4 research outputs found

    The Use of Flexible Biomimetic Fins in Propulsion

    Get PDF
    This thesis documents a series of investigations exploring the role of stiffness profile in propulsion using pitching flexible fins. Stiffness profile is defined as the variation in local bending stiffness along the chord of a fin, from leading to trailing edge. An unmanned robotic submarine was created, using simple pitching flexible fins for propulsion. Its design and performance prompted a review of literature covering many aspects of oscillating fin propulsion, paying special attention to the studies of pitching flexible fins, of the type used in the submarine. In the body of previous work, fin stiffness profile was a consequence of the external shape profile of a fin; fins had not thus far been designed with stiffness profile specifically in mind. A hypothesis was proposed: “Use of a biomimetic fin stiffness profile can improve the effectiveness of a flexible oscillating fin, over that of a standard NACA designated fin shape.” Rectangular planform flexible fins of standard NACA 0012 design and 1:1 aspect ratio were tested alongside similar fins with a stiffness profile mimicking that of a pumpkinseed sunfish (Lepomis gibbosus). The fins were oscillated with a pitching-only sinusoidal motion over a range of frequencies and amplitudes, while torque, lateral force and static thrust were measured. Over the range of oscillation parameters tested, it was shown that the fin with a biomimetic stiffness profile offered a significant improvement in static thrust over a fin of similar dimensions with a standard NACA 0012 aerofoil shape, and produced thrust more consistently over each oscillation cycle. A comparison of different moulding materials showed that the improvement was due to the stiffness profile itself, and was not simply an effect of altering the overall stiffness of the fin, or changing its natural frequency. Within the range of stiffnesses and oscillation conditions tested, fins of the same stiffness profile were found to follow similar thrust-power curves, independently of their moulding material. Biomimetic fins were shown to produce between 10% and 25% more thrust per watt of mechanical input power.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The development and implementation of an ionic-polymer-metal-composite propelled vessel guided by a goal-seeking algorithm

    Get PDF
    This thesis describes the use of an ultrasonic goal-seeking algorithm while using ionic polymer metal composite (IPMC), an electroactive polymer, as the actuator to drive a vessel towards a goal. The signal transmitting and receiving circuits as well as the goal seeking algorithm are described in detail. Two test vessels were created; one was a larger vessel that contained all necessary components for autonomy. The second was a smaller vessel that contained only the sensors and IPMC strips, and all power and signals were transmitted via an umbilical cord. To increase the propulsive efforts of the second, smaller vessel, fins were added to the IPMC strips, increasing the surface area over 700%, determined to yield a 22-fold force increase. After extensive testing, it was found that the three IPMC strips, used as oscillating fins, could not generate enough propulsion to move either vessel, with or without fins. With the addition of fins, the oscillating frequency was reduced from 0.86-Hz to 0.25-Hz. However, the goal-seeking algorithm was successful in guiding the vessel towards the target, an ultrasonic transmitter. When moved manually according to the instructions given by the algorithm, the vessel successfully reached the goal. Using assumptions based on prior experiments regarding the speed of an IPMC propelled vessel, the trial in which the goal was to the left of the axis required 18.2% more time to arrive at the goal than the trial in which the goal was to the right. This significant difference is due to the goal-seeking algorithmâÂÂs means to acquire the strongest signal. After the research had concluded and the propulsors failed to yield desired results, many factors were considered to rationalize the observations. The operating frequency was reduced, and it was found that, by the impulse-momentum theorem, that the propulsive force was reduced proportionally. The literature surveyed addressed undulatory motion, which produces constant propulsive force, not oscillatory, which yields intermittent propulsive force. These reasons among others were produced to rationalize the results and prove the cause of negative results was inherent to the actuators themselves. All rational options have been considered to yield positive results

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    A novel double-hull boat with biomimetic wire-driven flapping propulsors

    No full text
    corecore