463 research outputs found

    A review on structured scheme representation on data security application

    Get PDF
    With the rapid development in the era of Internet and networking technology, there is always a requirement to improve the security systems, which secure the transmitted data over an unsecured channel. The needs to increase the level of security in transferring the data always become the critical issue. Therefore, data security is a significant area in covering the issue of security, which refers to protect the data from unwanted forces and prevent unauthorized access to a communication. This paper presents a review of structured-scheme representation for data security application. There are five structured-scheme types, which can be represented as dual-scheme, triple-scheme, quad-scheme, octal-scheme and hexa-scheme. These structured-scheme types are designed to improve and strengthen the security of data on the application

    Robust high-capacity audio watermarking based on FFT amplitude modification

    Get PDF
    This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5 kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods

    AUDIO WATERMARKING WITH ANGLE QUANTIZATION BASED ON DISCRETE WAVELET TRANSFORM AND SINGULAR VALUE DECOMPOSITION

    Get PDF
    An audio watermark is a unique electronic identifier embedded in an audio signal, typically used to identify ownership of copyright. Proposed work is a new method of audio watermark hiding inside another bigger cover standard audio cover. The method includes ‘harr’ wavelet based Discrete Wavelet Transform decomposition of frequencies hence the audio samples of watermark gets hidden only those parts of cover audio where human ears are less sensible according to Human Auditory System. Proposed method also includes the Singular Value Decomposition, which is required for making our method robust against the various communication of processing attacks like compression, filtering, fading or noise addition. Proposed work is also using the concept of angular modulation which initially modifies the audio watermark in to provide extra security and also extra robustness in communication. The design is been develop on MATLAB 2013b version and verification of design o the same.&nbsp

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Software-Based Techniques for Protecting Return Addresses

    Full text link
    Protecting computing systems against cyberattacks should be put high on the agenda. For example, Colonial Pipeline, an American oil pipeline system, suffered a cyberattack that impacted its computerized equipment managing the pipeline, leading to a state of emergency declared by President Joe Biden in May, 2021. As reported by Microsoft Security Response Center, attackers are unanimously corrupting the stack and most Control Flow Guard (CFG) improvements will provide little value-add until stack protection loads. Shadow stacks play an important role in protecting backward edges (return addresses on the call stack) to mitigate Return-Oriented Programming (ROP) attacks. Control-Flow Integrity (CFI) techniques often focus on protecting forward edges (indirect calls via function pointers and virtual calls) and assume that backward edges are protected by shadow stacks. However, the cruel reality is that shadow stacks are still not widely deployed due to compatibility, performance or security deficiencies. In this thesis, we propose three novel techniques for protecting return addresses. First, by adding one level of indirection, we introduce BarRA, the first shadow stack mechanism that applies continuous runtime re-randomization to abstract return addresses for protecting their corresponding concrete return addresses (also protected by CFI) for single-threaded programs, thus avoiding expensive pointer tracking. As a nice side-effect, BarRA naturally combines the shadow stack, CFI and runtime re-randomization in the same framework. Second, without reserving any dedicated register, we propose a novel threadlocal storage mechanism, STK-TLS, that is both efficient and free of compatibility issues. We also present a new microsecond-level runtime re-randomization technique (without relying on information hiding or MMU), STK-MSR, to mitigate information disclosure attacks and protect the shadow stack with 64-bit entropy. Based on STK-TLS and STK-MSR, we have implemented a novel stack layout (referred to as Bustk), that is highly performant, compatible with existing code, and provides meaningful security for single- and multi-threaded server programs. Third, by fast-moving safe regions in the large 47-bit user space (based on MMU), we design a practical shadow stack, FlashStack, for protecting return addresses in single- and multi-threaded programs (including browsers) running under 64-bit Linux on x86-64. FlashStack introduces a novel lightweight instrumentation mechanism, a continuous shuffling scheme for the shadow stack in user space, and a new dual-prologue approach for a protected function to mitigate the TOCTTOU attacks (constructed by Microsoft s red team), information disclosure attacks, and crash-resistant probing attacks
    • …
    corecore