a robotic arm equipped with a vacuum suction end effector 

and a vision system such as a CMOS camera can be trained to clean off powder by locating and 

sucking off the powder regions leaving only the solid or printed part. 
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Figure 14: Summary of the proposed HITL eye tracking plus segmentation algorithm.  

 

 

 

 

 

 

 

 

Figure 15: Summary of eye-tracking masking without classic segmentation algorithm. 
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Technical Specification of the Apparatus  

The observer’s eye movement was recorded using the iMotions Aurora Smart Eye device 

through the eyeball movement. This technique uses cutting-edge technology to capture the 

movement of the eyeball by examining the observer’s black pupil and corneal reflection. A Dell 

Precision 3650 Tower workstation with an Intel Core i9-11900K CPU and 8 cores running at 3.5 

GHz was used for the eye-tracking procedure.  

  The technical characteristics of the eye tracker used in the experiment were as follows: 

sample rates of 60, 120, and 250 Hz, enabling precise and accurate data collection. The eye-

tracking technology requires a 50-to-80-centimeter ideal operating distance between the subject 

and the eye tracker for the best results. The eye tracker’s estimated precision of 0.3 degrees 

allowed for accurate eye movement measurements. Additionally, the device has a precision of 

0.2 degrees, guaranteeing great accuracy. 

The system used a time stamp precision of 1 microsecond to ensure temporal precision, 

providing precise data synchronization. It was observed that the eye tracker also showed reduced 

latency, enabling real-time observation of eye movement. For the 60 Hz, 120 Hz, and 250 Hz 

sampling rates, the reported latency was 25 milliseconds, 17 milliseconds, and 12 milliseconds, 

respectively. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

As mentioned above in the introduction, the proposed HITL eye tracking plus 

segmentation algorithm will be tested and compared to existing segmentation models to test for 

its performance and computational time.  

To evaluate the efficiency of the proposed HITL framework, a sample of 30 images of the 

de-caking process are gathered from laboratory and internet printing experiments. The variety in 

the image source establishes the model’s adaptability irrespective of the image source or printing 

environment. Other classic image segmentation algorithms are selected, including Otsu 

thresholding (Dutta et al., 2022; X. Xu et al., 2011), Li thresholding (Li & Lee, 1993), and K-

means clustering. All the algorithms are tested using Python programming with the aid of 

libraries such as OpenCV (Xie & Lu, 2013), Matplotlib (Hunter, 2007), and scikit-image (Van 

Der Walt et al., 2014). Five images were randomly selected to display the results from all models 

to be compared, and the results for each algorithm are presented in Table 1. The results from the 

remaining 25 images are shown in the appendix. 

This section discusses the results of the case study described in Chapter 4. Five images 

are selected randomly selected to present for comparison and processed by each algorithm. 
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Table 1: Summary of results from all five sampled images tested by each algorithm. 
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In terms of the performance of each algorithm presented in Table 1, even without looking 

at any of the values for the metrics computed for this study, it can be easily deduced that the top 

3 models in no order are HITL eye-tracking plus segmentation (10s), eye-tracking masking only 

(30s), and HITL eye-tracking plus segmentation (30s). Figure 10 presents a side-by-side 

comparison of the top 3 models relative to their corresponding ground truth images.    

  Original         Ground truth   HITL Eye-tracking     Eye-tracking         HITL Eye-

 Image Image              mask (10s)        (30s)        tracking + Seg (30s)     

Figure 16: Comparison of top 3 performing algorithms (HITL eye tracking plus segmentation 

(10s), eye tracking masking only (30s), and HITL eye tracking plus segmentation (30s)) with 

their respective ground truth images. 
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Model Performance Evaluation 

Based on our aim of executing a binary segmentation and the type of image dataset we 

have, the classification or model evaluation metrics considered were accuracy (weighted recall), 

precision, f1-score, and intersection over union (IoU) (Taha & Hanbury, 2015). All these metrics 

are characterized by four components, namely false positives (FP), false negatives (FN), true 

positives (TP), and true negatives (TN) (Kurmi & Chaurasia, 2018). There are only two classes 

for a binary segmented image – white (255) and black (0). For this study, the primary focus 

region is the powder (white segment), which corresponds to the positives, while the non-powder 

segments (black) are to the negatives. Say white is positive and black is negative; the 

components of each metric are defined below. 

1. True Positive means the model correctly predicted the region as white (powder). 

2. False Positive means the model incorrectly predicted the region as white (powder). 

3. False Negative means the model incorrectly predicted the region as black (non-powder). 

4. True Negative means the model correctly predicted the region as black (non-powder). 

It is also important to note that for this study. However, both type I and II errors impact the 

results of a model. Type I (predicting the powder as a non-powder) error is more substantial and 

cannot be ignored relative to type II error. Type I errors impact the model performance, which 

cannot be compromised compared to computational time. In summary, every false prediction 

affects a model’s performance and cleaning time, but depending on the study objectives, 

performance may be slightly weighted than cleaning time. Type II errors may only result in 

longer cleaning time with consistent or constant performance since parts and surroundings 

classified as non-powder are predicted as powder. Therefore, more time is needed than expected 
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also to clean the incorrectly predicted class, the powder. Also, the description of the false 

prediction, whether FP or FN, leads to type I and II errors respectively.  

Pixel Accuracy 

Pixel accuracy is the proportion of correctly detected pixels in the predicted segmentation 

relative to the actual segmentation (T. Rahman et al., 2020). In this work, it was observed from 

the results obtained that the pixel accuracy is equal to the weighted recall. Although pixel 

accuracy provides a simple indicator of overall correctness, it may not be suitable for imbalanced 

datasets where most pixels are in the background class (Wang et al., 2020). Accuracy is 

mathematically presented as: 

Pixel Accuracy = 
(TP + TN)

((TP + FN) + (FP + TN))
 

Precision 

Precision assesses the proportion of foreground pixels that are correctly predicted out of 

all predicted foreground pixels (H. Zhang et al., 2008). Precision is mathematically presented as: 

Precision = 
(TP)

(TP + FP)
 

F1-Score / Dice Coefficient 

The dice coefficient, also known as the f1-score, is a statistic that assesses the degree of 

similarity between expected and actual segmentation. It is calculated by dividing twice the 

intersection by all segmentations representing the expected and actual data. Like all other 

indicators, the Dice coefficient ranges from 0 to 1, with higher values indicating better 

performance (Taha & Hanbury, 2015). By mathematical formula, f1-score is represented as: 

Dice Coefficient = 
(2 × TP)

(2 × TP + FN + FP)
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Intersection over Union (IoU, Jaccard Index) 

The Jaccard Index, often referred to as intersection over union (IoU), determines how 

much of the segmentation’s predicted and actual overlap (M. A. Rahman & Wang, 2016). With 

respect to image segmentation, the formula below shows the calculation of the Jaccard Index: 

IoU, Jaccard Index = 
(TP)

(TP + FN + FP)
 

Results 

All 30 photos were evaluated for the criteria specified above, and density plots were 

generated using Python programming. A density plot, also known as a kernel density plot or 

kernel density estimate (KDE), is a graphical representation of the probability density function 

underlying a continuous random variable (Chhabra et al., 2017). It enables visualization of the 

data distribution and offers a smooth estimate of the density of the data points (Kwon et al., 

2020). Through density plots, the patterns and locations of the distributions of all the models can 

be visually compared by superimposing different density plots on the same graph. Figures 11-14 

show the density plots from evaluating all 30 images. On each one of the density plots shown 

below, the individual tested models are indicated by different colors. 
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Figure 17: Density plot of the accuracy of all 30 images 
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Figure 18: Density plot of the f1-score of all 30 images 
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Figure 19: Density plot of the precision of all 30 images 
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Figure 20: Density plot of the IoU of all 30 images 

The density distribution and horizontal position of each metric curve (from left to right on 

the x-axis) characterize the performance of each algorithm with respect to the metric in question, 

according to the visual interpretation of all plots. The density distribution signifies the population 

of image samples that fall within a specific range of values for a metric. Model performance 

increases as its measure gets closer to 1.0, and the curve moves to the right on the horizontal 
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axis. The density distribution increases as the curve amplitude increase as it distinguishes the 

density distribution. Figures 11 through 13 show that the accuracy, precision, and dice 

coefficient for the HITL 30 seconds eye tracking plus segmentation algorithm denoted as eye + 

seg (30s) generate a curve that is the furthest to the right on the horizontal axis and the 

densest population distribution. For all metrics, the HITL 10s seconds eye-tracking with 

segmentation comes in second, followed by the 30 seconds eye-tracking masking algorithm and 

the 10 seconds eye-tracking masking algorithm. Otsu, Li, and Binary thresholding—the other 

three traditional segmentation algorithms—performed quite poorly because they simultaneously 

have low-density distribution, and their curves are least displaced to the right. 

Contrarily, the accuracy, precision, and f1-score do not entirely follow the same pattern 

as the density plot of the IoU. The standard mean and variance of each plot discussed below 

further support the findings from the plots. 

Standard Mean and Variance of Density Plots 

The density plots above are used to calculate the mean and variance for each metric 

and algorithm. The mean is described as the metric’s central tendency across all 30 images, as 

determined by the distribution depicted by the density plots (M. S. Khan et al., 2006). 

The variance of a metric from a density plot, on the other hand, provides a statistical 

assessment of how dispersed or spread out the values of that metric is from its mean or central 

tendency within a dataset. A density plot’s variance reflects the metric’s variability or 

uncertainty throughout the dataset (Kwon et al., 2020). The variance quantifies the average 

squared deviation of each result from the mean. A higher variance indicates a broader range of 

values and vice versa (Thrun et al., 2020). For this work, a model’s performance is demonstrated 
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by a reduced variance and a higher mean. The summary of each metric’s standard mean and 

variance is tabulated below from Table 2-5. 

Summary of Standard Mean and Variance of Algorithms for all 4 Metrics 

Table 2: Mean and variance of algorithms of the f1-Score for all images. 

Algorithms Mean Variance 

Binary Thresholding 0.577777   0.035392 

Li Thresholding 0.601782   0.024413 

Otsu Segmentation 0.641472   0.020001 

Eye tracking Masking (10s) 0.727934   0.024796 

Eye tracking Masking (30s) 0.799737 0.017095 

HITL Eye tracking + K-means Segmentation (10s) 0.755833   0.019198 

HITL Eye tracking + K-means Segmentation (30s) 0.820695 0.015446 

 

 

Table 3: Mean and variance of algorithms of the accuracy/weighted recall for all images. 

Algorithms Mean Variance 

Binary Thresholding 0.554981 0.031331 

Li Thresholding 0.582996 0.022763 

Otsu Segmentation 0.607348 0.021382 

Eye tracking Masking (10s) 0.719600 0.028753 

Eye tracking Masking (30s) 0.797470 0.018913 

HITL Eye tracking + K-means Segmentation (10s) 0.742291 0.021863 

HITL Eye tracking + K-means Segmentation (30s) 0.812758 0.016222 
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Table 4: Mean and variance of algorithms of the precision for all images. 

Algorithms Mean Variance 

Binary Thresholding 0.750424 0.017010 

Li Thresholding 0.782473 0.010378 

Otsu Segmentation 0.779873 0.015117 

Eye tracking Masking (10s) 0.819132 0.007655 

Eye tracking Masking (30s) 0.846352 0.007108 

HITL Eye tracking + K-means Segmentation (10s) 0.829000 0.008378 

HITL Eye tracking + K-means Segmentation (30s) 0.858022 0.007943 

 

Table 5: Mean and variance of algorithms of the IoU for all images. 

Algorithms Mean Variance 

Binary Thresholding 0.456237 0.054320 

Li Thresholding 0.508503 0.037192 

Otsu Segmentation 0.520656 0.037552 

Eye tracking Masking (10s) 0.512745 0.021052 

Eye tracking Masking (30s) 0.617565 0.026748 

HITL Eye tracking + K-means Segmentation (10s) 0.566304 0.019100 

HITL Eye tracking + K-means Segmentation (30s) 0.668835 0.027230 

 

 

Computational Time 

The computational time of a segmentation algorithm is also critical when considering the 

efficiency of the robot de-caking system. After ten iterations using Python programming, the 

range, mean, and standard deviation of the running times for all the segmentation techniques for 

all 30 images were calculated and shown in Table 6. 
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Table 6: Average computational time of each segmentation algorithm for the test images. 

Running Time (seconds) 

Algorithms Lower Limit Upper Limit Mean Standard 

Deviation 

Binary Thresholding 0.555665 0.626781 0.579662 0.020571 

Li Thresholding 0.559737 0.610923 0.581879 0.017935 

Otsu Segmentation 0.557458 0.583873 0.571006 0.008670 

Eye tracking (10s) 0.537062 0.569525 0.554724 0.008329 

Eye tracking (30s) 0.527560 0.548425 0.540755 0.006566 

HITL Eye tracking + K-means 

Segmentation (10s) 

0.524034 0.533959 0.528978 0.003315 

HITL Eye tracking + K-means 

Segmentation (30s) 

0.497285 0.5258369 0.510655 0.008387 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

This study proposes a HITL eye-tracking plus segmentation algorithm to assist the 

automated robot de-caking system for powder-bed AM. The experiment’s findings demonstrate 

how much better the semi-supervised HITL eye-tracking with segmentation model performs than 

the traditional segmentation methods currently in use. Additionally, this framework provides the 

opportunity to incorporate biological data about humans to increase the adaptability and 

effectiveness of artificial intelligence algorithms and develop the ideas of human-autonomy 

teaming and convergent production in advanced manufacturing. With an average accuracy, f1-

score, precision, and IoU score of 81.2%, 82.3%, 85.8%, and 66.9%, respectively, the suggested 

HITL 30 seconds eye tracking plus segmentation has the best performance out of all the 

algorithms evaluated and compared. 

Similarly, the proposed HITL framework (for both 30 and 10 seconds eye tracking with 

segmentation) falls within the same range of values of the computational or mean running times 

tested classic segmentation algorithms, even though it performs better. 
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New directions of research can be developed based on the proposed framework. HITL 

framework lays the foundation for further research as other machine learning algorithms, such as 

Bayesian and deep learning, could be applied. The concept of human-in-the-loop is still in the 

early stages, and this work promotes further the idea of human autonomy teaming, which 

contributes to the futuristic industry 5.0. 

Variations of this framework could be enhanced to support video-type data and not only 

image-type datasets, making it more useful for a broader range of applications. Also, the time 

spent watching the eye movement must coincide with the time spent processing the video data in 

practical applications, even though the segmentation algorithm’s time requirements for the 

automated de-caking procedure are practical. 
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APPENDIX 

This section contains the complete set of all 30 images analyzed by all the classic and existing 

algorithms. From these images, it can be noticed that none of these classic segmentation 

algorithms works well (separating the foreground from the background and creating a distinct 

powder/non-powder segment) for all or most of the images, setting the motivation and basis for 

our research.  
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Figure 21: All 30 segmented images for Otsu thresholding 
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Figure 22: All 30 segmented images for Niblack thresholding 
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Figure 23: All 30 segmented images for Sauvola thresholding 
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Figure 24: All 30 segmented images for Otsu thresholding 
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Figure 25: All 30 segmented images for Li iterative thresholding 
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Figure 26: All 30 segmented images for to-zero thresholding 
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Figure 27: All heatmap images from 30 seconds of eye tracking 
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Figure 28: All heatmap images from 10 seconds of eye tracking 
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Figure 29: All color images from the proposed HITL K-means plus 30 seconds of eye tracking  
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Figure 30: All color images from K-means plus 10 seconds of eye tracking 

 



 

62 

 

 

Figure 31: All black and white (binary) images from the proposed HITL K-means plus 30 

seconds of eye tracking segmentation algorithm 
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Figure 32: All black and white (binary) images from the HITL K-means plus 10 seconds of eye 

tracking segmentation algorithm  
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